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Abstract 

Testing	quantum	theory	with	generalized	noncontextuality
Markus	P.	Müller*	and	Andrew	J.	P.	Garner	

Institute	for	Quantum	Optics	and	Quantum	Information,	Vienna

It	is	a	fundamental	prediction	of	quantum	theory	that	states	of	physical	systems	are	described	by	complex	vectors	or	density	operators	on	a	Hilbert	space.	
However,	many	experiments	admit	effective	descriptions	in	terms	of	other	state	spaces,	such	as	classical	probability	distributions	or	quantum	systems	with	
superselection	rules.	Here,	we	ask	which	probabilistic	theories	could	reasonably	be	found	as	effective	descriptions	of	physical	systems	if	nature	is	
fundamentally	quantum.	To	this	end,	we	employ	a	generalized	version	of	noncontextuality:	processes	that	are	statistically	indistinguishable	in	an	
effective	theory	should	not	require	explanation	by	multiple	distinguishable	processes	in	a	more	fundamental	theory.	We	formulate	this	principle	in	
terms	of	embeddings	and	simulations	of	one	probabilistic	theory	by	another,	show	how	this	concept	subsumes	standard	notions	of	contextuality,	and	
prove	a	multitude	of	fundamental	results	on	the	exact	and	approximate	embedding	of	theories	(in	particular	into	quantum	theory).	We	show	how	results	
on	Bell	inequalities	can	be	used	for	the	robust	certification	of	generalized	contextuality.	From	this,	we	propose	an	experimental	test	of	quantum	theory	
by	probing	single	physical	systems	without	assuming	access	to	a	tomographically	complete	set	of	procedures,	arguably	avoiding	a	significant	loophole	of	
earlier	approaches.		
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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Suppose	we	prepare	and	measure	a	system	in	many	different	ways,	and	fit	a	generalized	
probabilistic	theory	(GPT)	to	it	[1].	If	QM	is	correct,	then	we	see	a	“shadow”	of	an	(in	
general	infinite-dimensional)	quantum	system.	Which	“shadows”	are	possible/plausible?

Which	results	would	tell	us	that	QM	is	an	
implausible	explanation,	i.e.	challenge	QM?	

Effective	theory	A	in	the	lab

Fundamental	theory	B

simulated	by
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

To	address	this,	we	introduce	a	notion	of	simulation	of	an	(effective)	GPT	A	by	another	
(more	fundamental)	GPT	B.	Simulations	can	be	contextual	or	non-contextual	(see	below).

• A=Quantum	Theory,	B=Classical	Prob.	Theory:	this	reduces	to	Spekkens’	contextuality.	
Addresses	the	question	of	whether	CPT	(hidden	variables)	can	plausibly	explain	QT.	

• A=experimental	GPT	result,	B=Quantum	Theory:	the	case	we	are	most	interested	in.	
Addresses	the	question	of	whether	QT	is	a	plausible	explanation	of	our	laboratory	data.
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In all these cases, there is a fundamental level of physical description, with preparation and measurement procedures
giving rise to a GPT B, and an e↵ective level with procedures giving rise to another GPT A. Whenever we think that
we are preparing a state !A (resp. measuring an e↵ect eA) in the e↵ective theory, we will in fact prepare some state
!B (resp. measure some e↵ect eB) in the fundamental theory, such that the probabilities (!A, eA) are reproduced via
(!B , eB).

For any given state !A, there will in general be several di↵erent preparation procedures in the e↵ective operational
theory that give rise to !A, as explained in Subsection IIA. Consider the collection of all such procedures, or contexts,
for !A. While they all give rise to the same e↵ective state !A, they may introduce statistical di↵erences at the
fundamental level. That is, the state !B that is prepared in the fundamental GPT B (and that is supposed to
reproduce the e↵ective statistics of !A) may well depend on this context. Let us collect all the resulting fundamental
states !B , over all such contexts, into a set that we will call ⌦B(!A) (“all the states of B that simulate !A”). A
notion of preparation contextuality [30], i.e. of the dependence of !B from the context, will then manifest itself in the
fact that the set ⌦B(!A) contains more than one element.

A priori, we can think of many di↵erent ways in which a fundamental theory could simulate an e↵ective one
according to this scheme, and we do not want to limit ourselves to any particular cases. We will, however, make one
additional assumption on the sets ⌦B(!A) that follows directly from the statistical interpretation of states. Namely,
consider two e↵ective states !A and 'A, and two corresponding e↵ective preparation procedures giving rise to two
corresponding states !B 2 ⌦B(!A) and 'B 2 ⌦B('A) at the fundamental level. We can certainly implement a
procedure that performs the first of these two preparations with probability � and the second one with probability
1� �. This prepares the e↵ective state ⇢A := �!A + (1� �)'A, and it does so by fundamentally preparing the state
⇢B := �!B + (1� �)'B . Therefore, no matter what the set of all fundamental states ⌦B(⇢A) that simulate ⇢A turns
out to be, at the very least, ⇢B must be contained in it. This leads us to the inclusion relation (5) below.

Arguing similarly for the e↵ects, and introducing an approximation parameter " that will ultimately take into
account experimental imperfections, motivates the following definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA) (the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fundamental

GPT”), and let " � 0. An "-simulation of A by B assigns to each !A 2 ⌦A a nonempty set of states ⌦B(!A) ⇢ ⌦B

(“the states that simulate !A”), and to every normalized e↵ect eA 2 EA a nonempty set of e↵ects EB(eA) ⇢ EB (“the

e↵ects that simulate eA”), such that the following conditions hold:

• all outcome probabilities are reproduced up to ": for all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)� (!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA); (4)

• mixtures of simulating states (e↵ects) are valid simulations of mixtures of states (e↵ects):

�⌦B(!A) + (1� �)⌦B('A) ✓ ⌦B(�!A + (1� �)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the analogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid simulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation. The simulation is called preparation–noncontextual if
|⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–noncontextual if |EB(eA)| = 1 for all eA 2 EA, and noncontextual
if it is both preparation– and measurement–noncontextual.

As we will elaborate on in Section IV below, the well-known standard notion of contextuality corresponds to the
special case where B = Cn is n-level classical probability theory. The above definition extends this principle to the
simulation of any GPT by any other. Indeed, for much of this paper, we will be concerned with identifying theories
that can be noncontextually simulated by quantum theory. In Section VIIB, we will discuss in more detail why
noncontextuality is a plausible assumption in our setting, generalizing similar arguments that have been put forward
in favour of standard noncontextuality.

As an example, let us consider an exact simulation of a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In particular, consider the map ei 7! fi that acts to take the
extremal gbit e↵ects to
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Theorem:	Certifying	non-
embeddability	via	Bell	nonlocality

Ex.:	Contextual	simulation	
of	a	gbit	(square	bit)	by	CPT	
(“Holevo	projection”).

Noncontextual	Ɛ-simulations	are	(linear)	Ɛ-embeddings:
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FIG. 4. Approximating convex sets by polytopes. When map f" “shrinks” convex set ⌦A towards interior point µ,
there always exists a polytope P" between ⌦A and f"(⌦A), the “shadow” of a classical GPT. Together with a bound on the
number of vertices, this is proven in Appendix A.

constant that only depends on ⌦A.

Proof. Pick some point µ in the relative interior [60] of ⌦A. Then the function f" : ⌦A ! ⌦A

f"(!A) := "µ+ (1� ")!A (9)

“shrinks” ⌦A towards µ. Geometric intuition (Figure 4) suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A. Lemma A1 in Appendix A gives a rigorous proof that this
is indeed the case, and gives the claimed bound on the number of vertices n := n". Denote the vertices of P" (in
arbitrary order) by v",1, v",2, . . . , v",n" , and define the linear map L" : Rn" ! A via L"ei := v",i for i = 1, . . . , n",
where ei denotes the ith unit vector of Rn" . Consider the classical GPT C := Cn" , then the polytope P" is the image
of the simplex ⌦C under L" [61]. For !A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)

EC(eA) := {L⇤
"
(eA)}. (11)

Since f"(!A) 2 P", there must be at least one !C 2 ⌦C which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA) contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓ ⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6) follow
from convex-linearity of f" and linearity of L".

Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2 ⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)

= (!A, eA) + "(µ� !A, eA). (12)

But |(µ � !A, eA)|  1, and so |(!C , eC) � (!A, eA)|  ". This shows that the above maps define an "-simulation of
A by Cn" .

It turns out that noncontextual simulations have a particularly simple structure: they are embeddings. We will now
first define this notion and then formulate this statement as a lemma.

Definition 2 (Embedding). Let A = (A,⌦A, EA) and B = (B,⌦B , EB) be GPTs, and let " � 0. A pair of

linear maps � : A ! B and  : A⇤ ! B⇤
is said to be an "-embedding of A into B if

(i) � and  are positive and  is normalization-preserving, i.e. �(EA) ✓ EB and  (⌦A) ✓ ⌦B;

(ii) � and  preserve outcome probabilities up to "; i.e. |(!, e)� ( (!),�(e))|  " for all e 2 EA, ! 2 ⌦A.

If in addition �(uA) = uB, then we say that the embedding is unital. An (" = 0)-embedding is also called an exact
embedding.

This notion of approximate embedding has already been introduced and studied by Werner [62] for the case that
B is a quantum system and A a possibly infinite-dimensional classical system. Here we are concerned with general
GPTs and finite-dimensional A.

Noncontextual simulations are embeddings:

Lemma 2. Every "-embedding of A into B defines a noncontextual "-simulation of A by B, and vice versa.
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Proof. First, consider a noncontextual "-simulation of A by B. Let d := dimA, and pick d linearly independent states
!A

1
, . . . ,!A

d
2 ⌦A. Then there are d states !B

1
, . . . ,!B

d
such that ⌦B(!A

i
) = {!B

i
} for all i. Define  : A⇤ ! B⇤ as the

linear extension of  (!A

i
) = !B

i
for i = 1, . . . , d. If !A 2 C := conv{!A

1
, . . . ,!A

d
}, i.e. !A =

P
d

i=1
�i!A

i
for suitable

�i � 0,
P

i
�i = 1, then

⌦B(!A) =
dX

i=1

�i⌦B(!
A

i
) =

(
dX

i=1

�i!
B

i

)
= { (!A)}. (13)

Now suppose !A 2 ⌦A \ C. Pick any state 'A in the relative interior of C, and consider the line connecting 'A and
!A. On it, we can find some ⇢A 2 C \ {'A}, i.e. there is some 0 < � < 1 such that ⇢A = �!A + (1� �)'A. Thus

{ (⇢A)} = ⌦B(⇢A) = �⌦B(!A) + (1� �)⌦B('A)

= �⌦B(!A) + (1� �){ ('A)}, (14)

and from this it is elementary to infer that ⌦B(!A) = { (!A)}. Hence  (⌦A) ✓ ⌦B , and  is a positive and
normalization-preserving linear map.

The argumentation for e↵ects is similar, applying the above construction to the convex hull C of d linearly–
independent e↵ects and the zero e↵ect. Finally, the preservation of outcome probabilities up to " follows directly from
the definition of a simulation.

Conversely, given the linear maps � and � of an "-embedding, we obtain a noncontextual "-simulation via ⌦B(!A) :=
{ (!A)} and EB(eA) := {�(eA)}.

It is clear that embeddings satisfy a transitivity property: for GPTs A, B and C, embedding A into B and then B
into C defines an embedding of A into C:

Lemma 3. Let (�, ) define an "-embedding of A into B, and (�0, 0) define a �-embedding of B into C, where

", � � 0. Then (�0 � �, 0 � ) defines an ("+ �)-embedding of A into C.

The proof is straightforward and thus omitted.
Noncontextuality thus extends transitively across di↵erent levels of description: think of A as an e↵ective theory,

B as a somewhat more fundamental (“intermediate”) theory, and C as the most fundamental among the three. If
A has a noncontextual explanation in terms of B, and so does B in terms of C, then the e↵ective theory A has a
noncontextual explanation in term of the fundamental one C (with the approximation errors adding up).

FIG. 5. Preparation–noncontextual simulation. Consider preparing the state ⇢ := p!1 + (1� p)!2 in A by randomly
preparing either !1 with probability p or otherwise preparing !2. The state ⇢0 in B that reproduces the statistics of ⇢ can then
likewise be prepared by randomly preparing either !0

1 =  (!1) with probability p or otherwise !0
2 =  (!2). If the simulation

is preparation–noncontextual, only ⇢0 is required (and no other state) to simulate ⇢, even when ⇢ is formed by mixing another
set of states in ⌦A (e.g. those indicated by the grey triangles).

Intuitively, the reason why noncontextuality implies linearity can be understood via Figure 5: mixtures ⇢A are
uniquely simulated by mixtures ⇢0

B
, and mixture-preservation is the operational source of linearity. There may be

other states ⇢̃B 6= ⇢0
B

on B that could simulate ⇢A, in the sense of reproducing the exact same probabilities on all
simulated measurements, but the point of noncontextuality is that these are not needed for a successful simulation
of the GPT A. This is in contrast to, say, the Holevo projection (discussed above, see Figure 3), where the various
contexts in which the same mixed state of A could be prepared necessitated di↵erent states in B.

Among	the	“unrestricted”	GPTs	(i.e.	states	and	effects	
are	full	duals	of	each	other),	we	classify	those	that	have	
an	exact	non-contextual	quantum	simulation:
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .

Essentially,	these	are	QM	over	the	reals					,	the	complex	
numbers					,	or	the	quaternions					,	“Bloch	balls”	of	some	
dimension	d,	and	direct	sums	of	those	(including	CPT).
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We	introduce	a	method	to	certify	that	an	(in	general,	
restricted!)	GPT	A	does	not	have	any	Ɛ-approximate	
noncontextual	quantum	(or	classical)	simulation.
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Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =

p
E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0

++
k1  2

p
", where

k · k1 is twice the trace distance, and hence:

| tr
�
⇢0
++

Ez

�
� tr (⇢++Ez) | 

p
". (33)

Thus, the joint probability of outcome ++ from D is:

P (+ + |⇢++) = P1(+|⇢++)P2(+|⇢0
++

)

� (1� ") tr
�
⇢0
++

Ez

�

� (1� ")
�
1� "�

p
"
�

(34)

By equivalent logic, P (ij|⇢ij) � (1� ") (1� "�
p
") for

the other i, j 2 {+,�}.
Suppose we input the state � :=  (↵0) into D, where

↵0 := 1

2
(↵++ + ↵��) = 1

2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
use the decomposition � = 1

2
(⇢++ + ⇢��), such that

P (+ + |�) � 1

2
P (+ + |⇢++) �

1� "

2

�
1�"�

p
"
�
; (35)

or we use � = 1

2
(⇢�+ + ⇢+�), such that

P (+ + |�) = 1

2
P (+ + |⇢�+) +

1

2
P (+ + |⇢+�)

 1

2
P1(+|⇢�+) +

1

2
P1(+|⇢+�)P2(+|⇢0

+�)

=
1

2
tr (Ex⇢�+) +

1

2
tr (Ex⇢+�) tr

�
Ez⇢

0
+�

�

 1

2
"+

1

2

�
tr(Ez⇢+�) +

p
"
�

 1

2
"+

1

2

�
"+

p
"
�
. (36)

For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.

But	there	are	no	noncontextual	simulations:

(Here,							=	n-dimensional	quantum	theory).
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Lemma 15. Let A be a GPT for which there exists a unital "-embedding into some quantum system Qn, where

n 2 N. Suppose that we have a behaviour P (a, a0|x, x0) on two copies of A. Then there exists a quantum behaviour

PQ(a, a0|x, x0) on two n-dimensional Hilbert spaces with

|P (a, a0|x, x0)� PQ(a, a
0|x, x0)|  2"[1 + 2R(A)] (42)

for all a, a0, x, and x0
, where R(A) is the self-entangleability of A.

The proof is given in Appendix F 2. The assumption of unitality can be dropped at the expense of replacing " by
2" (Lemma 4), and the case n = 1 can be treated by replacing " by "+ � for some � > 0 (Lemma 12).

This lemma allows us to obtain bounds on the embeddability of a broad class of GPTs. Before turning to the
general result, let us again consider the special case of the gbit. While the next example gives us a statement that is
strictly weaker than Example 2, it demonstrates the main idea and the strategy for the general proof.

Example 3. The Tsirelson bound implies that the gbit cannot be "-embedded into any Qn or Q1 if "  0.00915.

Proof. Let A be the gbit. To every behaviour P (a, a0|x, x0) on two gbits AA, with x, x0, a, a0 2 {0, 1}, we can associate
a winning probability for the CHSH game [21, 94]:

Pwin =
1

4

X

x,x0

X

a,a0:a�a0=x·x0

P (a, a0|x, x0), (43)

where � denotes addition modulo two. The composite state space of two gbits admits Popescu-Rohrlich (PR)
correlations [50] PPR(a, a0|x, x0) which give a winning probability of unity, i.e. Pwin

PR
= 1. On the other hand, every

quantum Bell behaviour PQ gives a value of Pwin

Q
 1

2
+ 1

2
p
2
, the Tsirelson bound [95].

Suppose that there exists an "-embedding of the gbit into some Qn or Q1. Then, according to Lemmas 4 and 12,
for every � > 0, there exists a unital (2"+ �)-embedding of A into some Qn. But then, Theorem 15 implies that there
exists a quantum behaviour PQ with

|PPR(a, a
0|x, x0)� PQ(a, a

0|x, x0)|  4(2"+ �) (44)

for all a, a0, x, x0 (recall Lemma 14 that R(A) = 1

2
). But Pwin is a linear combination of eight such probabilities, each

with a prefactor of 1/4. Thus

1

2
� 1

2
p
2
 Pwin

PR
� Pwin

Q
 1

4
· 8 · 4(2"+ �). (45)

Since this is true for all � > 0, it must also be true for � = 0, hence " � (2�
p
2)/64 ⇡ 0.00915.

This proof strategy can be generalized in obvious ways beyond the gbit. This leads us to the main result of this
section:

Theorem 3. Suppose that A is a GPT that “admits of post-quantum self-correlations” in the following sense: there

is some Bell functional B such that BAA > BQ, i.e. some state on two copies of A violates the corresponding Bell

inequality by more than any bipartite quantum state. Then, for every

" <
BAA �BQ

4|B|(1 + 2R(A))
, (46)

the GPT A cannot be "-embedded into any Qn or Q1.

This theorem allows us to obtain bounds on the quantum embeddability for all GPTs that admit of post-quantum
self-correlations. For example, it is known that all unrestricted GPTs where the set of normalized states ⌦ is a regular
polygon with an even number of vertices admit of post-quantum CHSH Bell-correlations [96]. Theorem 3 shows that
these GPTs A cannot be perfectly embedded into quantum theory, and that this result is robust up to some " > 0
that we can compute.

We do not currently know whether Theorem 3 produces nontrivial bounds for all GPTs that are not embeddable into
quantum theory. The theorem applies to restricted and unrestricted GPTs alike, but we expect that it yields stronger
results for GPTs that are close to unrestricted. However, this theorem cannot be straightforwardly generalized to
more than two parties or to embeddings into theories which are not classical or quantum. We comment more on this,
and on the relation to a result by Pusey [97], in Appendix G.

Finally, we remark that this strategy can also be adapted to test embeddings into classical probability theory, since
bipartite states on two classical systems (as defined in Definition 4) cannot violate Bell inequalities.

Known	results	on	Bell	inequalities	can	thus	be	“lifted”	to	
prove	non-embeddability	of	(single-system)	GPTs.

Arguably,	contextual	simulations	are	implausible	for	the	
same	reasons	as	Spekkens’	contextuality	(Reichenbach’s	
principle),	but	we	prove	further	results	that	support	this:	
• Noncontextuality	extends	transitively	across	several	
different	levels	/	layers	of	theories;	

• noise	and	decoherence	cannot	create	contextuality.26

FIG. 7. Approximately embedded state spaces. Suppose all in-principle available preparations and measurements of
an experimental scenario are described by an e↵ective GPT A (here: the black circle of states ⌦A). In practice, experiments
can only prepare a finite subset ⌦A0 ✓ ⌦A of these states, inducing another GPT A0 that can be perfectly embedded into A
(here: blue polygon). Moreover, due to only collecting finite statistics, the actual GPT that is experimentally determined, A00,
is itself an approximation of A0 (here: yellow dashed polygon of measured states ⌦A00). There is an "–embedding of A00 into
A0, and hence also into A, where " is a function of the experimental error.

that describes (up to classical postprocessing) the actually implemented e↵ects (see [41] for details). Then ⌦A0 ✓ ⌦A

and EA0 ✓ EA. But then, the identity maps define an exact embedding of A0 into A. We can think of A0 being a
good approximation of A if we implement a large number of preparations and measurements, i.e. that A0 converges to
A in some sense as we increase our experimental e↵orts. In general, A0 is a restricted GPT, even if A is unrestricted.

However, there is a second, more important drawback: we can only ever collect finite statistics. The frequencies
that we measure in the experiment will be only approximations to the actual probabilities. Thus, we will actually
obtain an approximation A00 of A0. In contrast to A0 being contained in A, the states and e↵ects of this approximation
will not in general be subsets of the states and e↵ects of A0 (or of A). Indeed, Mazurek et al. [41] found that some
of the experimentally determined state vectors “stick out” of the Bloch ball of A, corresponding to nonstates — an
obvious artefact of finite statistics.

We can say more about how A00 approximates A0 by building on an observation of Mazurek et al. [41]: in their
specific experiment, shrinking the state and e↵ect vectors of A00 by a small amount (0.14%) embeds them in the qubit
state space A. In general, we expect that there are maps � : A ! A and  : A⇤ ! A⇤ that are close to the identity,
“shrinking” the state and e↵ect spaces ⌦A00 and EA00 a tiny bit, and embedding them into ⌦A and EA. Hence, these
maps define an "-embedding of A00 into A, and it is clear that the embedding becomes more exact (i.e. " & 0) when
the number of experimental runs is increased.

This procedure involves a statistical estimate of the dimension d of the e↵ective GPT A. In contrast to the view
expressed in earlier implementations [40, 41], a failure of tomographic completeness is not a possible source of error
here since the set of available preparation and measurement procedures are, by definition of A, tomographically
complete for A. Thus, as long as A is finite-dimensional, we may expect that the experimental estimate of d will
become correct after finitely many experimental runs.

While the exact error analysis depends on the specific details of the protocol that is used to produce the estimate
A00, we can imagine that the experimenter chooses a number of repetitions that is large enough to conclude with
high confidence that the experimentally determined GPT A00 can be "-embedded into A0, and thus into A. With
the null-hypothesis that A can be exactly embedded into some Qn or Q1, this implies that A00 should also be "-
embeddable into quantum theory by virtue of Lemma 3. In the next section, we will show how this relation between "
as experimental uncertainty, and " as tolerance for the accuracy of an embedding, can lend itself to a test of quantum
theory.

D. The experimental test in a nutshell

We are now in a position to provide a scheme of an experimental test of quantum theory. In particular, suppose we
start with the null hypothesis that the e↵ective behaviour of some physical system we are testing can be explained
fundamentally by quantum theory on a finite-dimensional or separable Hilbert space, i.e. that its e↵ective GPT A
can be simulated by some fundamental Qn or Q1. The following outlines a way to falsify this hypothesis, under the
assumption (motivated above) that any such explanation must be noncontextual, i.e. that the simulation is actually
an embedding.

1. Identify the physical system to probe. That is, define the boundaries of our experimental scenario by iden-

This	suggests	a	novel	experimental	test	of	QT:	
Determine	a	GPT	experimentally	on	a	laboratory	system.	
Certify	that	it	cannot	be	Ɛ-embedded	into	QT	(of	any	
dimension),	where	Ɛ	quantifies	the	experimental	errors/	
uncertainty.	If	this	works,	then	QT	is	(arguably)	falsified.

• 						:	actual	effective	state	space	
of	a	laboratory	system	

• 								:	experimentally	actually	
implemented	states	

• 								:	fitted	GPT	from	data.	Should	
have	Ɛ-approx.	embedding	in	QT.

<latexit sha1_base64="ScAmE35vwWSSRhGDKzQ/zCrlKhk=">AAAB83icdVDLSgMxFM3UV62vqks3wSJ1NcxUO1M3UnHjzgrWFjpDyaRpG5pkhiQjlKG/4caFIm79GXf+jelDUNEDFw7n3Mu990QJo0o7zoeVW1peWV3Lrxc2Nre2d4q7e3cqTiUmTRyzWLYjpAijgjQ11Yy0E0kQjxhpRaPLqd+6J1LRWNzqcUJCjgaC9ilG2khBcM3JAHWzi3J50i2WHNuvnVUrHnRsz3VrVd8Q56TiOx50bWeGElig0S2+B70Yp5wIjRlSquM6iQ4zJDXFjEwKQapIgvAIDUjHUIE4UWE2u3kCj4zSg/1YmhIaztTvExniSo15ZDo50kP125uKf3mdVPdrYUZFkmoi8HxRP2VQx3AaAOxRSbBmY0MQltTcCvEQSYS1ialgQvj6FP5P7iq269nVm9NS/XwRRx4cgENwDFzggzq4Ag3QBBgk4AE8gWcrtR6tF+t13pqzFjP74Aest0+rH5F2</latexit>

⌦A00

<latexit sha1_base64="2nI4cB2CsqCxHfhN2uHacilnLlE=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK6GjJ9u5GKG3dWsA+YDiWTpm1oJjMkGaEM/Qw3LhRx69e482/MtBVU9MCFwzn3cu89fsSZ0gh9WJmV1bX1jexmbmt7Z3cvv3/QVmEsCW2RkIey62NFORO0pZnmtBtJigOf044/uUr9zj2VioXiTk8j6gV4JNiQEayN5PZuAjrC/eTydNbPF5CNKhXHqUNkl89LpWpKaiVUKyLo2GiOAlii2c+/9wYhiQMqNOFYKddBkfYSLDUjnM5yvVjRCJMJHlHXUIEDqrxkfvIMnhhlAIehNCU0nKvfJxIcKDUNfNMZYD1Wv71U/MtzYz2sewkTUaypIItFw5hDHcL0fzhgkhLNp4ZgIpm5FZIxlphok1LOhPD1KfyftIu2U7Urt+VC42IZRxYcgWNwBhxQAw1wDZqgBQgIwQN4As+Wth6tF+t10ZqxljOH4Aest0822ZE6</latexit>

⌦A0

<latexit sha1_base64="H+zL49KWzhEvb6n5VF/P0jnkoR8=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidpKIF29GMAsmQ+jp1CRNenqG7h4hDPkLLx4U8erfePNv7CwHTXxQ8Hiviqp6QSK4Nq777eSWlldW1/LrhY3Nre2d4u5eXcepYlhjsYhVM6AaBZdYM9wIbCYKaRQIbASDm7HfeEKleSwfzDBBP6I9yUPOqLHSY/suwh7tZNejTrHklt0JyCLxZqQEM1Q7xa92N2ZphNIwQbVueW5i/Iwqw5nAUaGdakwoG9AetiyVNELtZ5OLR+TIKl0SxsqWNGSi/p7IaKT1MApsZ0RNX897Y/E/r5Wa8NLPuExSg5JNF4WpICYm4/dJlytkRgwtoUxxeythfaooMzakgg3Bm395kdRPyt55+ez+tFS5msWRhwM4hGPw4AIqcAtVqAEDCc/wCm+Odl6cd+dj2ppzZjP78AfO5w9q9pDB</latexit>

⌦A


