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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

Could	the	resulting	data	falsify	QT?	



Two	moDvaDons

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

Could	the	resulting	data	falsify	QT	
w/o	assumptions	on	devices	or	physics?



Two	moDvaDons

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

Could	the	resulting	data	falsify	QT	
w/o	assumptions	on	devices	or	physics?

If	Nature	is	fundamentally	quantum,	which	effective	proba-	
bilistic	theories	can	we	reasonably	expect	to	encounter?



Two	moDvaDons

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

<latexit sha1_base64="DzRa7zaDVMhRyYJPAppsmRWvheo=">AAACHHicbVDLSgMxFM3UV62vqks3wSJUKGVGi4pQKLhxZwXbCp1SMultG5rMjElGKGM/xI2/4saFIm5cCP6NmbYLbT2QcHLOvdzc44WcKW3b31ZqYXFpeSW9mllb39jcym7v1FUQSQo1GvBA3npEAWc+1DTTHG5DCUR4HBre4CLxG/cgFQv8Gz0MoSVIz2ddRok2Ujt77F4J6JGyG7uyH7gFt/CQXONHD+6wXTCGwFqO8ol2WHbcUTubs4v2GHieOFOSQ1NU29lPtxPQSICvKSdKNR071K2YSM0oh1HGjRSEhA5ID5qG+kSAasXj5Ub4wCgd3A2kOb7GY/V3R0yEUkPhmUpBdF/Neon4n9eMdPesFTM/jDT4dDKoG3GsA5wkhTtMAtV8aAihkpm/YtonklBt8syYEJzZledJ/ajonBRL16Vc5XwaRxrtoX2URw46RRV0iaqohih6RM/oFb1ZT9aL9W59TEpT1rRnF/2B9fUDpmGgdA==</latexit>

⌦ = {⇢ | ⇢ � 0, tr(⇢) = 1}

Could	the	resulting	data	falsify	QT	
w/o	assumptions	on	devices	or	physics?

If	Nature	is	fundamentally	quantum,	which	effective	proba-	
bilistic	theories	can	we	reasonably	expect	to	encounter?



Two	moDvaDons

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

If	Nature	is	fundamentally	quantum,	which	effective	proba-	
bilistic	theories	can	we	reasonably	expect	to	encounter?

<latexit sha1_base64="DzRa7zaDVMhRyYJPAppsmRWvheo=">AAACHHicbVDLSgMxFM3UV62vqks3wSJUKGVGi4pQKLhxZwXbCp1SMultG5rMjElGKGM/xI2/4saFIm5cCP6NmbYLbT2QcHLOvdzc44WcKW3b31ZqYXFpeSW9mllb39jcym7v1FUQSQo1GvBA3npEAWc+1DTTHG5DCUR4HBre4CLxG/cgFQv8Gz0MoSVIz2ddRok2Ujt77F4J6JGyG7uyH7gFt/CQXONHD+6wXTCGwFqO8ol2WHbcUTubs4v2GHieOFOSQ1NU29lPtxPQSICvKSdKNR071K2YSM0oh1HGjRSEhA5ID5qG+kSAasXj5Ub4wCgd3A2kOb7GY/V3R0yEUkPhmUpBdF/Neon4n9eMdPesFTM/jDT4dDKoG3GsA5wkhTtMAtV8aAihkpm/YtonklBt8syYEJzZledJ/ajonBRL16Vc5XwaRxrtoX2URw46RRV0iaqohih6RM/oFb1ZT9aL9W59TEpT1rRnF/2B9fUDpmGgdA==</latexit>

⌦ = {⇢ | ⇢ � 0, tr(⇢) = 1}

<latexit sha1_base64="C8nEPregXAnd3gYK0U35Z7s+IJg=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt2qW8M1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6waN8Q==</latexit>

(1, 0, 0)
<latexit sha1_base64="LyCB7hu0eCcY2yDxaJ45AaiWCjU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrrk1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wSN8Q==</latexit>

(0, 1, 0)

<latexit sha1_base64="WRUd1+JlpEwq2MMmGU6f/ZAMC8A=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qruGaezksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wKN8Q==</latexit>

(0, 0, 1)

• classical	probability	theory	
• noisy	qubits	etc.	
• QT	w/	superselection	rules	
• …	?

<latexit sha1_base64="dNToHBpDVkx/L3BwlEnpQZOpK+Q="></latexit>

⌦ = {p = (p1, . . . , pn) |

pi � 0,
X

i

pi = 1}

Could	the	resulting	data	falsify	QT	
w/o	assumptions	on	devices	or	physics?
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Ruling Out Multi-Order Interference in
Quantum Mechanics
Urbasi Sinha,1* Christophe Couteau,1,2 Thomas Jennewein,1
Raymond Laflamme,1,3 Gregor Weihs1,4*

Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in
describing the physical world around us, they seem to be incompatible theories. There are suggestions
that one of these theories must be generalized to achieve unification. For example, Born’s rule—one of
the axioms of quantum mechanics—could be violated. Born’s rule predicts that quantum interference,
as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version
of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a
deviation from the theory. We performed a three-slit experiment with photons and bounded the
magnitude of three-path interference to less than 10−2 of the expected two-path interference, thus
ruling out third- and higher-order interference and providing a bound on the accuracy of Born’s rule.
Our experiment is consistent with the postulate both in semiclassical and quantum regimes.

Born’s interpretation (1) of the wave func-
tion y(r, t) for a quantum mechanical state
stipulates that the probability density to find

a particle at position r and at time t is given by

P(r, t) ¼ y*(r, t)y(r, t) ¼ jy(r, t)j2 ð1Þ

A double-slit diffraction experiment is a direct
consequence of this rule; the probability to detect
a particle at r after passing through an aperture
with two slits, A and B, is given by

PABðrÞ ¼ jyA(r)þ yB(r)j
2

¼ jyAj
2 þ jyBj

2 þ y*AyB þ y*ByA

¼ PA þ PB þ IAB ð2Þ

where we have omitted the position argument for
brevity and defined Pi to be the probability with
only slit i (i = A, B) open. The corresponding
(second-order) interference term can be defined as

IAB :¼ PAB − ðPA þ PBÞ ¼ PAB − PA − PB ð3Þ

Within quantum mechanics, adding more paths
(i.e., slits) does not add higher complexity. For
three slits A, B, and C (Fig. 1), we find

PABC ¼ PA þ PB þ PC þ IAB þ IAC þ IBC ð4Þ

Therefore, by Born’s rule and its square exponent
(Eq. 1), interference always occurs in pairs of

possibilities and is defined as the deviation from
the classical additivity of the probabilities of mu-
tually exclusive events (2). These possibilities
can be associated with any degree of freedom,
such as spatial paths, energetic states, angular
momentum states, etc. Even if multiple particles
are involved, interference occurs in pairs of
possibilities. Consequently, we define the third-
order interference term IABC for a three-path
configuration (mutually exclusive) as the devia-
tion of PABC from the sum of the individual
probabilities and the second-order interference
terms:

IABC :¼ PABC − ðPA þ PB þ PC þ IAB þ

IBC þ IACÞ
¼ PABC − PAB − PBC − PAC þ PAþ

PB þ PC ð5Þ

A physical system with such probability terms is
three-path interference of a photon sent through a
mask with three slits (Fig. 1). Note that the defi-
nitions in Eq. 3 and Eq. 5 are the first terms in an
infinite hierarchy of interference terms (2).

The nonzero interference term IAB is expected
in all wave theories, including quantum mechan-
ics (3, 4). The next higher-order (i.e., three-path)
interference term IABC will be zero in all wave
theories, with a square-law relation between the
field energy (or probability density) and field am-
plitude, which is the case in quantum mechanics
with Born’s rule. Moreover, if there is no inter-
ference at a certain level in the hierarchy, the
higher-order terms must vanish as well (2).

Our aim is to establish experimentally wheth-
er the value of IABC is different from zero. We
measure all seven probability terms of Eq. 5 plus
the probability P0 of detecting particles when all
slits are closed. P0 represents the probability of
the empty set in an abstract definition, or a back-
ground signal in the experiment. The eight terms

are obtained by sending optical photons through
three slits, which can be opened or closed indi-
vidually (see Fig. 1 for the slit details and Fig. 2
for the setup). A double-slit experiment could be
used to test Born’s rule, but then one would have
to measure the nonzero double-slit interference
term and compare it with the theoretical predic-
tion. This would be sensitive to experimental
parameters such as slit dimensions, wavelength of
incident photons, and distance between detector
and slits, each with its attendant error. In contrast,
we expect the three-path interference term IABC to
be zero, with the advantage of being independent
of many experimental parameters, thus enabling a
more precise null test for Born’s rule.

We measure the terms in Eq. 5 as well as
P0, which accounts for the inevitable detector
noise and background signal. The measured
quantity e based on Eq. 5 is given by

e ¼ pABC − pAB − pAC − pBC þ pA þ pB þ
pC − p0 ð6Þ

Here, pºP of Eq. 5 and refers to the measured
number of photons (or optical intensity, propor-
tional to the photon number) in the various slit
combinations. To give a scale to the size of a
potential deviation from Born’s rule, we define a
normalized variant of e called k (Fig. 3),

k ≡
e
d

ð7Þ

where

d ¼ jIABjþ jIBC jþ jIAC j
¼ jpAB − pA − pB þ p0jþ jpBC − pB − pC þ

p0jþ jpAC − pA − pC þ p0j ð8Þ

1Institute for Quantum Computing and Department of Physics
and Astronomy, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario N2L 3G1, Canada. 2Laboratoire de
Nanotechnologie et d’Instrumentation Optique, Université de
Technologie de Troyes, 12 rue Marie Curie, 10 000 Troyes,
France. 3Perimeter Institute for Theoretical Physics, 31 Caroline
Street North, Waterloo, Ontario N2L 2Y5, Canada. 4Institut für
Experimentalphysik, Universität Innsbruck, Technikerstraße 25,
6020 Innsbruck, Austria.

*To whom correspondence should be addressed. E-mail:
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Fig. 1. Arrangement and dimensions of the slits
used in the experiment. The blocking mask has
open apertures depending on the measured slit
combination according to Eq. 6. Inset is an image
of the triple-slit mask.
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Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in
describing the physical world around us, they seem to be incompatible theories. There are suggestions
that one of these theories must be generalized to achieve unification. For example, Born’s rule—one of
the axioms of quantum mechanics—could be violated. Born’s rule predicts that quantum interference,
as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version
of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a
deviation from the theory. We performed a three-slit experiment with photons and bounded the
magnitude of three-path interference to less than 10−2 of the expected two-path interference, thus
ruling out third- and higher-order interference and providing a bound on the accuracy of Born’s rule.
Our experiment is consistent with the postulate both in semiclassical and quantum regimes.

Born’s interpretation (1) of the wave func-
tion y(r, t) for a quantum mechanical state
stipulates that the probability density to find

a particle at position r and at time t is given by

P(r, t) ¼ y*(r, t)y(r, t) ¼ jy(r, t)j2 ð1Þ

A double-slit diffraction experiment is a direct
consequence of this rule; the probability to detect
a particle at r after passing through an aperture
with two slits, A and B, is given by

PABðrÞ ¼ jyA(r)þ yB(r)j
2

¼ jyAj
2 þ jyBj

2 þ y*AyB þ y*ByA

¼ PA þ PB þ IAB ð2Þ

where we have omitted the position argument for
brevity and defined Pi to be the probability with
only slit i (i = A, B) open. The corresponding
(second-order) interference term can be defined as

IAB :¼ PAB − ðPA þ PBÞ ¼ PAB − PA − PB ð3Þ

Within quantum mechanics, adding more paths
(i.e., slits) does not add higher complexity. For
three slits A, B, and C (Fig. 1), we find

PABC ¼ PA þ PB þ PC þ IAB þ IAC þ IBC ð4Þ

Therefore, by Born’s rule and its square exponent
(Eq. 1), interference always occurs in pairs of

possibilities and is defined as the deviation from
the classical additivity of the probabilities of mu-
tually exclusive events (2). These possibilities
can be associated with any degree of freedom,
such as spatial paths, energetic states, angular
momentum states, etc. Even if multiple particles
are involved, interference occurs in pairs of
possibilities. Consequently, we define the third-
order interference term IABC for a three-path
configuration (mutually exclusive) as the devia-
tion of PABC from the sum of the individual
probabilities and the second-order interference
terms:
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IBC þ IACÞ
¼ PABC − PAB − PBC − PAC þ PAþ

PB þ PC ð5Þ

A physical system with such probability terms is
three-path interference of a photon sent through a
mask with three slits (Fig. 1). Note that the defi-
nitions in Eq. 3 and Eq. 5 are the first terms in an
infinite hierarchy of interference terms (2).

The nonzero interference term IAB is expected
in all wave theories, including quantum mechan-
ics (3, 4). The next higher-order (i.e., three-path)
interference term IABC will be zero in all wave
theories, with a square-law relation between the
field energy (or probability density) and field am-
plitude, which is the case in quantum mechanics
with Born’s rule. Moreover, if there is no inter-
ference at a certain level in the hierarchy, the
higher-order terms must vanish as well (2).

Our aim is to establish experimentally wheth-
er the value of IABC is different from zero. We
measure all seven probability terms of Eq. 5 plus
the probability P0 of detecting particles when all
slits are closed. P0 represents the probability of
the empty set in an abstract definition, or a back-
ground signal in the experiment. The eight terms

are obtained by sending optical photons through
three slits, which can be opened or closed indi-
vidually (see Fig. 1 for the slit details and Fig. 2
for the setup). A double-slit experiment could be
used to test Born’s rule, but then one would have
to measure the nonzero double-slit interference
term and compare it with the theoretical predic-
tion. This would be sensitive to experimental
parameters such as slit dimensions, wavelength of
incident photons, and distance between detector
and slits, each with its attendant error. In contrast,
we expect the three-path interference term IABC to
be zero, with the advantage of being independent
of many experimental parameters, thus enabling a
more precise null test for Born’s rule.

We measure the terms in Eq. 5 as well as
P0, which accounts for the inevitable detector
noise and background signal. The measured
quantity e based on Eq. 5 is given by

e ¼ pABC − pAB − pAC − pBC þ pA þ pB þ
pC − p0 ð6Þ

Here, pºP of Eq. 5 and refers to the measured
number of photons (or optical intensity, propor-
tional to the photon number) in the various slit
combinations. To give a scale to the size of a
potential deviation from Born’s rule, we define a
normalized variant of e called k (Fig. 3),

k ≡
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ð7Þ

where

d ¼ jIABjþ jIBC jþ jIAC j
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In	QT,	only	pairs	of	paths	
interfere	(Sorkin	1994)
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Non-classical paths in interference experiments

Rahul Sawant 1, Joseph Samuel 1, Aninda Sinha 2, Supurna Sinha 1 and Urbasi Sinha 1,3
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In a double slit interference experiment, the wave function at the screen with both slits open is not
exactly equal to the sum of the wave functions with the slits individually open one at a time. The
three scenarios represent three di↵erent boundary conditions and as such, the superposition principle
should not be applicable. However, most well known text books in quantum mechanics implicitly
and/or explicitly use this assumption which is only approximately true. In our present study, we
have used the Feynman path integral formalism to quantify contributions from non-classical paths
in quantum interference experiments which provide a measurable deviation from a naive application
of the superposition principle. A direct experimental demonstration for the existence of these non-
classical paths is hard. We find that contributions from such paths can be significant and we propose
simple three-slit interference experiments to directly confirm their existence.

Quantum mechanics has been one of the most success-
ful theories of the twentieth century, both in describ-
ing fundamental aspects of modern science as well as
in pivotal applications. However, inspite of these ob-
vious triumphs, there is universal agreement that there
are aspects of the theory which are counter-intuitive and
perhaps even paradoxical. Furthermore, understanding
fundamental problems involving dark matter and dark
energy [1, 2] in cosmology may need a consistent quan-
tum theory of gravity. Unification of quantum mechanics
and general relativity towards a unified theory of quan-
tum gravity [3, 4] is the holy grail of modern theoreti-
cal physics. Such unification attempts involve modifica-
tions of either or both theories. However, all such at-
tempts would rely very strongly on precise knowledge
and understanding of the current versions of both the-
ories. This makes precision tests of fundamental aspects
of both quantum mechanics and general relativity very
important to provide guiding beacons for theoretical de-
velopment.

The double slit experiment (figure 1) is one of the
most beautiful experiments in physics. In addition to
its pivotal role in optics, it is frequently used in classic
textbooks on quantum mechanics [4–6] to illustrate ba-
sic principles. Consider a double slit experiment with
incident particles (eg. photons, electrons). The wave
function at the detector with slit A open is  A. The
wavefunction with the slit B open is  B . What is the
wavefunction with both slits open? It is usually assumed
to be  AB =  A +  B [4–6]. This is illustrated in fig-
ure 1. From the mathematical perspective of solving the
Schrödinger equation, this assumption is definitely not
true. The three cases described above correspond to three
di↵erent boundary conditions [8, 9] and as such the ap-
plication of the superposition principle can at best be
approximate. Recent numerical simulations of Maxwell’s
equations using Finite Di↵erence Time Domain analysis
have shown this to be true in the classical domain [9].
How do we quantify this e↵ect in quantum mechanics?

FIG. 1: The two slit experiment. The inset shows a typical
interference pattern obtained by assuming  AB =  A +  B .

An intuitive and simple way of understanding this
problem is to appeal to Feynman’s path integral formal-
ism [10]. The path integral formalism involves an inte-
gration over all possible paths that can be taken by the
particle through the two slits. This not only includes
the nearly straight paths from the source to the detec-
tor through either slit (the classical paths) like the green
paths in figure 2 but also includes paths of the type shown
in purple in figure 2 (non-classical paths). These looped
paths are expected to make a much smaller contribution
to the total intensity at the detector screen as opposed to
the contribution from the straight line paths. However,
their contribution is finite. Formally, a classical path is
one that extremizes the classical action. Any other path
is a non-classical path. This leads to a modification of
the wave function at the screen which now becomes:

 AB =  A +  B +  L , (1)

where  L is the contribution due to the looped i.e., non-
classical paths. That  L is non-zero was first pointed
out in [8] in the non-relativistic domain where certain
unphysical approximations were made in computing  L

and hence the results or the methods cannot be used in
an experimental situation. Recently, [9] has reiterated
the point that  L can be non-zero without attempting to
quantify it in quantum mechanics.
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FIG. 2: Path integrals in a lab: The green line demonstrates
a representative classical path. The purple line demonstrates
a representative non-classical path. The various length pa-
rameters are marked; d = the interslit distance, w = the slit
width, h = the slit height, L = the distance from the source
to the slit plane and D = the distance from the slit plane to
the detector plane.

In this paper, we will quantify the e↵ect of such non-
classical paths in interference experiments, thus quantify-
ing the deviation from the common but incorrect applica-
tion of the superposition principle in di↵erent possible ex-
perimental conditions. A well-known example of a direct
experimental demonstration of such non-classical paths
involves the measurement of the Aharonov-Bohm phase
[11]. Berry’s “many-whirls” representation [12] provides
insight into simple explanations of the Aharonov Bohm
e↵ect in terms of interference between whirling waves
passing around the flux tube. However, in most experi-
mental attempts to measure the Aharonov Bohm phase,
the detection relies on rather complicated experimental
architecture and the results are also open to interpreta-
tional issues and further discussion [13, 14]. In this work,
we propose simple triple slit based interference experi-
ments [15] which can be used as table top demonstra-
tions of non-classical paths in the path integral formal-
ism. Non-classical paths have been used to compute the
semi-classical o↵-diagonal contributions to the two-point
correlation function of a quantum system whose classical
limit is chaotic [16]. The paths in this case are real. In
the Feynman path integral approach, all possible paths
going from the initial to final state need to be considered
with an appropriate weight. In this sense all paths are
real although in a physical quantity the contribution from
certain paths may be suppressed.

The triple slit experiment provides a simple way to
quantify the e↵ects from non classical paths in terms of
directly measurable quantities. The triple slit (path) set-
up has been used as a test-bed for testing fundamental
aspects of quantum mechanics over the last few years
[9, 15, 18–21]. Three-state systems are also fast becom-
ing a popular choice for fundamental quantum mechan-
ical tests [22, 23]. In order to analyse the e↵ect of non-
classical paths in interference experiments, we have con-
sidered the e↵ect of such paths on an experimentally mea-

surable quantity .  (defined below) has been measured
in many experiments over the last few years in order to
arrive at an experimental bound on possible higher order
interference terms in quantum mechanics [24, 25] and in
e↵ect the Born rule for probabilities [15, 18, 19]. Investi-
gations of this quantity may also be relevant to theoretical
attempts to derive the Born rule [26]. If Born’s postulate
for a square law for probabilities is true and if  L = 0,
then the quantity ✏ defined by

✏ = pABC � (pAB + pBC + pCA) + (pA + pB + pC) . (2)

is identically zero in quantum mechanics. Here pABC is
the probability at the detector when all three slits are
open, pAB is the probability when slits A and B are open
and so on.

In the experiments reported in the literature, the nor-
malization factor has been chosen to be the sum of the
three double slit interference terms called � given by:
� = |IAB |+|IBC |+|ICA| , where IAB = pAB�pA�pB and
so on. This choice of normalization can sometimes lead
to false peaks in the  as a function of detector position
due to the denominator becoming very small at certain
positions. We use a somewhat di↵erent normalization,
� = Imax, where Imax is the intensity at the central max-
imum of the triple slit interference pattern to avoid this
problem. Then the normalized quantity  is given by:

 =
✏

�
. (3)

In discussions which invoke the “zeroness” of , it is im-
plicitly assumed that only classical paths contribute to
the interference. In his seminal work [9], Sorkin had also
assumed that the contribution from non-classical paths
was negligible. Now, what is the e↵ect of non-classical
paths on ? If one can derive a non-zero contribution to 
by taking into account all possible paths in the Feynman
path integral formalism, that would mean  AB =  A+ B

is not strictly true and experimentalists should not be
led to conclude that a measurement of non-zero  would
immediately indicate a falsification of the Born Rule for
probabilities in quantum mechanics. A measured non-
zero  could also be explained by taking into account the
non-classical paths in the path integral. There is thus
a theoretical estimate for a non-zero . Of course, the
immediate expectation would be a clear domination of
the classical contribution and perhaps a very negligible
contribution from the non-classical paths which would in
turn imply that  AB =  A+ B is true in all “experimen-
tally observable conditions.” However, what we go on to
discover is that this expectation is not always true. It is
possible to have experimental parameter regimes in which
 is measurably large. This in turn leads to a paradigm
shift in such precision experiments. Observation of a non-
zero  which is expected from the proposed correction to
 AB =  A +  B would in fact also serve as an experi-
mental validation of the full scope of the Feynman path
integral formalism.
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
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the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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<latexit sha1_base64="bmZwoeJAcMx5/Qmj98P3wyHis/8=">AAACFHicbZDLSgMxFIYz9VbrbdSlm2ARKkqZKUXdCAU3boQR7AXaYcikaRuaSYYkI5SxD+HGV3HjQhG3Ltz5NqbtLGz1h8DPd87h5PxhzKjSjvNt5ZaWV1bX8uuFjc2t7R17d6+hRCIxqWPBhGyFSBFGOalrqhlpxZKgKGSkGQ6vJvXmPZGKCn6nRzHxI9TntEcx0gYF9knakRH0pAjHpWHgPtwE7ql3fDlHK4ZWDA3solN2poJ/jZuZIsjkBfZXpytwEhGuMUNKtV0n1n6KpKaYkXGhkygSIzxEfdI2lqOIKD+dHjWGR4Z0YU9I87iGU/p7IkWRUqMoNJ0R0gO1WJvA/2rtRPcu/JTyONGE49miXsKgFnCSEOxSSbBmI2MQltT8FeIBkghrk2PBhOAunvzXNCpl96xcva0Wa7Usjjw4AIegBFxwDmrgGnigDjB4BM/gFbxZT9aL9W59zFpzVjazD+Zkff4AqeacrQ==</latexit>

Prob(k1|M1, P ) = Prob(k2|M2, P )

for	all	accessible	preparations
<latexit sha1_base64="q0MQu1mNUOXPM/RGgfxgf6xX9Lg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPBi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ8PtV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn186JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoJsiFSjPkii0WRZkkmJDZ22QgNGcoJ5ZQpoW9lbAR1ZShDadiQ/CXX14lrQvXv3Iv7y9r9XoRRxlO4BTOwYdrqMMdNKAJDCJ4hld4c8bOi/PufCxaS04xcwx/4Hz+ABbojRM=</latexit>

P.
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<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

1.	Theory-agnosDc	tomography

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

OperaDonal	theories



General	probabilisDc	theories

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

1.	Theory-agnosDc	tomography

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719



General	probabilisDc	theories

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

1.	Theory-agnosDc	tomography
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<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

Quantum	theory	(QT):
<latexit sha1_base64="b8s/weoTKPPHHIh2brgCJWmcZJA=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkoiRd0IlW66rGAf0IYwmU7aoZNJmJkIJQTc+CtuXCji1p9w5984aSNo64GBM+fcy733eBGjUlnWl1FYWV1b3yhulra2d3b3zP2DjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS9SSPzu/dESBryOzWNiBOgEac+xUhpyTWPbq4HAVJjz0uaqcsrP59GeuaaZatqzQCXiZ2TMsjRcs3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yuyGFp1oZQj8U+nEFZ+rvjgQFUk4DT1dmK8pFLxP/8/qx8q+chPIoVoTj+SA/ZlCFMAsEDqkgWLGpJggLqneFeIwEwkrHVtIh2IsnL5POedW+qNZua+V6PY+jCI7BCagAG1yCOmiCFmgDDB7AE3gBr8aj8Wy8Ge/z0oKR9xyCPzA+vgFo2pdh</latexit>

A = Hn(C) (complex	Hermitian															matrices)<latexit sha1_base64="51AzmmokUqi3oa4eDULcLhKVjFY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzEOSJcxOZpMhM7PLTK8QQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcJzyUNGBFrFgFJ30qLsoFLdE98oVv+rPQVZJkJMK5Kj3yl/dfsIyxTUySa3tBH6K4YQaFEzyaambWZ5SNqID3nFUU7cmnMwPnpIzp/RJnBhXGslc/T0xocrasYpcp6I4tMveTPzP62QY34QTodMMuWaLRXEmCSZk9j3pC8MZyrEjlBnhbiVsSA1l6DIquRCC5ZdXSfOiGlxVL+8vK7VaHkcRTuAUziGAa6jBHdShAQwUPMMrvHnGe/HevY9Fa8HLZ47hD7zPH63pkFU=</latexit>n⇥ n
<latexit sha1_base64="+eL5ypC9SiwdazXKmK/g4Z4mDfI=">AAACE3icbVDLSsNAFJ34rPUVdelmsAgipSRS1I1QkYLLCvYBTQiT6aQdOnk4MxFKzD+48VfcuFDErRt3/o2TNAttPTAzh3PuZe49bsSokIbxrS0sLi2vrJbWyusbm1vb+s5uR4Qxx6SNQxbynosEYTQgbUklI72IE+S7jHTd8VXmd+8JFzQMbuUkIraPhgH1KEZSSY5+3HQuL6ykaVWt6kN2QcNi5A42Yf5YPpIj10vM1EodvWLUjBxwnpgFqYACLUf/sgYhjn0SSMyQEH3TiKSdIC4pZiQtW7EgEcJjNCR9RQPkE2En+U4pPFTKAHohVyeQMFd/dyTIF2Liu6oym1HMepn4n9ePpXduJzSIYkkCPP3IixmUIcwCggPKCZZsogjCnKpZIR4hjrBUMZZVCObsyvOkc1IzT2v1m3ql0SjiKIF9cACOgAnOQANcgxZoAwwewTN4BW/ak/aivWsf09IFrejZA3+gff4AqFycMQ==</latexit>

EA = {E | 0  E  1} (POVM	elements)
<latexit sha1_base64="9kMoCwqCqurGojEWxROO3P947gM=">AAACHnicbVDLSgMxFM3UV62vqks3wSJUKGVG6mNTqLhxZwXbCp1SMultG5rMjElGKGO/xI2/4saFIoIr/RszbRfaeiDh5Jx7ubnHCzlT2ra/rdTC4tLySno1s7a+sbmV3d6pqyCSFGo04IG89YgCznyoaaY53IYSiPA4NLzBReI37kEqFvg3ehhCS5Cez7qMEm2kdvbYvRLQI+3zshu7sh+4BbfwkFzjRw/usF0whsBajvKJdlh23FE7m7OL9hh4njhTkkNTVNvZT7cT0EiAryknSjUdO9StmEjNKIdRxo0UhIQOSA+ahvpEgGrF4/VG+MAoHdwNpDm+xmP1d0dMhFJD4ZlKQXRfzXqJ+J/XjHT3rBUzP4w0+HQyqBtxrAOcZIU7TALVfGgIoZKZv2LaJ5JQbRLNmBCc2ZXnSf2o6JwUS9elXKUyjSON9tA+yiMHnaIKukRVVEMUPaJn9IrerCfrxXq3PialKWvas4v+wPr6AQamoS4=</latexit>

⌦A = {⇢ | ⇢ � 0, tr(⇢) = 1} (density	matrices)
<latexit sha1_base64="jst+XdfOyv5Ojtf67Qssb2XDcxU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh5bvHisYD9gu5ZsOtuGZpM1yQpl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLS1TRaFJJZeqExINnAloGmY4dBIFJA45tMPRzdRvP4HSTIp7M04giMlAsIhRYqzk1x/Ou5rF8IjrvVLZrbgz4GXi5aSMcjR6pa9uX9I0BmEoJ1r7npuYICPKMMphUuymGhJCR2QAvqWCxKCDbHbyBJ9apY8jqWwJg2fq74mMxFqP49B2xsQM9aI3Ff/z/NRE10HGRJIaEHS+KEo5NhJP/8d9poAaPraEUMXsrZgOiSLU2JSKNgRv8eVl0rqoeJeV6l21XKvlcRTQMTpBZ8hDV6iGblEDNRFFEj2jV/TmGOfFeXc+5q0rTj5zhP7A+fwBPLyQlA==</latexit>

A⇤ ' A via
<latexit sha1_base64="QEZt+OsYflaHYdHd0HEIOAo9h30=">AAACCXicbZDNSsNAFIUn9a/Wv6hLN4NFqCAhkaJuhIIblxVsm9KEMplO2qGTSZiZCCV068ZXceNCEbe+gTvfxmmahbYeGPg4917u3BMkjEpl299GaWV1bX2jvFnZ2t7Z3TP3D9oyTgUmLRyzWLgBkoRRTlqKKkbcRBAUBYx0gvHNrN55IELSmN+rSUL8CA05DSlGSlt9E3oM8SEj0D3reiLH68wTEVRiWnO7p1bfrNqWnQsug1NAFRRq9s0vbxDjNCJcYYak7Dl2ovwMCUUxI9OKl0qSIDxGQ9LTyFFEpJ/ll0zhiXYGMIyFflzB3P09kaFIykkU6M4IqZFcrM3M/2q9VIVXfkZ5kirC8XxRmDKoYjiLBQ6oIFixiQaEBdV/hXiEBMJKh1fRITiLJy9D+9xyLqz6Xb3aaBRxlMEROAY14IBL0AC3oAlaAINH8AxewZvxZLwY78bHvLVkFDOH4I+Mzx/2C5k5</latexit>

hX,Y i = tr(XY ).

<latexit sha1_base64="EnXVAe4miI9wTWLxGPA4JxNiyAw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5ct2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M7jO/PeXaiEg94izmfkhHSgwFo2glvxdSHDMq08a8r/rlilt1FyDrxMtJBXLU++Wv3iBiScgVMkmN6XpujH5KNQom+bzUSwyPKZvQEe9aqmjIjZ8uQs/JhVUGZBhp+xSShfp7I6WhMbMwsJNZSLPqZeJ/XjfB4Z2fChUnyBVbHhomkmBEsgbIQGjOUM4soUwLm5WwMdWUoe2pZEvwVr+8TlpXVe+met24rtRqeR1FOINzuAQPbqEGD1CHJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8VE5JP</latexit>

Qn

1.	Theory-agnosDc	tomography
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GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

Quantum	theory	(QT):
<latexit sha1_base64="b8s/weoTKPPHHIh2brgCJWmcZJA=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkoiRd0IlW66rGAf0IYwmU7aoZNJmJkIJQTc+CtuXCji1p9w5984aSNo64GBM+fcy733eBGjUlnWl1FYWV1b3yhulra2d3b3zP2DjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS9SSPzu/dESBryOzWNiBOgEac+xUhpyTWPbq4HAVJjz0uaqcsrP59GeuaaZatqzQCXiZ2TMsjRcs3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yuyGFp1oZQj8U+nEFZ+rvjgQFUk4DT1dmK8pFLxP/8/qx8q+chPIoVoTj+SA/ZlCFMAsEDqkgWLGpJggLqneFeIwEwkrHVtIh2IsnL5POedW+qNZua+V6PY+jCI7BCagAG1yCOmiCFmgDDB7AE3gBr8aj8Wy8Ge/z0oKR9xyCPzA+vgFo2pdh</latexit>

A = Hn(C) (complex	Hermitian															matrices)<latexit sha1_base64="51AzmmokUqi3oa4eDULcLhKVjFY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzEOSJcxOZpMhM7PLTK8QQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcJzyUNGBFrFgFJ30qLsoFLdE98oVv+rPQVZJkJMK5Kj3yl/dfsIyxTUySa3tBH6K4YQaFEzyaambWZ5SNqID3nFUU7cmnMwPnpIzp/RJnBhXGslc/T0xocrasYpcp6I4tMveTPzP62QY34QTodMMuWaLRXEmCSZk9j3pC8MZyrEjlBnhbiVsSA1l6DIquRCC5ZdXSfOiGlxVL+8vK7VaHkcRTuAUziGAa6jBHdShAQwUPMMrvHnGe/HevY9Fa8HLZ47hD7zPH63pkFU=</latexit>n⇥ n
<latexit sha1_base64="+eL5ypC9SiwdazXKmK/g4Z4mDfI=">AAACE3icbVDLSsNAFJ34rPUVdelmsAgipSRS1I1QkYLLCvYBTQiT6aQdOnk4MxFKzD+48VfcuFDErRt3/o2TNAttPTAzh3PuZe49bsSokIbxrS0sLi2vrJbWyusbm1vb+s5uR4Qxx6SNQxbynosEYTQgbUklI72IE+S7jHTd8VXmd+8JFzQMbuUkIraPhgH1KEZSSY5+3HQuL6ykaVWt6kN2QcNi5A42Yf5YPpIj10vM1EodvWLUjBxwnpgFqYACLUf/sgYhjn0SSMyQEH3TiKSdIC4pZiQtW7EgEcJjNCR9RQPkE2En+U4pPFTKAHohVyeQMFd/dyTIF2Liu6oym1HMepn4n9ePpXduJzSIYkkCPP3IixmUIcwCggPKCZZsogjCnKpZIR4hjrBUMZZVCObsyvOkc1IzT2v1m3ql0SjiKIF9cACOgAnOQANcgxZoAwwewTN4BW/ak/aivWsf09IFrejZA3+gff4AqFycMQ==</latexit>

EA = {E | 0  E  1} (POVM	elements)
<latexit sha1_base64="9kMoCwqCqurGojEWxROO3P947gM=">AAACHnicbVDLSgMxFM3UV62vqks3wSJUKGVG6mNTqLhxZwXbCp1SMultG5rMjElGKGO/xI2/4saFIoIr/RszbRfaeiDh5Jx7ubnHCzlT2ra/rdTC4tLySno1s7a+sbmV3d6pqyCSFGo04IG89YgCznyoaaY53IYSiPA4NLzBReI37kEqFvg3ehhCS5Cez7qMEm2kdvbYvRLQI+3zshu7sh+4BbfwkFzjRw/usF0whsBajvKJdlh23FE7m7OL9hh4njhTkkNTVNvZT7cT0EiAryknSjUdO9StmEjNKIdRxo0UhIQOSA+ahvpEgGrF4/VG+MAoHdwNpDm+xmP1d0dMhFJD4ZlKQXRfzXqJ+J/XjHT3rBUzP4w0+HQyqBtxrAOcZIU7TALVfGgIoZKZv2LaJ5JQbRLNmBCc2ZXnSf2o6JwUS9elXKUyjSON9tA+yiMHnaIKukRVVEMUPaJn9IrerCfrxXq3PialKWvas4v+wPr6AQamoS4=</latexit>

⌦A = {⇢ | ⇢ � 0, tr(⇢) = 1} (density	matrices)
<latexit sha1_base64="jst+XdfOyv5Ojtf67Qssb2XDcxU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh5bvHisYD9gu5ZsOtuGZpM1yQpl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLS1TRaFJJZeqExINnAloGmY4dBIFJA45tMPRzdRvP4HSTIp7M04giMlAsIhRYqzk1x/Ou5rF8IjrvVLZrbgz4GXi5aSMcjR6pa9uX9I0BmEoJ1r7npuYICPKMMphUuymGhJCR2QAvqWCxKCDbHbyBJ9apY8jqWwJg2fq74mMxFqP49B2xsQM9aI3Ff/z/NRE10HGRJIaEHS+KEo5NhJP/8d9poAaPraEUMXsrZgOiSLU2JSKNgRv8eVl0rqoeJeV6l21XKvlcRTQMTpBZ8hDV6iGblEDNRFFEj2jV/TmGOfFeXc+5q0rTj5zhP7A+fwBPLyQlA==</latexit>

A⇤ ' A via
<latexit sha1_base64="QEZt+OsYflaHYdHd0HEIOAo9h30=">AAACCXicbZDNSsNAFIUn9a/Wv6hLN4NFqCAhkaJuhIIblxVsm9KEMplO2qGTSZiZCCV068ZXceNCEbe+gTvfxmmahbYeGPg4917u3BMkjEpl299GaWV1bX2jvFnZ2t7Z3TP3D9oyTgUmLRyzWLgBkoRRTlqKKkbcRBAUBYx0gvHNrN55IELSmN+rSUL8CA05DSlGSlt9E3oM8SEj0D3reiLH68wTEVRiWnO7p1bfrNqWnQsug1NAFRRq9s0vbxDjNCJcYYak7Dl2ovwMCUUxI9OKl0qSIDxGQ9LTyFFEpJ/ll0zhiXYGMIyFflzB3P09kaFIykkU6M4IqZFcrM3M/2q9VIVXfkZ5kirC8XxRmDKoYjiLBQ6oIFixiQaEBdV/hXiEBMJKh1fRITiLJy9D+9xyLqz6Xb3aaBRxlMEROAY14IBL0AC3oAlaAINH8AxewZvxZLwY78bHvLVkFDOH4I+Mzx/2C5k5</latexit>

hX,Y i = tr(XY ).

Classical	probability	theory	(QT):

<latexit sha1_base64="EnXVAe4miI9wTWLxGPA4JxNiyAw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5ct2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M7jO/PeXaiEg94izmfkhHSgwFo2glvxdSHDMq08a8r/rlilt1FyDrxMtJBXLU++Wv3iBiScgVMkmN6XpujH5KNQom+bzUSwyPKZvQEe9aqmjIjZ8uQs/JhVUGZBhp+xSShfp7I6WhMbMwsJNZSLPqZeJ/XjfB4Z2fChUnyBVbHhomkmBEsgbIQGjOUM4soUwLm5WwMdWUoe2pZEvwVr+8TlpXVe+met24rtRqeR1FOINzuAQPbqEGD1CHJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8VE5JP</latexit>

Qn

<latexit sha1_base64="EMmUbI0jlDpTVBCK5ixFFOUv3cc=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M6pnfnnJtRKQecRZzP6QjJYaCUbSS3wspjhmVaX3eV/1yxa26C5B14uWkAjka/fJXbxCxJOQKmaTGdD03Rj+lGgWTfF7qJYbHlE3oiHctVTTkxk8XoefkwioDMoy0fQrJQv29kdLQmFkY2MkspFn1MvE/r5vg8M5PhYoT5IotDw0TSTAiWQNkIDRnKGeWUKaFzUrYmGrK0PZUsiV4q19eJ62rqndTvX64rtRqeR1FOINzuAQPbqEG99CAJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w//opJB</latexit>

Cn

<latexit sha1_base64="C8nEPregXAnd3gYK0U35Z7s+IJg=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt2qW8M1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6waN8Q==</latexit>

(1, 0, 0)
<latexit sha1_base64="LyCB7hu0eCcY2yDxaJ45AaiWCjU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrrk1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wSN8Q==</latexit>

(0, 1, 0)

<latexit sha1_base64="WRUd1+JlpEwq2MMmGU6f/ZAMC8A=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qruGaezksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wKN8Q==</latexit>

(0, 0, 1)

<latexit sha1_base64="sJVIDeQ5hbGzYKDeoHsi0q7/1Vs=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCuCgzUtSN0OLGZRX7gM60ZNK0DU0yY5IRylA3/oobF4q49S/c+Tdm2llo64ELh3Pu5d57gohRpR3n21pYXFpeWc2t5dc3Nre27Z3dugpjiUkNhyyUzQApwqggNU01I81IEsQDRhrB8Cr1Gw9EKhqKOz2KiM9RX9AexUgbqWPvVy49jvQgCJLbcVt4inJyDyvtk45dcIrOBHCeuBkpgAzVjv3ldUMccyI0ZkiplutE2k+Q1BQzMs57sSIRwkPUJy1DBeJE+cnkgzE8MkoX9kJpSmg4UX9PJIgrNeKB6UyvVbNeKv7ntWLdu/ATKqJYE4Gni3oxgzqEaRywSyXBmo0MQVhScyvEAyQR1ia0vAnBnX15ntRPi+5ZsXRTKpTLWRw5cAAOwTFwwTkog2tQBTWAwSN4Bq/gzXqyXqx362PaumBlM3vgD6zPH6yQlmQ=</latexit>

A = Rn ' A⇤
<latexit sha1_base64="M3T8ev5+o9ehZMr6cinQu1sRaRU=">AAACGnicbVDLSgMxFM34rPVVdekmWIQKpcxIUTdCRQSXFewDOmXIpLdtaCYzJhmhjP0ON/6KGxeKuBM3/o2ZtgttPZDcwzn3ktzjR5wpbdvf1sLi0vLKamYtu76xubWd29mtqzCWFGo05KFs+kQBZwJqmmkOzUgCCXwODX9wmfqNe5CKheJWDyNoB6QnWJdRoo3k5Zwr7+LcTQrgOUWXd0KtiuCJI7foFh/SC9suhzsMHhtXxx15ubxdssfA88SZkjyaourlPt1OSOMAhKacKNVy7Ei3EyI1oxxGWTdWEBE6ID1oGSpIAKqdjFcb4UOjdHA3lOYIjcfq74mEBEoNA990BkT31ayXiv95rVh3z9oJE1GsQdDJQ92YYx3iNCfcYRKo5kNDCJXM/BXTPpGEapNm1oTgzK48T+rHJeekVL4p5yuVaRwZtI8OUAE56BRV0DWqohqi6BE9o1f0Zj1ZL9a79TFpXbCmM3voD6yvHzx3noY=</latexit>

EA = {(e1, . . . , en) | 0  ei  1}
<latexit sha1_base64="v0/rBZwtmA8PEbuIeBlfB49DHz4="></latexit>

⌦A =

(
(p1, . . . , pn) | pi � 0,

X

i

pi = 1

)
.

1.	Theory-agnosDc	tomography
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General	probabilisDc	theories

The	gbit

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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case A+ and A⇤
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Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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General	probabilisDc	theories

The	gbit

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors
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such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:
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,
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Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+
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(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space
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Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors
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such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:
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1
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,

↵�+ =

 
1
�1
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The	four	pure	states														are	pairwise	perfectly	distinguishable,	
but	not	jointly											this	cannot	be	a	classical	or	quantum	system.
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
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the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.
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ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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Tomographic	completeness	loophole:	
can	never	be	sure	that	we	probed	
the	system	completely.
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What	if	we	just	see	a	(low-dimensional)	“shadow”?

Let’s	drop	the	tomographic	completeness	assumption.
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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have at least k + 1 measurements implemented on each
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measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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Contextuality for preparations, transformations and unsharp measurements
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The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden vari-
able model of quantum theory, or equivalently, that quantum theory is contextual. In this paper,
an operational definition of contextuality is introduced which generalizes the standard notion in
three ways: (1) it applies to arbitrary operational theories rather than just quantum theory, (2)
it applies to arbitrary experimental procedures rather than just sharp measurements, and (3) it
applies to a broad class of ontological models of quantum theory rather than just deterministic
hidden variable models. We derive three no-go theorems for ontological models, each based on an
assumption of noncontextuality for a different sort of experimental procedure; one for preparation
procedures, another for unsharp measurement procedures (that is, measurement procedures associ-
ated with positive-operator valued measures), and a third for transformation procedures. All three
proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs
of contextuality.

PACS numbers: 03.65.Ta, 03.65.Ud

I. INTRODUCTION

Traditionally, a noncontextual hidden variable model
of quantum theory is one wherein the measurement out-
come that occurs for a particular set of values of the
hidden variables depends only on the Hermitian opera-
tor associated with the measurement and not on which
Hermitian operators are measured simultaneously with
it. For instance, suppose A,B and C are Hermitian op-
erators such that A and B commute, A and C commute,
but B and C do not commute. Then the assumption of
noncontextuality is that the value predicted to occur in
a measurement of A does not depend on whether B or C
was measured simultaneously. The Bell-Kochen-Specker
theorem shows that a hidden variable model of quantum
theory that is noncontextual in this sense is impossible
for Hilbert spaces of dimension three or greater [1, 2].

The traditional definition of noncontextuality is lack-
ing in several respects: (1) it does not apply to an ar-
bitrary physical theory, but is rather specific to quan-
tum theory; (2) it does not apply to unsharp measure-
ments, that is, those associated with positive-operator
valued measures (POVMs), nor does it apply to prepa-
ration or transformation procedures; and (3) it does not
apply to ontological models wherein the outcomes of mea-
surements are determined only probabilistically from the
complete physical state of the system under investiga-
tion, for instance, indeterministic hidden variable models
or ontological models of quantum theory lacking hidden
variables. In this paper, we propose a new definition:

A noncontextual ontological model of an op-
erational theory is one wherein if two exper-
imental procedures are operationally equiv-
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alent, then they have equivalent representa-
tions in the ontological model.

This definition will be explained in section II of this
article, where we provide a precise account of what it
is for two experimental procedures to be operationally
equivalent, and describe what is meant by an ontologi-
cal model of an operational theory, specifying in particu-
lar how different experimental procedures (preparations,
measurements and transformations) are represented in
such a model. We also explain why it is appropriate
to call this sort of ontological model noncontextual by
providing an operational definition of an experimental
context.

In section III, we specialize our definition to the case
of quantum theory. We provide examples of the sorts of
contexts that can arise for preparations, transformations
and measurements, and describe what an assumption of
noncontextuality for each type of procedure implies for
an ontological model of quantum theory. In the case of
measurements, we also generalize the object that is ex-
amined for context-dependence from outcomes to proba-
bilities of outcomes, and discuss the motivation for doing
so. Further, we show how the traditional notion of non-
contextuality is subsumed as a special case of our gener-
alized notion when the outcomes of sharp measurements
are assumed to be uniquely determined by the complete
physical state of the system under investigation.

In sections IV, V, and VI, we provide no-go theorems
for ontological models based on the assumption of non-
contextuality for preparations, unsharp measurements,
and transformations, respectively. All three proofs apply
to two-dimensional (2d) Hilbert spaces, and are there-
fore stronger than traditional no-go theorems for non-
contextuality, which require Hilbert spaces of dimension
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Recall	the	notion	of	an	operational	theory.
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A	set	of	classical	variables
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Contextuality for preparations, transformations and unsharp measurements

R. W. Spekkens∗

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada
(Dated: Feb. 25, 2005)

The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden vari-
able model of quantum theory, or equivalently, that quantum theory is contextual. In this paper,
an operational definition of contextuality is introduced which generalizes the standard notion in
three ways: (1) it applies to arbitrary operational theories rather than just quantum theory, (2)
it applies to arbitrary experimental procedures rather than just sharp measurements, and (3) it
applies to a broad class of ontological models of quantum theory rather than just deterministic
hidden variable models. We derive three no-go theorems for ontological models, each based on an
assumption of noncontextuality for a different sort of experimental procedure; one for preparation
procedures, another for unsharp measurement procedures (that is, measurement procedures associ-
ated with positive-operator valued measures), and a third for transformation procedures. All three
proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs
of contextuality.

PACS numbers: 03.65.Ta, 03.65.Ud

I. INTRODUCTION

Traditionally, a noncontextual hidden variable model
of quantum theory is one wherein the measurement out-
come that occurs for a particular set of values of the
hidden variables depends only on the Hermitian opera-
tor associated with the measurement and not on which
Hermitian operators are measured simultaneously with
it. For instance, suppose A,B and C are Hermitian op-
erators such that A and B commute, A and C commute,
but B and C do not commute. Then the assumption of
noncontextuality is that the value predicted to occur in
a measurement of A does not depend on whether B or C
was measured simultaneously. The Bell-Kochen-Specker
theorem shows that a hidden variable model of quantum
theory that is noncontextual in this sense is impossible
for Hilbert spaces of dimension three or greater [1, 2].

The traditional definition of noncontextuality is lack-
ing in several respects: (1) it does not apply to an ar-
bitrary physical theory, but is rather specific to quan-
tum theory; (2) it does not apply to unsharp measure-
ments, that is, those associated with positive-operator
valued measures (POVMs), nor does it apply to prepa-
ration or transformation procedures; and (3) it does not
apply to ontological models wherein the outcomes of mea-
surements are determined only probabilistically from the
complete physical state of the system under investiga-
tion, for instance, indeterministic hidden variable models
or ontological models of quantum theory lacking hidden
variables. In this paper, we propose a new definition:

A noncontextual ontological model of an op-
erational theory is one wherein if two exper-
imental procedures are operationally equiv-
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alent, then they have equivalent representa-
tions in the ontological model.

This definition will be explained in section II of this
article, where we provide a precise account of what it
is for two experimental procedures to be operationally
equivalent, and describe what is meant by an ontologi-
cal model of an operational theory, specifying in particu-
lar how different experimental procedures (preparations,
measurements and transformations) are represented in
such a model. We also explain why it is appropriate
to call this sort of ontological model noncontextual by
providing an operational definition of an experimental
context.

In section III, we specialize our definition to the case
of quantum theory. We provide examples of the sorts of
contexts that can arise for preparations, transformations
and measurements, and describe what an assumption of
noncontextuality for each type of procedure implies for
an ontological model of quantum theory. In the case of
measurements, we also generalize the object that is ex-
amined for context-dependence from outcomes to proba-
bilities of outcomes, and discuss the motivation for doing
so. Further, we show how the traditional notion of non-
contextuality is subsumed as a special case of our gener-
alized notion when the outcomes of sharp measurements
are assumed to be uniquely determined by the complete
physical state of the system under investigation.

In sections IV, V, and VI, we provide no-go theorems
for ontological models based on the assumption of non-
contextuality for preparations, unsharp measurements,
and transformations, respectively. All three proofs apply
to two-dimensional (2d) Hilbert spaces, and are there-
fore stronger than traditional no-go theorems for non-
contextuality, which require Hilbert spaces of dimension

Recall	the	notion	of	an	operational	theory.

Ontological	model	of	a	system	(e.g.	of	a	qubit):
A	set	of	classical	variables
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<latexit sha1_base64="VyJkgOoQxt9CSav3nKlLZVqtZIY=">AAAB73icbVDLSgMxFL2pr1pfVZdugkVwNcyIr2XBjQsXFewD2qFkMpk2NJMZk4xQhv6EGxeKuPV33Pk3pu0stPVA4HDOueTeE6SCa+O636i0srq2vlHerGxt7+zuVfcPWjrJFGVNmohEdQKimeCSNQ03gnVSxUgcCNYORjdTv/3ElOaJfDDjlPkxGUgecUqMlTq9OxsNidOv1lzHnQEvE68gNSjQ6Fe/emFCs5hJQwXRuuu5qfFzogyngk0qvUyzlNARGbCupZLETPv5bN8JPrFKiKNE2ScNnqm/J3ISaz2OA5uMiRnqRW8q/ud1MxNd+zmXaWaYpPOPokxgk+Dp8TjkilEjxpYQqrjdFdMhUYQaW1HFluAtnrxMWmeOd+lc3J/X6vWijjIcwTGcggdXUIdbaEATKAh4hld4Q4/oBb2jj3m0hIqZQ/gD9PkDe5CPnQ==</latexit>

⇤.

Measurement-noncontextuality:
<latexit sha1_base64="Xzdjycct0DS9Dhl4W1EPwQvqt84="></latexit>

(k,M) ⇠ (k0,M 0) ) �k,M (�) = �k0,M 0(�).

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

<latexit sha1_base64="KICxAMsHQm9VckRlRIsi1SPRAOs="></latexit>

Prob(k|P,M) =

Z

⇤
d�µP (�)�M,k(�)



Spekkens’	noDon	of	noncontextuality:	quick	recap

2.	SimulaDons,	embeddings,	…

The	ontological	model	is	preparation-noncontextual	if
<latexit sha1_base64="4AP6XhDruZYUf3aRi485WJ4GnP8=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrKFCWI14JUiYUxIPqQmihyXLe1aieR7YCqKF/Awq+wMIAQKzMbf4PbZoCWI13do3PulX1PmDAqlW1/G6Wl5ZXVtfJ6ZWNza3vH3N1ryTgVmDRxzGLRCZEkjEakqahipJMIgnjISDscXU389j0RksbRnRonxOdoENE+xUhpKTBrricph27du6WDoUJCxA/Q42mQufnlrNdzKzCrtmVPAReJU5AqKOAG5pfXi3HKSaQwQ1J2HTtRfoaEopiRvOKlkiQIj9CAdDWNECfSz6bn5LCmlR7sx0JXpOBU/b2RIS7lmId6kiM1lPPeRPzP66aqf+FnNEpSRSI8e6ifMqhiOMkG9qggWLGxJggLqv8K8RAJhJVOsKJDcOZPXiStY8s5s05vTqqNRhFHGRyAQ3AEHHAOGuAauKAJMHgEz+AVvBlPxovxbnzMRktGsbMP/sD4/AFgMZuy</latexit>

P ⇠ P 0 ) µP = µP 0 .

Intuition:	preparation	procedures	are	
statistically	indistinguishable	because	they	
prepare	the	same	distribution	over	

<latexit sha1_base64="VyJkgOoQxt9CSav3nKlLZVqtZIY=">AAAB73icbVDLSgMxFL2pr1pfVZdugkVwNcyIr2XBjQsXFewD2qFkMpk2NJMZk4xQhv6EGxeKuPV33Pk3pu0stPVA4HDOueTeE6SCa+O636i0srq2vlHerGxt7+zuVfcPWjrJFGVNmohEdQKimeCSNQ03gnVSxUgcCNYORjdTv/3ElOaJfDDjlPkxGUgecUqMlTq9OxsNidOv1lzHnQEvE68gNSjQ6Fe/emFCs5hJQwXRuuu5qfFzogyngk0qvUyzlNARGbCupZLETPv5bN8JPrFKiKNE2ScNnqm/J3ISaz2OA5uMiRnqRW8q/ud1MxNd+zmXaWaYpPOPokxgk+Dp8TjkilEjxpYQqrjdFdMhUYQaW1HFluAtnrxMWmeOd+lc3J/X6vWijjIcwTGcggdXUIdbaEATKAh4hld4Q4/oBb2jj3m0hIqZQ/gD9PkDe5CPnQ==</latexit>

⇤.

Measurement-noncontextuality:
<latexit sha1_base64="Xzdjycct0DS9Dhl4W1EPwQvqt84="></latexit>

(k,M) ⇠ (k0,M 0) ) �k,M (�) = �k0,M 0(�).

Theorem:	Ontological	models	of	QM-systems	must	be	preparation-contextual	
(and,	assuming	outcome-determinism	for	sharp	meas.,	measurement-contextual).

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

<latexit sha1_base64="KICxAMsHQm9VckRlRIsi1SPRAOs="></latexit>

Prob(k|P,M) =

Z

⇤
d�µP (�)�M,k(�)



Spekkens’	noDon	of	noncontextuality:	quick	recap

2.	SimulaDons,	embeddings,	…

The	ontological	model	is	preparation-noncontextual	if
<latexit sha1_base64="4AP6XhDruZYUf3aRi485WJ4GnP8=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrKFCWI14JUiYUxIPqQmihyXLe1aieR7YCqKF/Awq+wMIAQKzMbf4PbZoCWI13do3PulX1PmDAqlW1/G6Wl5ZXVtfJ6ZWNza3vH3N1ryTgVmDRxzGLRCZEkjEakqahipJMIgnjISDscXU389j0RksbRnRonxOdoENE+xUhpKTBrricph27du6WDoUJCxA/Q42mQufnlrNdzKzCrtmVPAReJU5AqKOAG5pfXi3HKSaQwQ1J2HTtRfoaEopiRvOKlkiQIj9CAdDWNECfSz6bn5LCmlR7sx0JXpOBU/b2RIS7lmId6kiM1lPPeRPzP66aqf+FnNEpSRSI8e6ifMqhiOMkG9qggWLGxJggLqv8K8RAJhJVOsKJDcOZPXiStY8s5s05vTqqNRhFHGRyAQ3AEHHAOGuAauKAJMHgEz+AVvBlPxovxbnzMRktGsbMP/sD4/AFgMZuy</latexit>

P ⇠ P 0 ) µP = µP 0 .

Intuition:	preparation	procedures	are	
statistically	indistinguishable	because	they	
prepare	the	same	distribution	over	

<latexit sha1_base64="VyJkgOoQxt9CSav3nKlLZVqtZIY=">AAAB73icbVDLSgMxFL2pr1pfVZdugkVwNcyIr2XBjQsXFewD2qFkMpk2NJMZk4xQhv6EGxeKuPV33Pk3pu0stPVA4HDOueTeE6SCa+O636i0srq2vlHerGxt7+zuVfcPWjrJFGVNmohEdQKimeCSNQ03gnVSxUgcCNYORjdTv/3ElOaJfDDjlPkxGUgecUqMlTq9OxsNidOv1lzHnQEvE68gNSjQ6Fe/emFCs5hJQwXRuuu5qfFzogyngk0qvUyzlNARGbCupZLETPv5bN8JPrFKiKNE2ScNnqm/J3ISaz2OA5uMiRnqRW8q/ud1MxNd+zmXaWaYpPOPokxgk+Dp8TjkilEjxpYQqrjdFdMhUYQaW1HFluAtnrxMWmeOd+lc3J/X6vWijjIcwTGcggdXUIdbaEATKAh4hld4Q4/oBb2jj3m0hIqZQ/gD9PkDe5CPnQ==</latexit>

⇤.

Measurement-noncontextuality:
<latexit sha1_base64="Xzdjycct0DS9Dhl4W1EPwQvqt84="></latexit>

(k,M) ⇠ (k0,M 0) ) �k,M (�) = �k0,M 0(�).

Theorem:	Ontological	models	of	QM-systems	must	be	preparation-contextual	
(and,	assuming	outcome-determinism	for	sharp	meas.,	measurement-contextual).

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

Intuition:	Contextual	models	are	implausible	because	they	are	fine-tuned:	
operationally,																					but	ontologically,

<latexit sha1_base64="tCAaUwkUY22ckAz+uDG/C0lw+58=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPoQcJu8HUMePG4gnlIsoTZyWwyZGZ2mZkVwpKv8OJBEa9+jjf/xkmyB00saCiquunuChPOtHHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fo9up33qiSrNYPphxQgOBB5JFjGBjpUe/q5lA/ul5r1xxq+4MaJl4OalADr9X/ur2Y5IKKg3hWOuO5yYmyLAyjHA6KXVTTRNMRnhAO5ZKLKgOstnBE3RilT6KYmVLGjRTf09kWGg9FqHtFNgM9aI3Ff/zOqmJboKMySQ1VJL5oijlyMRo+j3qM0WJ4WNLMFHM3orIECtMjM2oZEPwFl9eJs1a1buqXt5fVOr1PI4iHMExnIEH11CHO/ChAQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH4Ygj5Q=</latexit>

P ⇠ P 0,
<latexit sha1_base64="2X9JSktlgWNq0lAhThHINMSXp0U=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiugqJeFsW3LiMYC/QhDCZTtqhk0mcmQgh1Fdx40IRtz6IO9/GSZuFtv4w8PGfczhn/jBlVCrb/jZqK6tr6xv1zcbW9s7unrl/0JVJJjDp4IQloh8iSRjlpKOoYqSfCoLikJFeOLkp671HIiRN+L3KU+LHaMRpRDFS2grMphdngetx8gBLKtyTqRWYLduyZ4LL4FTQApXcwPzyhgnOYsIVZkjKgWOnyi+QUBQzMm14mSQpwhM0IgONHMVE+sXs+Ck81s4QRonQjys4c39PFCiWMo9D3RkjNZaLtdL8rzbIVHTtF5SnmSIczxdFGYMqgWUScEgFwYrlGhAWVN8K8RgJhJXOq6FDcBa/vAzdM8u5tC7uzlvtdhVHHRyCI3AKHHAF2uAWuKADMMjBM3gFb8aT8WK8Gx/z1ppRzTTBHxmfP/wPlFg=</latexit>

µP 6= µP 0 .

An	instance	of	Leibniz’	principle	of	the	“identity	of	the	indiscernibles”.

<latexit sha1_base64="KICxAMsHQm9VckRlRIsi1SPRAOs="></latexit>

Prob(k|P,M) =

Z

⇤
d�µP (�)�M,k(�)



2.	SimulaDons,	embeddings,	…

Effective	GPT																																					found	in	the	lab
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA)

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings



2.	SimulaDons,	embeddings,	…

Effective	GPT																																					found	in	the	lab
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA)

Fundamental	GPT																		
<latexit sha1_base64="kF8v9QTEuHW18+4u3m+XLdK4DrE=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRSkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDWEKXLg==</latexit>

B = (B,⌦B , EB)

…simulated	by…

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

<latexit sha1_base64="C8nEPregXAnd3gYK0U35Z7s+IJg=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt2qW8M1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6waN8Q==</latexit>

(1, 0, 0)
<latexit sha1_base64="LyCB7hu0eCcY2yDxaJ45AaiWCjU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrrk1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wSN8Q==</latexit>

(0, 1, 0)

<latexit sha1_base64="WRUd1+JlpEwq2MMmGU6f/ZAMC8A=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qruGaezksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wKN8Q==</latexit>

(0, 0, 1)



2.	SimulaDons,	embeddings,	…

Effective	GPT																																					found	in	the	lab
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA)

Fundamental	GPT																		
<latexit sha1_base64="kF8v9QTEuHW18+4u3m+XLdK4DrE=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRSkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDWEKXLg==</latexit>

B = (B,⌦B , EB)

…simulated	by…

Effectively	preparing	state									means	fundamentally	preparing	some	
but									may	depend	on	the	preparation	procedure,	i.e.	the	context.	
Collect	all	those	states	into	a	set

<latexit sha1_base64="wFscCa7XWHfWDPQ/KgEIE0XfGWE=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8RLx4jmAckS5idzCZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWyd1ekrQIe7f9MsVv+rPgVZJkJMK5Gj0y1+9gSKpoNISjo3pBn5iwwxrywin01IvNTTBZIyHtOuoxIKaMJvfO0VnThmgWGlX0qK5+nsiw8KYiYhcp8B2ZJa9mfif101tfB1mTCappZIsFsUpR1ah2fNowDQllk8cwUQzdysiI6wxsS6ikgshWH55lbQuqsFltXZfq9TreRxFOIFTOIcArqAOd9CAJhDg8Ayv8OY9ei/eu/exaC14+cwx/IH3+QPUG4/W</latexit>!A
<latexit sha1_base64="K8NgOsft20+wzJBqzysJ/ZFdvos=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBA8SNiVoB6DXjxGMA9JljA76U2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1hQZVXOl2RAxwJqFhmeXQTjQQEXFoRaPbqd96Am2Ykg92nEAoyECymFFinfTYVQIGpHdz3iuV/Yo/A14mQU7KKEe9V/rq9hVNBUhLOTGmE/iJDTOiLaMcJsVuaiAhdEQG0HFUEgEmzGYHT/CpU/o4VtqVtHim/p7IiDBmLCLXKYgdmkVvKv7ndVIbX4cZk0lqQdL5ojjl2Co8/R73mQZq+dgRQjVzt2I6JJpQ6zIquhCCxZeXSfOiElxWqvfVcq2Wx1FAx+gEnaEAXaEaukN11EAUCfSMXtGbp70X7937mLeuePnMEfoD7/MHQFaQDQ==</latexit>!B ,

<latexit sha1_base64="88uig+RFo3LSeoWphyqaReX+n48=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5idzCZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWyd1ekrQIe7f9MsVv+rPgVZJkJMK5Gj0y1+9gSKpoNISjo3pBn5iwwxrywin01IvNTTBZIyHtOuoxIKaMJvfO0VnThmgWGlX0qK5+nsiw8KYiYhcp8B2ZJa9mfif101tfB1mTCappZIsFsUpR1ah2fNowDQllk8cwUQzdysiI6wxsS6ikgshWH55lbQuqsFltXZfq9TreRxFOIFTOIcArqAOd9CAJhDg8Ayv8OY9ei/eu/exaC14+cwx/IH3+QPVn4/X</latexit>!B
<latexit sha1_base64="5L7Jm/RYF8j89clAFGGBu8smOTo=">AAACCnicbZBNS8MwGMdTX+d8q3r0Eh3CvJRWhoogzHnx5gT3AmspaZZtYWlaklQYZWcvfhUvHhTx6ifw5rcx63rQzT8Efvk/z0Py/IOYUals+9tYWFxaXlktrBXXNza3ts2d3aaMEoFJA0csEu0AScIoJw1FFSPtWBAUBoy0guH1pN56IELSiN+rUUy8EPU57VGMlLZ888C9DUkf+bWyG2VwdXxx6ab5peaOLd8s2ZadCc6Dk0MJ5Kr75pfbjXASEq4wQ1J2HDtWXoqEopiRcdFNJIkRHqI+6WjkKCTSS7NVxvBIO13Yi4Q+XMHM/T2RolDKURjozhCpgZytTcz/ap1E9c69lPI4UYTj6UO9hEEVwUkusEsFwYqNNCAsqP4rxAMkEFY6vaIOwZldeR6aJ5ZzalXuKqVqNY+jAPbBISgDB5yBKrgBddAAGDyCZ/AK3own48V4Nz6mrQtGPrMH/sj4/AGY8pmT</latexit>

⌦B(!A) := {!B}.

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

<latexit sha1_base64="C8nEPregXAnd3gYK0U35Z7s+IJg=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt2qW8M1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6waN8Q==</latexit>

(1, 0, 0)
<latexit sha1_base64="LyCB7hu0eCcY2yDxaJ45AaiWCjU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrrk1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wSN8Q==</latexit>

(0, 1, 0)

<latexit sha1_base64="WRUd1+JlpEwq2MMmGU6f/ZAMC8A=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qruGaezksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wKN8Q==</latexit>

(0, 0, 1)



-simulation	of	effective	GPT						by	fundamental	GPT<latexit sha1_base64="afYcKWHID7Wtwyny6Q2l2oAjeps=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusWy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/1tJVs</latexit>"
<latexit sha1_base64="USDqoo9wl9i7A37m1h6vYt0ovhg=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb9xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsM5U8</latexit>

A
<latexit sha1_base64="46ctHry/rN6ffttU+NhyMX21EUY=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRMWNRRe6rGAf0BlKJs20oZnMkGSEOvQ33LhQxK1+hV/gzqV/YqbtQlsPBA7n3Ms9OX7MmdK2/WXl5uYXFpfyy4WV1bX1jeLmVl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4bfv8y8xt3VCoWiVs9iKkX4q5gASNYG8l1Q6x7BPP0YnjWLpbssj0CmiXOhJTOP+6/r9530mq7+Ol2IpKEVGjCsVItx461l2KpGeF0WHATRWNM+rhLW4YKHFLlpaPMQ7RvlA4KImme0Gik/t5IcajUIPTNZJZRTXuZ+J/XSnRw6qVMxImmgowPBQlHOkJZAajDJCWaDwzBRDKTFZEelphoU1PBlOBMf3mW1A/LznH56MYuVSowRh52YQ8OwIETqMA1VKEGBGJ4gCd4thLr0XqxXsejOWuysw1/YL39AC8XlYE=</latexit>

B :

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

Definition.	An

Effective	state set	of	simulating	states<latexit sha1_base64="D+2ptrJvBaxKVKCiRgoNVOjytds=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4CjPidox48RjBLJAMoafTkzTpZezuEcKQn/DiQRGv/o43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kntrhJ0gHs3vXLFr/ozoGUS5KQCOeq98le3r0gqqLSEY2M6gZ/YMMPaMsLppNRNDU0wGeEB7TgqsaAmzGb3TtCJU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4cZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo5EIIFl9eJs2zanBZvbg/r9RqeRxFOIJjOIUArqAGd1CHBhDg8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPUbY/X</latexit>!A
<latexit sha1_base64="Njd7UxJUZ0hnZDZW0melUYwmMsk=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiVJCSiLdl1Y07K9gLNCFMppN26EwSZiZCCPVV3LhQxK0P4s63cZpmoa0/DHz85xzOmd+PGZXKsr6N0tLyyupaeb2ysbm1vWPu7nVklAhM2jhikej5SBJGQ9JWVDHSiwVB3Gek649vpvXuIxGSRuGDSmPicjQMaUAxUtryzKpzx8kQedd1J8rh6ujYM2tWw8oFF8EuoAYKtTzzyxlEOOEkVJghKfu2FSs3Q0JRzMik4iSSxAiP0ZD0NYaIE+lm+fETeKidAQwioV+oYO7+nsgQlzLlvu7kSI3kfG1q/lfrJyq4dDMaxokiIZ4tChIGVQSnScABFQQrlmpAWFB9K8QjJBBWOq+KDsGe//IidE4a9nnj7P601mwWcZTBPjgAdWCDC9AEt6AF2gCDFDyDV/BmPBkvxrvxMWstGcVMFfyR8fkDOAST2Q==</latexit>

⌦B(!A),

effective	effect <latexit sha1_base64="5/ePrLkhQztKRo+NsquakCLragI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PEi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6wN5Nr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbqhJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTsiF4iy8vk+ZZ1busXtyfV2q1PI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gAJpI2l</latexit>eA set	of	simulating	effects																		
<latexit sha1_base64="w4Jsu1kc5mXILHINoQv21BwPJh4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBAiSNgVX8eoCB4jmIckyzI7mSRDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMOZMG9f9dhYWl5ZXVnNr+fWNza3tws5uXUeJIrRGIh6pZog15UzSmmGG02asKBYhp41wcDP2G09UaRbJBzOMqS9wT7IuI9hY6fE2uC7R4OroOCgU3bI7AZonXkaKkKEaFL7anYgkgkpDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZalEguq/XRy8AgdWqWDupGyJQ2aqL8nUiy0HorQdgps+nrWG4v/ea3EdC/9lMk4MVSS6aJuwpGJ0Ph71GGKEsOHlmCimL0VkT5WmBibUd6G4M2+PE/qJ2XvvHx2f1qsVLI4crAPB1ACDy6gAndQhRoQEPAMr/DmKOfFeXc+pq0LTjazB3/gfP4ACrOPRA==</latexit>

EB(eA),

2.	SimulaDons,	embeddings,	…



-simulation	of	effective	GPT						by	fundamental	GPT<latexit sha1_base64="afYcKWHID7Wtwyny6Q2l2oAjeps=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusWy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/1tJVs</latexit>"
<latexit sha1_base64="USDqoo9wl9i7A37m1h6vYt0ovhg=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb9xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsM5U8</latexit>

A
<latexit sha1_base64="46ctHry/rN6ffttU+NhyMX21EUY=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRMWNRRe6rGAf0BlKJs20oZnMkGSEOvQ33LhQxK1+hV/gzqV/YqbtQlsPBA7n3Ms9OX7MmdK2/WXl5uYXFpfyy4WV1bX1jeLmVl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4bfv8y8xt3VCoWiVs9iKkX4q5gASNYG8l1Q6x7BPP0YnjWLpbssj0CmiXOhJTOP+6/r9530mq7+Ol2IpKEVGjCsVItx461l2KpGeF0WHATRWNM+rhLW4YKHFLlpaPMQ7RvlA4KImme0Gik/t5IcajUIPTNZJZRTXuZ+J/XSnRw6qVMxImmgowPBQlHOkJZAajDJCWaDwzBRDKTFZEelphoU1PBlOBMf3mW1A/LznH56MYuVSowRh52YQ8OwIETqMA1VKEGBGJ4gCd4thLr0XqxXsejOWuysw1/YL39AC8XlYE=</latexit>

B :

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

Definition.	An

Effective	state set	of	simulating	states<latexit sha1_base64="D+2ptrJvBaxKVKCiRgoNVOjytds=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4CjPidox48RjBLJAMoafTkzTpZezuEcKQn/DiQRGv/o43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kntrhJ0gHs3vXLFr/ozoGUS5KQCOeq98le3r0gqqLSEY2M6gZ/YMMPaMsLppNRNDU0wGeEB7TgqsaAmzGb3TtCJU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4cZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo5EIIFl9eJs2zanBZvbg/r9RqeRxFOIJjOIUArqAGd1CHBhDg8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPUbY/X</latexit>!A
<latexit sha1_base64="Njd7UxJUZ0hnZDZW0melUYwmMsk=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiVJCSiLdl1Y07K9gLNCFMppN26EwSZiZCCPVV3LhQxK0P4s63cZpmoa0/DHz85xzOmd+PGZXKsr6N0tLyyupaeb2ysbm1vWPu7nVklAhM2jhikej5SBJGQ9JWVDHSiwVB3Gek649vpvXuIxGSRuGDSmPicjQMaUAxUtryzKpzx8kQedd1J8rh6ujYM2tWw8oFF8EuoAYKtTzzyxlEOOEkVJghKfu2FSs3Q0JRzMik4iSSxAiP0ZD0NYaIE+lm+fETeKidAQwioV+oYO7+nsgQlzLlvu7kSI3kfG1q/lfrJyq4dDMaxokiIZ4tChIGVQSnScABFQQrlmpAWFB9K8QjJBBWOq+KDsGe//IidE4a9nnj7P601mwWcZTBPjgAdWCDC9AEt6AF2gCDFDyDV/BmPBkvxrvxMWstGcVMFfyR8fkDOAST2Q==</latexit>

⌦B(!A),

effective	effect <latexit sha1_base64="5/ePrLkhQztKRo+NsquakCLragI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PEi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6wN5Nr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbqhJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTsiF4iy8vk+ZZ1busXtyfV2q1PI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gAJpI2l</latexit>eA set	of	simulating	effects																		
<latexit sha1_base64="w4Jsu1kc5mXILHINoQv21BwPJh4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBAiSNgVX8eoCB4jmIckyzI7mSRDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMOZMG9f9dhYWl5ZXVnNr+fWNza3tws5uXUeJIrRGIh6pZog15UzSmmGG02asKBYhp41wcDP2G09UaRbJBzOMqS9wT7IuI9hY6fE2uC7R4OroOCgU3bI7AZonXkaKkKEaFL7anYgkgkpDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZalEguq/XRy8AgdWqWDupGyJQ2aqL8nUiy0HorQdgps+nrWG4v/ea3EdC/9lMk4MVSS6aJuwpGJ0Ph71GGKEsOHlmCimL0VkT5WmBibUd6G4M2+PE/qJ2XvvHx2f1qsVLI4crAPB1ACDy6gAndQhRoQEPAMr/DmKOfFeXc+pq0LTjazB3/gfP4ACrOPRA==</latexit>

EB(eA),

such	that	all	outcome	probabilities	are	reproduced	up	to <latexit sha1_base64="Hv7XAR3SJ2sr9KQ0jMO3FP4zcXk=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjPiC1cFNy4r2Ad0hpJJ77ShmSQkmUIp/Q03LhRx68+4829M21lo64ELh3Pu5d57YsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFR08hMU2hQyaVux8QAZwIallkObaWBpDGHVjy8n/mtEWjDpHiyYwVRSvqCJYwS66QwHBENyjAuxV23XPGr/hx4lQQ5qaAc9W75K+xJmqUgLOXEmE7gKxtNiLaMcpiWwsyAInRI+tBxVJAUTDSZ3zzFZ07p4URqV8Liufp7YkJSY8Zp7DpTYgdm2ZuJ/3mdzCa30YQJlVkQdLEoyTi2Es8CwD2mgVo+doRQzdytmA6IJtS6mEouhGD55VXSvKgG19Wrx8tKrZbHUUQn6BSdowDdoBp6QHXUQBQp9Ixe0ZuXeS/eu/exaC14+cwx+gPv8wc+A5HT</latexit>" :
<latexit sha1_base64="WXVepjZSNfyzYq51u/9TNRr1rHw=">AAACF3icbVDJSgNBEO2JW4xb1KOXwSAkoGFG3I5JvHiMYBbIDENPpyZp0rPY3RMIk/yFF3/FiwdFvOrNv7GzCJpY0PDqvXpU13MjRoU0jC8ttbS8srqWXs9sbG5t72R39+oijDmBGglZyJsuFsBoADVJJYNmxAH7LoOG27se640+cEHD4E4OIrB93AmoRwmWinKyxWHeCn3oYKd8DE65cPLTVlRbKQwtBvdWH3OIBGVjQ84oGpPSF4E5Azk0q6qT/bTaIYl9CCRhWIiWaUTSTjCXlDAYZaxYQIRJD3egpWCAfRB2MrlrpB8ppq17IVcvkPqE/e1IsC/EwHfVpI9lV8xrY/I/rRVL78pOaBDFEgIyXeTFTJehPg5Jb1MORLKBAphwqv6qky7mmEgVZUaFYM6fvAjqp0Xzonh+e5YrlWZxpNEBOkR5ZKJLVEI3qIpqiKAH9IRe0Kv2qD1rb9r7dDSlzTz76E9pH9+BbJ7x</latexit>

|(!A, eA)� (!B , eB)|  " for	all
<latexit sha1_base64="o6NIzaT+LvVSyVgSSfDd0H5ffS4=">AAACF3icbZDLSgMxFIYzXmu9jbp0EyxCBSkz4m1ZFcGdFewFOkPJpKdtaCYzJBmhlL6FG1/FjQtF3OrOtzGdzkJbDwT+fP85JOcPYs6Udpxva25+YXFpObeSX11b39i0t7ZrKkokhSqNeCQbAVHAmYCqZppDI5ZAwoBDPehfjf36A0jFInGvBzH4IekK1mGUaINadsmLQuiS1qXHhHc7kcWMXRwcQmrgawNhfG/ZBafkpIVnhZuJAsqq0rK/vHZEkxCEppwo1XSdWPtDIjWjHEZ5L1EQE9onXWgaKUgIyh+me43wviFt3ImkOULjlP6eGJJQqUEYmM6Q6J6a9sbwP6+Z6M65P2QiTjQIOnmok3CsIzwOCbeZBKr5wAhCJTN/xbRHJKHaRJk3IbjTK8+K2lHJPS2d3B0XyuUsjhzaRXuoiFx0hsroBlVQFVH0iJ7RK3qznqwX6936mLTOWdnMDvpT1ucP+KOd4Q==</latexit>

!B 2 ⌦B(!A), eB 2 EB(eA),

2.	SimulaDons,	embeddings,	…

and,	essentially,	mixtures	are	valid	simulations	of	mixtures	(see	paper).



-simulation	of	effective	GPT						by	fundamental	GPT<latexit sha1_base64="afYcKWHID7Wtwyny6Q2l2oAjeps=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusWy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/1tJVs</latexit>"
<latexit sha1_base64="USDqoo9wl9i7A37m1h6vYt0ovhg=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb9xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsM5U8</latexit>

A
<latexit sha1_base64="46ctHry/rN6ffttU+NhyMX21EUY=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRMWNRRe6rGAf0BlKJs20oZnMkGSEOvQ33LhQxK1+hV/gzqV/YqbtQlsPBA7n3Ms9OX7MmdK2/WXl5uYXFpfyy4WV1bX1jeLmVl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4bfv8y8xt3VCoWiVs9iKkX4q5gASNYG8l1Q6x7BPP0YnjWLpbssj0CmiXOhJTOP+6/r9530mq7+Ol2IpKEVGjCsVItx461l2KpGeF0WHATRWNM+rhLW4YKHFLlpaPMQ7RvlA4KImme0Gik/t5IcajUIPTNZJZRTXuZ+J/XSnRw6qVMxImmgowPBQlHOkJZAajDJCWaDwzBRDKTFZEelphoU1PBlOBMf3mW1A/LznH56MYuVSowRh52YQ8OwIETqMA1VKEGBGJ4gCd4thLr0XqxXsejOWuysw1/YL39AC8XlYE=</latexit>

B :

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

Definition.	An

Effective	state set	of	simulating	states<latexit sha1_base64="D+2ptrJvBaxKVKCiRgoNVOjytds=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4CjPidox48RjBLJAMoafTkzTpZezuEcKQn/DiQRGv/o43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kntrhJ0gHs3vXLFr/ozoGUS5KQCOeq98le3r0gqqLSEY2M6gZ/YMMPaMsLppNRNDU0wGeEB7TgqsaAmzGb3TtCJU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4cZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo5EIIFl9eJs2zanBZvbg/r9RqeRxFOIJjOIUArqAGd1CHBhDg8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPUbY/X</latexit>!A
<latexit sha1_base64="Njd7UxJUZ0hnZDZW0melUYwmMsk=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiVJCSiLdl1Y07K9gLNCFMppN26EwSZiZCCPVV3LhQxK0P4s63cZpmoa0/DHz85xzOmd+PGZXKsr6N0tLyyupaeb2ysbm1vWPu7nVklAhM2jhikej5SBJGQ9JWVDHSiwVB3Gek649vpvXuIxGSRuGDSmPicjQMaUAxUtryzKpzx8kQedd1J8rh6ujYM2tWw8oFF8EuoAYKtTzzyxlEOOEkVJghKfu2FSs3Q0JRzMik4iSSxAiP0ZD0NYaIE+lm+fETeKidAQwioV+oYO7+nsgQlzLlvu7kSI3kfG1q/lfrJyq4dDMaxokiIZ4tChIGVQSnScABFQQrlmpAWFB9K8QjJBBWOq+KDsGe//IidE4a9nnj7P601mwWcZTBPjgAdWCDC9AEt6AF2gCDFDyDV/BmPBkvxrvxMWstGcVMFfyR8fkDOAST2Q==</latexit>

⌦B(!A),

effective	effect <latexit sha1_base64="5/ePrLkhQztKRo+NsquakCLragI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PEi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6wN5Nr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbqhJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTsiF4iy8vk+ZZ1busXtyfV2q1PI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gAJpI2l</latexit>eA set	of	simulating	effects																		
<latexit sha1_base64="w4Jsu1kc5mXILHINoQv21BwPJh4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBAiSNgVX8eoCB4jmIckyzI7mSRDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMOZMG9f9dhYWl5ZXVnNr+fWNza3tws5uXUeJIrRGIh6pZog15UzSmmGG02asKBYhp41wcDP2G09UaRbJBzOMqS9wT7IuI9hY6fE2uC7R4OroOCgU3bI7AZonXkaKkKEaFL7anYgkgkpDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZalEguq/XRy8AgdWqWDupGyJQ2aqL8nUiy0HorQdgps+nrWG4v/ea3EdC/9lMk4MVSS6aJuwpGJ0Ph71GGKEsOHlmCimL0VkT5WmBibUd6G4M2+PE/qJ2XvvHx2f1qsVLI4crAPB1ACDy6gAndQhRoQEPAMr/DmKOfFeXc+pq0LTjazB3/gfP4ACrOPRA==</latexit>

EB(eA),

such	that	all	outcome	probabilities	are	reproduced	up	to <latexit sha1_base64="Hv7XAR3SJ2sr9KQ0jMO3FP4zcXk=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjPiC1cFNy4r2Ad0hpJJ77ShmSQkmUIp/Q03LhRx68+4829M21lo64ELh3Pu5d57YsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFR08hMU2hQyaVux8QAZwIallkObaWBpDGHVjy8n/mtEWjDpHiyYwVRSvqCJYwS66QwHBENyjAuxV23XPGr/hx4lQQ5qaAc9W75K+xJmqUgLOXEmE7gKxtNiLaMcpiWwsyAInRI+tBxVJAUTDSZ3zzFZ07p4URqV8Liufp7YkJSY8Zp7DpTYgdm2ZuJ/3mdzCa30YQJlVkQdLEoyTi2Es8CwD2mgVo+doRQzdytmA6IJtS6mEouhGD55VXSvKgG19Wrx8tKrZbHUUQn6BSdowDdoBp6QHXUQBQp9Ixe0ZuXeS/eu/exaC14+cwx+gPv8wc+A5HT</latexit>" :
<latexit sha1_base64="WXVepjZSNfyzYq51u/9TNRr1rHw=">AAACF3icbVDJSgNBEO2JW4xb1KOXwSAkoGFG3I5JvHiMYBbIDENPpyZp0rPY3RMIk/yFF3/FiwdFvOrNv7GzCJpY0PDqvXpU13MjRoU0jC8ttbS8srqWXs9sbG5t72R39+oijDmBGglZyJsuFsBoADVJJYNmxAH7LoOG27se640+cEHD4E4OIrB93AmoRwmWinKyxWHeCn3oYKd8DE65cPLTVlRbKQwtBvdWH3OIBGVjQ84oGpPSF4E5Azk0q6qT/bTaIYl9CCRhWIiWaUTSTjCXlDAYZaxYQIRJD3egpWCAfRB2MrlrpB8ppq17IVcvkPqE/e1IsC/EwHfVpI9lV8xrY/I/rRVL78pOaBDFEgIyXeTFTJehPg5Jb1MORLKBAphwqv6qky7mmEgVZUaFYM6fvAjqp0Xzonh+e5YrlWZxpNEBOkR5ZKJLVEI3qIpqiKAH9IRe0Kv2qD1rb9r7dDSlzTz76E9pH9+BbJ7x</latexit>

|(!A, eA)� (!B , eB)|  " for	all
<latexit sha1_base64="o6NIzaT+LvVSyVgSSfDd0H5ffS4=">AAACF3icbZDLSgMxFIYzXmu9jbp0EyxCBSkz4m1ZFcGdFewFOkPJpKdtaCYzJBmhlL6FG1/FjQtF3OrOtzGdzkJbDwT+fP85JOcPYs6Udpxva25+YXFpObeSX11b39i0t7ZrKkokhSqNeCQbAVHAmYCqZppDI5ZAwoBDPehfjf36A0jFInGvBzH4IekK1mGUaINadsmLQuiS1qXHhHc7kcWMXRwcQmrgawNhfG/ZBafkpIVnhZuJAsqq0rK/vHZEkxCEppwo1XSdWPtDIjWjHEZ5L1EQE9onXWgaKUgIyh+me43wviFt3ImkOULjlP6eGJJQqUEYmM6Q6J6a9sbwP6+Z6M65P2QiTjQIOnmok3CsIzwOCbeZBKr5wAhCJTN/xbRHJKHaRJk3IbjTK8+K2lHJPS2d3B0XyuUsjhzaRXuoiFx0hsroBlVQFVH0iJ7RK3qznqwX6936mLTOWdnMDvpT1ucP+KOd4Q==</latexit>

!B 2 ⌦B(!A), eB 2 EB(eA),

2.	SimulaDons,	embeddings,	…

Simulation	is	univalent	if	all																																						contain	one	element.
<latexit sha1_base64="liP8jnb8ThzogaRnyjewF1p907o=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdlVQR3VrAX6Awlk562oZnMkGSEMvQF3Pgqblwo4ta9O9/GtJ2Ftv4Q+PnOOZyc3484U9q2v63M3PzC4lJ2Obeyura+kd/cqqkwlhSqNOShbPhEAWcCqpppDo1IAgl8DnW/fzWq1x9AKhaKez2IwAtIV7AOo0Qb1MrvubcBdEnrsuiGY3NxcOiCUBGhgK8NBkNa+YJdssfCs8ZJTQGlqrTyX247pHEAQlNOlGo6dqS9hEjNKIdhzo0VmA190oWmsYIEoLxkfM0Q7xvSxp1Qmic0HtPfEwkJlBoEvukMiO6p6doI/ldrxrpz7iVMRLEGQSeLOjHHOsSjaHCbSaCaD4whVDLzV0x7RBKqTYA5E4IzffKsqR2VnNPSyd1xoVxO48iiHbSLishBZ6iMblAFVRFFj+gZvaI368l6sd6tj0lrxkpnttEfWZ8/yKWaGg==</latexit>

⌦B(!A), EB(eA)

and,	essentially,	mixtures	are	valid	simulations	of	mixtures	(see	paper).



-simulation	of	effective	GPT						by	fundamental	GPT<latexit sha1_base64="afYcKWHID7Wtwyny6Q2l2oAjeps=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusWy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/1tJVs</latexit>"
<latexit sha1_base64="USDqoo9wl9i7A37m1h6vYt0ovhg=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb9xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsM5U8</latexit>

A
<latexit sha1_base64="46ctHry/rN6ffttU+NhyMX21EUY=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRMWNRRe6rGAf0BlKJs20oZnMkGSEOvQ33LhQxK1+hV/gzqV/YqbtQlsPBA7n3Ms9OX7MmdK2/WXl5uYXFpfyy4WV1bX1jeLmVl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4bfv8y8xt3VCoWiVs9iKkX4q5gASNYG8l1Q6x7BPP0YnjWLpbssj0CmiXOhJTOP+6/r9530mq7+Ol2IpKEVGjCsVItx461l2KpGeF0WHATRWNM+rhLW4YKHFLlpaPMQ7RvlA4KImme0Gik/t5IcajUIPTNZJZRTXuZ+J/XSnRw6qVMxImmgowPBQlHOkJZAajDJCWaDwzBRDKTFZEelphoU1PBlOBMf3mW1A/LznH56MYuVSowRh52YQ8OwIETqMA1VKEGBGJ4gCd4thLr0XqxXsejOWuysw1/YL39AC8XlYE=</latexit>

B :

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

Definition.	An

Effective	state set	of	simulating	states<latexit sha1_base64="D+2ptrJvBaxKVKCiRgoNVOjytds=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4CjPidox48RjBLJAMoafTkzTpZezuEcKQn/DiQRGv/o43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kntrhJ0gHs3vXLFr/ozoGUS5KQCOeq98le3r0gqqLSEY2M6gZ/YMMPaMsLppNRNDU0wGeEB7TgqsaAmzGb3TtCJU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4cZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo5EIIFl9eJs2zanBZvbg/r9RqeRxFOIJjOIUArqAGd1CHBhDg8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPUbY/X</latexit>!A
<latexit sha1_base64="Njd7UxJUZ0hnZDZW0melUYwmMsk=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiVJCSiLdl1Y07K9gLNCFMppN26EwSZiZCCPVV3LhQxK0P4s63cZpmoa0/DHz85xzOmd+PGZXKsr6N0tLyyupaeb2ysbm1vWPu7nVklAhM2jhikej5SBJGQ9JWVDHSiwVB3Gek649vpvXuIxGSRuGDSmPicjQMaUAxUtryzKpzx8kQedd1J8rh6ujYM2tWw8oFF8EuoAYKtTzzyxlEOOEkVJghKfu2FSs3Q0JRzMik4iSSxAiP0ZD0NYaIE+lm+fETeKidAQwioV+oYO7+nsgQlzLlvu7kSI3kfG1q/lfrJyq4dDMaxokiIZ4tChIGVQSnScABFQQrlmpAWFB9K8QjJBBWOq+KDsGe//IidE4a9nnj7P601mwWcZTBPjgAdWCDC9AEt6AF2gCDFDyDV/BmPBkvxrvxMWstGcVMFfyR8fkDOAST2Q==</latexit>

⌦B(!A),

effective	effect <latexit sha1_base64="5/ePrLkhQztKRo+NsquakCLragI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PEi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6wN5Nr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbqhJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTsiF4iy8vk+ZZ1busXtyfV2q1PI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gAJpI2l</latexit>eA set	of	simulating	effects																		
<latexit sha1_base64="w4Jsu1kc5mXILHINoQv21BwPJh4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBAiSNgVX8eoCB4jmIckyzI7mSRDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uMOZMG9f9dhYWl5ZXVnNr+fWNza3tws5uXUeJIrRGIh6pZog15UzSmmGG02asKBYhp41wcDP2G09UaRbJBzOMqS9wT7IuI9hY6fE2uC7R4OroOCgU3bI7AZonXkaKkKEaFL7anYgkgkpDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZalEguq/XRy8AgdWqWDupGyJQ2aqL8nUiy0HorQdgps+nrWG4v/ea3EdC/9lMk4MVSS6aJuwpGJ0Ph71GGKEsOHlmCimL0VkT5WmBibUd6G4M2+PE/qJ2XvvHx2f1qsVLI4crAPB1ACDy6gAndQhRoQEPAMr/DmKOfFeXc+pq0LTjazB3/gfP4ACrOPRA==</latexit>

EB(eA),

such	that	all	outcome	probabilities	are	reproduced	up	to <latexit sha1_base64="Hv7XAR3SJ2sr9KQ0jMO3FP4zcXk=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjPiC1cFNy4r2Ad0hpJJ77ShmSQkmUIp/Q03LhRx68+4829M21lo64ELh3Pu5d57YsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFR08hMU2hQyaVux8QAZwIallkObaWBpDGHVjy8n/mtEWjDpHiyYwVRSvqCJYwS66QwHBENyjAuxV23XPGr/hx4lQQ5qaAc9W75K+xJmqUgLOXEmE7gKxtNiLaMcpiWwsyAInRI+tBxVJAUTDSZ3zzFZ07p4URqV8Liufp7YkJSY8Zp7DpTYgdm2ZuJ/3mdzCa30YQJlVkQdLEoyTi2Es8CwD2mgVo+doRQzdytmA6IJtS6mEouhGD55VXSvKgG19Wrx8tKrZbHUUQn6BSdowDdoBp6QHXUQBQp9Ixe0ZuXeS/eu/exaC14+cwx+gPv8wc+A5HT</latexit>" :
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Simulations	are	ontological	models,	and	univalence	=	noncontextuality.



2.	SimulaDons,	embeddings,	…

Example	(“Holevo	projection”):	simulating	the	gbit	
with	a	classical	4-level	system
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to

fx+=

0

B@
1
1
0
0

1

CA, fx�=

0

B@
0
0
1
1
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CA, fz+=
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0
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B@
0
1
0
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CA,

(7)
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⌦B(↵±±) = {�±±},

but																						{states							on	blue	line}.
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to

fx+=

0

B@
1
1
0
0

1

CA, fx�=

0

B@
0
0
1
1

1

CA, fz+=

0

B@
1
0
1
0

1

CA, fz�=

0

B@
0
1
0
1

1

CA,

(7)

<latexit sha1_base64="WD/NbIHfCsW8IWpQGqLFmk0Um4I=">AAACFnicbVDJSgNBEO1xjXGLevTSKIKChhlxuwhBL940YFTIhKGmU0madM8M3T1CGPIVXvwVLx4U8Sre/AHxM+ws4Pqogsd7VXTXCxPBtXHdN2dkdGx8YjI3lZ+emZ2bLywsXug4VQwrLBaxugpBo+ARVgw3Aq8ShSBDgZdh+7jnX16j0jyOzk0nwZqEZsQbnIGxUlDY8k8lNiE4WvdBJC0IMj+Rtrobh37mh2i+FL+7GRRW3aLbB/1LvCFZLdHyx3tucvcsKLz69ZilEiPDBGhd9dzE1DJQhjOB3byfakyAtaGJVUsjkKhrWf+sLl2zSp02YmU7MrSvft/IQGrdkaGdlGBa+rfXE//zqqlpHNQyHiWpwYgNHmqkgpqY9jKida6QGdGxBJji9q+UtUABMzbJvA3B+33yX3KxXfT2ijtlm0aJDJAjy2SFrBOP7JMSOSFnpEIYuSF35IE8OrfOvfPkPA9GR5zhzhL5AeflE1jBom8=</latexit>

⌦B(↵±±) = {�±±},

but																						{states							on	blue	line}.
<latexit sha1_base64="XnjiHiH4OrMSXRhUG0N3IT5wd0M=">AAAB+3icbVDJSgNBEO2JS2Lcxnj00hjEeAkz4nYRgl68mYBZIBmGmk5P0qRnobtHDEN+xYsHRbz6I978AfEz7CwHTXxQ8Hiviqp6XsyZVJb1aWSWlldWs7m1/PrG5ta2uVNoyCgRhNZJxCPR8kBSzkJaV0xx2ooFhcDjtOkNrsd+854KyaLwTg1j6gTQC5nPCCgtuWahcxvQHrhXpQ7wuA+HR5euWbTK1gR4kdgzUqzg2vdXLntadc2PTjciSUBDRThI2batWDkpCMUIp6N8J5E0BjKAHm1rGkJApZNObh/hA610sR8JXaHCE/X3RAqBlMPA050BqL6c98bif147Uf6Fk7IwThQNyXSRn3CsIjwOAneZoETxoSZABNO3YtIHAUTpuPI6BHv+5UXSOC7bZ+WTmk6jgqbIoT20j0rIRueogm5QFdURQQ/oET2jF2NkPBmvxtu0NWPMZnbRHxjvPyCaliI=</latexit>

⌦B(↵
0) =

<latexit sha1_base64="tEM/lSBV2zJI2njwchY/ZBtaWw4=">AAAB7XicbVA9SwNBEJ2LXzF+Ra3EwsUgWoU7EbUM2FhGMB+QHGFvM5es2bs9dveEEFLb2lgoYuv/Sefv8A+4+Sg08cHA470ZZuYFieDauO6Xk1laXlldy67nNja3tnfyu3tVLVPFsMKkkKoeUI2Cx1gx3AisJwppFAisBb2bsV97RKW5jO9NP0E/op2Yh5xRY6VqM0BDT1v5glt0JyCLxJuRQungqSVHR9/lVn7UbEuWRhgbJqjWDc9NjD+gynAmcJhrphoTynq0gw1LYxqh9geTa4fkxCptEkplKzZkov6eGNBI634U2M6Imq6e98bif14jNeG1P+BxkhqM2XRRmApiJBm/TtpcITOibwllittbCetSRZmxAeVsCN78y4ukel70LosXdzaNEkyRhUM4hjPw4ApKcAtlqACDB3iGV3hzpPPivDsf09aMM5vZhz9wPn8A8jSSag==</latexit>

�0

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719

SimulaDons	and	embeddings

(Preparation)	contextuality	=	multivalence:	
the	fundamental	state							does	not	only	
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on	the	way	it	has	been	prepared.
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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This	is	an	instance	of	implausible	fine-tuning:	
the	statistical	differences	among	the	fundamental	states	
are	miraculously	exactly	“washed	out”	on	the	effective	level.
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But |(µ� !A, eA)|  1, and so |(!C , eC)� (!A, eA)|  ".
This shows that the above maps define an "-simulation
of A by Cn" .

It turns out that noncontextual simulations have a par-
ticularly simple structure: they are embeddings. We will
now first define this notion and then formulate this state-
ment as a lemma.

Definition 2 (Embedding). Let A = (A,⌦A, EA) and

B = (B,⌦B , EB) be GPTs, and let " � 0. A pair of

linear maps � : A ! B and  : A⇤ ! B⇤
is said to be

an "-embedding of A into B if

(i) � and  are positive and  is normalization-

preserving, i.e. �(EA) ✓ EB and  (⌦A) ✓ ⌦B;

(ii) � and  preserve outcome probabilities up to "; i.e.
|(!, e)� ( (!),�(e))|  " for all e 2 EA, ! 2 ⌦A.

If in addition �(uA) = uB, then we say that the embed-

ding is unital. An (" = 0)-embedding is also called an

exact embedding.

This notion of approximate embedding has already
been introduced and studied by Werner [62] for the case
that B is a quantum system and A a possibly infinite-
dimensional classical system. Here we are concerned with
general GPTs and finite-dimensional A.

Noncontextual simulations are embeddings:

Lemma 2. Every "-embedding of A into B defines a

noncontextual "-simulation of A by B, and vice versa.

Proof. First, consider a noncontextual "-simulation of A
by B. Let d := dimA, and pick d linearly indepen-
dent states !A

1
, . . . ,!A

d
2 ⌦A. Then there are d states

!B

1
, . . . ,!B

d
such that ⌦B(!A

i
) = {!B

i
} for all i. Define

 : A⇤ ! B⇤ as the linear extension of  (!A

i
) = !B

i

for i = 1, . . . , d. If !A 2 C := conv{!A

1
, . . . ,!A

d
}, i.e.

!A =
P

d

i=1
�i!A

i
for suitable �i � 0,

P
i
�i = 1, then

⌦B(!A) =
dX

i=1

�i⌦B(!
A

i
) =

(
dX

i=1

�i!
B

i

)
= { (!A)}.

(13)

Now suppose !A 2 ⌦A \ C. Pick any state 'A in the
relative interior of C, and consider the line connecting
'A and !A. On it, we can find some ⇢A 2 C \ {'A}, i.e.
there is some 0 < � < 1 such that ⇢A = �!A+(1��)'A.
Thus

{ (⇢A)} = ⌦B(⇢A) = �⌦B(!A) + (1� �)⌦B('A)

= �⌦B(!A) + (1� �){ ('A)}, (14)

and from this it is elementary to infer that ⌦B(!A) =
{ (!A)}. Hence  (⌦A) ✓ ⌦B , and  is a positive and
normalization-preserving linear map.

The argumentation for e↵ects is similar, applying the
above construction to the convex hull C of d linearly–
independent e↵ects and the zero e↵ect. Finally, the

preservation of outcome probabilities up to " follows di-
rectly from the definition of a simulation.

Conversely, given the linear maps � and � of an "-
embedding, we obtain a noncontextual "-simulation via
⌦B(!A) := { (!A)} and EB(eA) := {�(eA)}.

It is clear that embeddings satisfy a transitivity prop-
erty: for GPTs A, B and C, embedding A into B and
then B into C defines an embedding of A into C:

Lemma 3. Let (�, ) define an "-embedding of A into

B, and (�0, 0) define a �-embedding of B into C, where
", � � 0. Then (�0��, 0� ) defines an ("+�)-embedding

of A into C.

The proof is straightforward and thus omitted.
Noncontextuality thus extends transitively across dif-

ferent levels of description: think of A as an e↵ective
theory, B as a somewhat more fundamental (“intermedi-
ate”) theory, and C as the most fundamental among the
three. If A has a noncontextual explanation in terms of
B, and so does B in terms of C, then the e↵ective theory
A has a noncontextual explanation in term of the fun-
damental one C (with the approximation errors adding
up).

FIG. 5. Preparation–noncontextual simulation. Con-
sider preparing the state ⇢ := p!1 + (1� p)!2 in A by ran-
domly preparing either !1 with probability p or otherwise
preparing !2. The state ⇢0 in B that reproduces the statistics
of ⇢ can then likewise be prepared by randomly preparing ei-
ther !0

1 =  (!1) with probability p or otherwise !0
2 =  (!2).

If the simulation is preparation–noncontextual, only ⇢0 is re-
quired (and no other state) to simulate ⇢, even when ⇢ is
formed by mixing another set of states in ⌦A (e.g. those in-
dicated by the grey triangles).

Intuitively, the reason why noncontextuality implies
linearity can be understood via Figure 5: mixtures ⇢A
are uniquely simulated by mixtures ⇢0

B
, and mixture-

preservation is the operational source of linearity. There
may be other states ⇢̃B 6= ⇢0

B
on B that could simulate

⇢A, in the sense of reproducing the exact same probabili-
ties on all simulated measurements, but the point of non-
contextuality is that these are not needed for a successful
simulation of the GPT A. This is in contrast to, say, the
Holevo projection (discussed above, see Figure 3), where

effective	GPT
fundamental	GPT
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preservation of outcome probabilities up to " follows di-
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theory, B as a somewhat more fundamental (“intermedi-
ate”) theory, and C as the most fundamental among the
three. If A has a noncontextual explanation in terms of
B, and so does B in terms of C, then the e↵ective theory
A has a noncontextual explanation in term of the fun-
damental one C (with the approximation errors adding
up).
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quired (and no other state) to simulate ⇢, even when ⇢ is
formed by mixing another set of states in ⌦A (e.g. those in-
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Intuitively, the reason why noncontextuality implies
linearity can be understood via Figure 5: mixtures ⇢A
are uniquely simulated by mixtures ⇢0

B
, and mixture-

preservation is the operational source of linearity. There
may be other states ⇢̃B 6= ⇢0

B
on B that could simulate

⇢A, in the sense of reproducing the exact same probabili-
ties on all simulated measurements, but the point of non-
contextuality is that these are not needed for a successful
simulation of the GPT A. This is in contrast to, say, the
Holevo projection (discussed above, see Figure 3), where

effective	GPT
fundamental	GPT
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An "-embedding consists of two linear maps  and � such that
•  maps the normalized states of A into those of B,
• � maps the e↵ects of A into those of B,
• outcome probabilities are preserved up to ".
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Multivalent	simulations	(that	cannot	be	made	univalent)	are	
implausible	because	they	are	fine-tuned,	cf.	Holevo	projection.	

Univalent	simulation	(of	A	by	B)	=	embedding	(of	A	into	B).	

Embeddable	into	CPT	(a	classical	probability	simplex)	
=	univalently	simulatable	by	fundamental	CPT	
=	noncontextual	in	the	sense	of	Spekkens	
=	plausibly	“classical”.	

Embeddable	into	QT	(a	positive	semidefinite	cone)	
=	univalently	simulatable	by	fundamental	QT	
=	plausibly	“quantum”.
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r ! y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp
4;1 and are considered supplements to the primary set. We then

search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r ! y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r ! y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4" 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the
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Figure 1 | Solution to the problem of inexact operational equivalences.
Here, we illustrate our solution for the case of preparations under the
simplifying assumption that these are confined to the x# z plane of the
Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line
connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pit;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)
exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Ppt;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these
preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Ppt;0 and Ppt;1
can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Ppt;b are depicted by the grey

region. (c) Secondary preparations Pst;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating
that the operational equivalence (4) has been restored. Note that we
require only that the mixtures of the three pairs of preparations be the
same, not that they correspond to the completely mixed state.
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r ! y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp
4;1 and are considered supplements to the primary set. We then

search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r ! y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r ! y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4" 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the
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P s
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Figure 1 | Solution to the problem of inexact operational equivalences.
Here, we illustrate our solution for the case of preparations under the
simplifying assumption that these are confined to the x# z plane of the
Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line
connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pit;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)
exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Ppt;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these
preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Ppt;0 and Ppt;1
can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Ppt;b are depicted by the grey

region. (c) Secondary preparations Pst;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating
that the operational equivalence (4) has been restored. Note that we
require only that the mixtures of the three pairs of preparations be the
same, not that they correspond to the completely mixed state.
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".

TesDng	quantum	theory	by	generalizing	noncontextuality																																																																																																																			arXiv:2112.09719



16

FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.
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We also add the unit measurement effect to our set of
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frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .
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3.	Exact	embeddings	into	quantum	theory

Focus	on	the	“unrestricted	GPTs”	where	all	vectors	yielding	valid	
probabilities	on	all	states	are	effects:

3.	Exact	embeddings	into	QT
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .

• QT	over	real	numbers									complex	numbers							quaternions	
• d-dimensional	Bloch	ball	state	spaces,	
• direct	sums	of	those,	including	CPT	and	QT	with	superselection	rules.
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3.	Exact	embeddings	into	quantum	theory

Focus	on	the	“unrestricted	GPTs”	where	all	vectors	yielding	valid	
probabilities	on	all	states	are	effects:
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .

• QT	over	real	numbers									complex	numbers							quaternions	
• d-dimensional	Bloch	ball	state	spaces,	
• direct	sums	of	those,	including	CPT	and	QT	with	superselection	rules.
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These	are	the	only	unrestricted	GPTs	that	are	“plausibly	quantum”.
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3.	Exact	embeddings	into	quantum	theory

Focus	on	the	“unrestricted	GPTs”	where	all	vectors	yielding	valid	
probabilities	on	all	states	are	effects:

3.	Exact	embeddings	into	QT
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EA = {e 2 A | 0  h!, ei  1 for all ! 2 ⌦A}.
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .

• QT	over	real	numbers									complex	numbers							quaternions	
• d-dimensional	Bloch	ball	state	spaces,	
• direct	sums	of	those,	including	CPT	and	QT	with	superselection	rules.
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Hilbert	space	for	

simulation!
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These	are	the	only	unrestricted	GPTs	that	are	“plausibly	quantum”.



Non-exact	embeddings	into	quantum	theory

Example:	the	gbit

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =

p
E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0

++
k1  2

p
", where

k · k1 is twice the trace distance, and hence:

| tr
�
⇢0
++

Ez

�
� tr (⇢++Ez) | 

p
". (33)

Thus, the joint probability of outcome ++ from D is:

P (+ + |⇢++) = P1(+|⇢++)P2(+|⇢0
++

)

� (1� ") tr
�
⇢0
++

Ez

�

� (1� ")
�
1� "�

p
"
�

(34)

By equivalent logic, P (ij|⇢ij) � (1� ") (1� "�
p
") for

the other i, j 2 {+,�}.
Suppose we input the state � :=  (↵0) into D, where

↵0 := 1

2
(↵++ + ↵��) = 1

2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
use the decomposition � = 1

2
(⇢++ + ⇢��), such that

P (+ + |�) � 1

2
P (+ + |⇢++) �

1� "

2

�
1�"�

p
"
�
; (35)

or we use � = 1

2
(⇢�+ + ⇢+�), such that

P (+ + |�) = 1

2
P (+ + |⇢�+) +

1

2
P (+ + |⇢+�)

 1

2
P1(+|⇢�+) +

1

2
P1(+|⇢+�)P2(+|⇢0

+�)

=
1

2
tr (Ex⇢�+) +

1

2
tr (Ex⇢+�) tr

�
Ez⇢

0
+�

�

 1

2
"+

1

2

�
tr(Ez⇢+�) +

p
"
�

 1

2
"+

1

2

�
"+

p
"
�
. (36)

For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.There	is	no	better-than-10%	univalent	(“noncontextual”)	simulation	by	QT.

3.	Exact	embeddings	into	QT
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Non-exact	embeddings	into	quantum	theory

Example:	the	gbit

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =

p
E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0

++
k1  2

p
", where

k · k1 is twice the trace distance, and hence:

| tr
�
⇢0
++

Ez

�
� tr (⇢++Ez) | 

p
". (33)

Thus, the joint probability of outcome ++ from D is:

P (+ + |⇢++) = P1(+|⇢++)P2(+|⇢0
++

)

� (1� ") tr
�
⇢0
++

Ez

�

� (1� ")
�
1� "�

p
"
�

(34)

By equivalent logic, P (ij|⇢ij) � (1� ") (1� "�
p
") for

the other i, j 2 {+,�}.
Suppose we input the state � :=  (↵0) into D, where

↵0 := 1

2
(↵++ + ↵��) = 1

2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
use the decomposition � = 1

2
(⇢++ + ⇢��), such that

P (+ + |�) � 1

2
P (+ + |⇢++) �

1� "

2

�
1�"�

p
"
�
; (35)

or we use � = 1

2
(⇢�+ + ⇢+�), such that

P (+ + |�) = 1

2
P (+ + |⇢�+) +

1

2
P (+ + |⇢+�)

 1

2
P1(+|⇢�+) +

1

2
P1(+|⇢+�)P2(+|⇢0

+�)

=
1

2
tr (Ex⇢�+) +

1

2
tr (Ex⇢+�) tr

�
Ez⇢

0
+�

�

 1

2
"+

1

2

�
tr(Ez⇢+�) +

p
"
�

 1

2
"+

1

2

�
"+

p
"
�
. (36)

For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.

Also	shown	in	our	paper:	
can	use	known	results	on	Bell	inequalities	to	certify	nonembeddability.	
Impractical	and	inefficient,	but	“proof	of	principle”.

There	is	no	better-than-10%	univalent	(“noncontextual”)	simulation	by	QT.

3.	Exact	embeddings	into	QT
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less

Overview

1.	GPTs	and	theory-agnostic	tomography

2.	Contextuality,	simulations,	and	embeddings

3.	Exact	embeddings	into	quantum	theory

4.	An	experimental	test	of	QT

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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in favor of an assumption of noncontextuality for clas-
sical ontological models of operational theories (and
thus for contextuality being a certificate of nonclassical-
ity) [30, 37, 39], and we argue that these apply to our
more general situation of simulation by GPTs as well. In
a nutshell, a contextual simulation of an e↵ective GPT
A by a fundamental GPT B is implausible because such
a simulation would involve distinct fundamental states
(or e↵ects) of B that are necessary to explain the statis-
tics of A, but whose di↵erence would become exactly
“washed out” in the e↵ective theory. This is arguably
as conspiratorial [30] as explanations for Bell nonlocality
that involve nonlocal hidden variable models: such mod-
els postulate instantaneous signalling at the ontological
level, but the signalling is miraculously invisible on the
phenomenal level to prevent us from constructing a Bell
telephone.

Recall earlier results of this article that support this
view: contextuality cannot arise from noise, complete
decoherence or coarse-graining processes (Lemmas 10
and 11), and noncontextuality extends transitively over
di↵erent levels of physical description (Lemma 3). Con-
textual simulation is a phenomenon of fine-tuning [102]
that we do not expect to arise naturally. As such, we
assert that, outside of deliberately engineered (e.g. ad-
versarial) scenarios, only noncontextual simulations are
plausible.

C. Approximate embeddings account for
experimental imperfections

Let us now discuss how to implement a test of quan-
tum theory via theory-agnostic tomography under these
assumptions, and how to deal with unavoidable experi-
mental imperfections. As explained above, we have an
e↵ective GPT A (in the terminology of Mazurek et al.
[41], the “true” GPT) that describes the statistical re-
lations of all in principle available preparation and mea-
surement procedures of the given experimental scenario.
If the experimenter could implement all preparation and
measurement procedures an infinite number of times to
collect perfect statistics, assuming perfect stability of the
experimental setup, this is the unique GPT that they
would infer from the resulting data.

In practice, experiments [40, 41] will have at least
two drawbacks as compared to this idealized description.
First, it will in general not be possible to implement all
of the (potentially infinitely many) possible preparations
or measurements. For example, think of a measurement
being determined by the direction ~n of inhomogeneity
of a magnetic field, as in a Stern-Gerlach device. We
know that our experimental scenario allows in principle
an uncountably-infinite set of measurements indexed by
~n, but we will actually only ever be able to measure in a
finite number of such directions. This means that our ex-
periment will ultimately only have implemented a finite
subset of states and measurements.

FIG. 7. Approximately embedded state spaces. Sup-
pose all in-principle available preparations and measurements
of an experimental scenario are described by an e↵ective GPT
A (here: the black circle of states ⌦A). In practice, exper-
iments can only prepare a finite subset ⌦A0 ✓ ⌦A of these
states, inducing another GPT A0 that can be perfectly em-
bedded into A (here: blue polygon). Moreover, due to only
collecting finite statistics, the actual GPT that is experimen-
tally determined, A00, is itself an approximation of A0 (here:
yellow dashed polygon of measured states ⌦A00). There is an
"–embedding of A00 into A0, and hence also into A, where "
is a function of the experimental error.

Consider the convex hull of the states in this subset,
and denote it by ⌦A0 . This must be a polytope, and
it is the state space of another GPT A0 living on the
same vector space A as A. Similarly, we can construct
a set of e↵ects EA0 that describes (up to classical post-
processing) the actually implemented e↵ects (see [41] for
details). Then ⌦A0 ✓ ⌦A and EA0 ✓ EA. But then, the
identity maps define an exact embedding of A0 into A.
We can think of A0 being a good approximation of A if
we implement a large number of preparations and mea-
surements, i.e. that A0 converges to A in some sense as
we increase our experimental e↵orts. In general, A0 is a
restricted GPT, even if A is unrestricted.
However, there is a second, more important drawback:

we can only ever collect finite statistics. The frequen-
cies that we measure in the experiment will be only ap-
proximations to the actual probabilities. Thus, we will
actually obtain an approximation A00 of A0. In contrast
to A0 being contained in A, the states and e↵ects of this
approximation will not in general be subsets of the states
and e↵ects of A0 (or of A). Indeed, Mazurek et al. [41]
found that some of the experimentally determined state
vectors “stick out” of the Bloch ball of A, corresponding
to nonstates — an obvious artefact of finite statistics.

We can say more about how A00 approximates A0 by
building on an observation of Mazurek et al. [41]: in their
specific experiment, shrinking the state and e↵ect vectors
of A00 by a small amount (0.14%) embeds them in the
qubit state space A. In general, we expect that there are
maps � : A ! A and  : A⇤ ! A⇤ that are close to the
identity, “shrinking” the state and e↵ect spaces ⌦A00 and
EA00 a tiny bit, and embedding them into ⌦A and EA.
Hence, these maps define an "-embedding of A00 into A,
and it is clear that the embedding becomes more exact
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in favor of an assumption of noncontextuality for clas-
sical ontological models of operational theories (and
thus for contextuality being a certificate of nonclassical-
ity) [30, 37, 39], and we argue that these apply to our
more general situation of simulation by GPTs as well. In
a nutshell, a contextual simulation of an e↵ective GPT
A by a fundamental GPT B is implausible because such
a simulation would involve distinct fundamental states
(or e↵ects) of B that are necessary to explain the statis-
tics of A, but whose di↵erence would become exactly
“washed out” in the e↵ective theory. This is arguably
as conspiratorial [30] as explanations for Bell nonlocality
that involve nonlocal hidden variable models: such mod-
els postulate instantaneous signalling at the ontological
level, but the signalling is miraculously invisible on the
phenomenal level to prevent us from constructing a Bell
telephone.

Recall earlier results of this article that support this
view: contextuality cannot arise from noise, complete
decoherence or coarse-graining processes (Lemmas 10
and 11), and noncontextuality extends transitively over
di↵erent levels of physical description (Lemma 3). Con-
textual simulation is a phenomenon of fine-tuning [102]
that we do not expect to arise naturally. As such, we
assert that, outside of deliberately engineered (e.g. ad-
versarial) scenarios, only noncontextual simulations are
plausible.

C. Approximate embeddings account for
experimental imperfections

Let us now discuss how to implement a test of quan-
tum theory via theory-agnostic tomography under these
assumptions, and how to deal with unavoidable experi-
mental imperfections. As explained above, we have an
e↵ective GPT A (in the terminology of Mazurek et al.
[41], the “true” GPT) that describes the statistical re-
lations of all in principle available preparation and mea-
surement procedures of the given experimental scenario.
If the experimenter could implement all preparation and
measurement procedures an infinite number of times to
collect perfect statistics, assuming perfect stability of the
experimental setup, this is the unique GPT that they
would infer from the resulting data.

In practice, experiments [40, 41] will have at least
two drawbacks as compared to this idealized description.
First, it will in general not be possible to implement all
of the (potentially infinitely many) possible preparations
or measurements. For example, think of a measurement
being determined by the direction ~n of inhomogeneity
of a magnetic field, as in a Stern-Gerlach device. We
know that our experimental scenario allows in principle
an uncountably-infinite set of measurements indexed by
~n, but we will actually only ever be able to measure in a
finite number of such directions. This means that our ex-
periment will ultimately only have implemented a finite
subset of states and measurements.

FIG. 7. Approximately embedded state spaces. Sup-
pose all in-principle available preparations and measurements
of an experimental scenario are described by an e↵ective GPT
A (here: the black circle of states ⌦A). In practice, exper-
iments can only prepare a finite subset ⌦A0 ✓ ⌦A of these
states, inducing another GPT A0 that can be perfectly em-
bedded into A (here: blue polygon). Moreover, due to only
collecting finite statistics, the actual GPT that is experimen-
tally determined, A00, is itself an approximation of A0 (here:
yellow dashed polygon of measured states ⌦A00). There is an
"–embedding of A00 into A0, and hence also into A, where "
is a function of the experimental error.

Consider the convex hull of the states in this subset,
and denote it by ⌦A0 . This must be a polytope, and
it is the state space of another GPT A0 living on the
same vector space A as A. Similarly, we can construct
a set of e↵ects EA0 that describes (up to classical post-
processing) the actually implemented e↵ects (see [41] for
details). Then ⌦A0 ✓ ⌦A and EA0 ✓ EA. But then, the
identity maps define an exact embedding of A0 into A.
We can think of A0 being a good approximation of A if
we implement a large number of preparations and mea-
surements, i.e. that A0 converges to A in some sense as
we increase our experimental e↵orts. In general, A0 is a
restricted GPT, even if A is unrestricted.
However, there is a second, more important drawback:

we can only ever collect finite statistics. The frequen-
cies that we measure in the experiment will be only ap-
proximations to the actual probabilities. Thus, we will
actually obtain an approximation A00 of A0. In contrast
to A0 being contained in A, the states and e↵ects of this
approximation will not in general be subsets of the states
and e↵ects of A0 (or of A). Indeed, Mazurek et al. [41]
found that some of the experimentally determined state
vectors “stick out” of the Bloch ball of A, corresponding
to nonstates — an obvious artefact of finite statistics.

We can say more about how A00 approximates A0 by
building on an observation of Mazurek et al. [41]: in their
specific experiment, shrinking the state and e↵ect vectors
of A00 by a small amount (0.14%) embeds them in the
qubit state space A. In general, we expect that there are
maps � : A ! A and  : A⇤ ! A⇤ that are close to the
identity, “shrinking” the state and e↵ect spaces ⌦A00 and
EA00 a tiny bit, and embedding them into ⌦A and EA.
Hence, these maps define an "-embedding of A00 into A,
and it is clear that the embedding becomes more exact
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in favor of an assumption of noncontextuality for clas-
sical ontological models of operational theories (and
thus for contextuality being a certificate of nonclassical-
ity) [30, 37, 39], and we argue that these apply to our
more general situation of simulation by GPTs as well. In
a nutshell, a contextual simulation of an e↵ective GPT
A by a fundamental GPT B is implausible because such
a simulation would involve distinct fundamental states
(or e↵ects) of B that are necessary to explain the statis-
tics of A, but whose di↵erence would become exactly
“washed out” in the e↵ective theory. This is arguably
as conspiratorial [30] as explanations for Bell nonlocality
that involve nonlocal hidden variable models: such mod-
els postulate instantaneous signalling at the ontological
level, but the signalling is miraculously invisible on the
phenomenal level to prevent us from constructing a Bell
telephone.

Recall earlier results of this article that support this
view: contextuality cannot arise from noise, complete
decoherence or coarse-graining processes (Lemmas 10
and 11), and noncontextuality extends transitively over
di↵erent levels of physical description (Lemma 3). Con-
textual simulation is a phenomenon of fine-tuning [102]
that we do not expect to arise naturally. As such, we
assert that, outside of deliberately engineered (e.g. ad-
versarial) scenarios, only noncontextual simulations are
plausible.

C. Approximate embeddings account for
experimental imperfections

Let us now discuss how to implement a test of quan-
tum theory via theory-agnostic tomography under these
assumptions, and how to deal with unavoidable experi-
mental imperfections. As explained above, we have an
e↵ective GPT A (in the terminology of Mazurek et al.
[41], the “true” GPT) that describes the statistical re-
lations of all in principle available preparation and mea-
surement procedures of the given experimental scenario.
If the experimenter could implement all preparation and
measurement procedures an infinite number of times to
collect perfect statistics, assuming perfect stability of the
experimental setup, this is the unique GPT that they
would infer from the resulting data.

In practice, experiments [40, 41] will have at least
two drawbacks as compared to this idealized description.
First, it will in general not be possible to implement all
of the (potentially infinitely many) possible preparations
or measurements. For example, think of a measurement
being determined by the direction ~n of inhomogeneity
of a magnetic field, as in a Stern-Gerlach device. We
know that our experimental scenario allows in principle
an uncountably-infinite set of measurements indexed by
~n, but we will actually only ever be able to measure in a
finite number of such directions. This means that our ex-
periment will ultimately only have implemented a finite
subset of states and measurements.

FIG. 7. Approximately embedded state spaces. Sup-
pose all in-principle available preparations and measurements
of an experimental scenario are described by an e↵ective GPT
A (here: the black circle of states ⌦A). In practice, exper-
iments can only prepare a finite subset ⌦A0 ✓ ⌦A of these
states, inducing another GPT A0 that can be perfectly em-
bedded into A (here: blue polygon). Moreover, due to only
collecting finite statistics, the actual GPT that is experimen-
tally determined, A00, is itself an approximation of A0 (here:
yellow dashed polygon of measured states ⌦A00). There is an
"–embedding of A00 into A0, and hence also into A, where "
is a function of the experimental error.

Consider the convex hull of the states in this subset,
and denote it by ⌦A0 . This must be a polytope, and
it is the state space of another GPT A0 living on the
same vector space A as A. Similarly, we can construct
a set of e↵ects EA0 that describes (up to classical post-
processing) the actually implemented e↵ects (see [41] for
details). Then ⌦A0 ✓ ⌦A and EA0 ✓ EA. But then, the
identity maps define an exact embedding of A0 into A.
We can think of A0 being a good approximation of A if
we implement a large number of preparations and mea-
surements, i.e. that A0 converges to A in some sense as
we increase our experimental e↵orts. In general, A0 is a
restricted GPT, even if A is unrestricted.
However, there is a second, more important drawback:

we can only ever collect finite statistics. The frequen-
cies that we measure in the experiment will be only ap-
proximations to the actual probabilities. Thus, we will
actually obtain an approximation A00 of A0. In contrast
to A0 being contained in A, the states and e↵ects of this
approximation will not in general be subsets of the states
and e↵ects of A0 (or of A). Indeed, Mazurek et al. [41]
found that some of the experimentally determined state
vectors “stick out” of the Bloch ball of A, corresponding
to nonstates — an obvious artefact of finite statistics.

We can say more about how A00 approximates A0 by
building on an observation of Mazurek et al. [41]: in their
specific experiment, shrinking the state and e↵ect vectors
of A00 by a small amount (0.14%) embeds them in the
qubit state space A. In general, we expect that there are
maps � : A ! A and  : A⇤ ! A⇤ that are close to the
identity, “shrinking” the state and e↵ect spaces ⌦A00 and
EA00 a tiny bit, and embedding them into ⌦A and EA.
Hence, these maps define an "-embedding of A00 into A,
and it is clear that the embedding becomes more exact
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A	quantum	explanation	of	the	result	is	then	similarly	implausible	as	
a	classical	(contextual)	explanation	of	the	quantum	state	space.

Typically	a	
restricted	GPT.



Summary

• Have	generalized	Spekkens’	noDon	of	generalized	noncontextuality:	
“Processes	that	are	sta;s;cally	indis;nguishable	in	an	effec;ve	theory	
should	not	require	explana;on	by	mul;ple	dis;nguishable	processes	
in	a	more	fundamental	theory.”	

arXiv:2112.09719	(update	soon),	
to	appear	in	Physical	Review	X.

Thank	you!

• Results:	Several	structural	insights,	a	new	experimental	test	of	QT,	
Jordan	algebras	are	the	only	unrestricted	GPTs	embeddable	into	QT.

• Note:	the	experiments	will	not	just	test	QT	“against	other	probabilisDc	
theories	/	GPTs”,	but	against	arbitrary	modificaDons	impacDng	prepare-	
-and-measure-staDsDcs.	We	use	GPTs	only	as	a	tool	to	analyze	the	later.


