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Problem 23 (The classical Ising model and typical subspaces): (15 points)

In this exercise, we explore the formal similarities in the description of simple statistical systems
and the information theoretic view on a string of length n with just two different symbols.
We consider the classical non-interacting Ising model in one dimension, where we have a chain
of n “spins” σi, and each one can have the values +1 (up) or −1 (down). The configuration
space of the model in the canonical ensemble is thus Ω = {−1, 1}n. The energy function for
a spin chain σ = (σ1 . . . σn) is given by

H = −h
n∑
i=1

σi,

where h ∈ R is some external parameter. The probability for a specific configuration is given
by the Boltzmann distribution

P (σ) = e−βH(σ)/Z with Z =
∑
σ∈Ω

e−βH(σ).

(i) What are the probabilities for a single spin to be in the up or down state? Write down
the Boltzmann entropy s for a single spin (i.e. a spin chain of length one). Argue that
the Boltzmann entropy of a chain of size n is n · s. (Don’t calculate, use a general
property of the entropy.) We thus call s the entropy density of the model.

(ii) What is the expectation value 〈H〉 for the energy function H for a single spin and in
the case of n spins?

We define the set of ε-typical states Tε ⊂ Ω on a chain of length n as

Tε =

{
σ ∈ Ω

∣∣∣∣ s− ε < − 1

n
logP (σ) < s+ ε

}
.

(iii) Prove now that this set contains exactly the states of the microcanonical ensemble, i.e.

Tε = {σ ∈ Ω | 〈H〉 − ε n/β < H(σ) < 〈H〉+ ε n/β} .

Hints: Start by rewriting the definition of Tε as a restriction on the number of up states
in the configuration σ, by the the expectation value of the number of up spins. Since
the energy obviously depends on this number of up states, continue to transform this
into a requirement on the energy of the configuration. You will need the explicit form
of s written down in (i).

(iv) Explain in words (without formal details) why this can be interpreted as an instance of
“equivalence of ensembles”.
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Problem 24 (Catalysis in small dimensions): (15 points)

We introduced the notion of catalysis in the lecture to enable state transitions under noisy
operations of states that were incomparable before.

(i) Explain why catalysis is not of much interest if we have two probability vectors which
are both just of dimension two.

As well in dimension three catalysis can’t enable transitions that are forbidden without a
catalyst. To show this, first prove the following.

(ii) Let p and q be probability vectors of size three and assume that for some catalyst c we
have

p⊗ c noisy−−−→ q ⊗ c.

Show that p↓1 ≥ q↓1 and p↓3 ≤ q↓3 must hold. (Hint: You can assume p, q and c to be
decreasingly ordered.)

(iii) Now suppose that p and q are incomparable, i.e. p � q and q � p. Use the above
result to show that no c exists such that p⊗ c and q ⊗ c are comparable.

(iv) Choose states p = (0.5, 0.25, 0.25, 0), q = (0.8, 0.2) and a catalyst c = (0.6, 0.4). Show

that p9 q by noisy operations but p⊗ c noisy−−−→ q ⊗ c is possible.

Problem 25 (Bonus: Data compression and Shannon’s Theorem): (+10 points)

We learned in the lecture and in the tutorial that the Shannon entropy quantifies how many
bits are needed to encode the output of some information source. Choose the programming
language of your choice and fill a few text documents with random zeros and ones. For
the different documents choose different probabilities for the zero to occur. If you write the
same amount of symbols into each file they should all have the same size. Now take a file
compression tool and compress all these files. What do you expect from Shannons theorem
for the sizes of the compressed files depending on the probability for the zero to occur? What
do you find?
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