Testing quantum theory by generalizing noncontextuality

Markus P. Müller ${ }^{1,2,3}$ and Andrew J. P. Garner ${ }^{1,2}$

${ }^{1}$ Institute for Quantum Optics and Quantum Information (IQOQI), Vienna
2Vienna Center for Quantum Science and Technology (VCQ), Vienna
${ }^{3}$ Perimeter Institute for Theoretical Physics (PI), Waterloo, Canada

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT?

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT

 w/o assumptions on devices or physics?
Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT w/o assumptions on devices or physics?

If Nature is fundamentally quantum, which effective probabilistic theories can we reasonably expect to encounter?

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT w/o assumptions on devices or physics?

If Nature is fundamentally quantum, which effective probabilistic theories can we reasonably expect to encounter?

$\Omega=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\}$

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT w/o assumptions on devices or physics?

If Nature is fundamentally quantum, which effective probabilistic theories can we reasonably expect to encounter?

$$
\begin{aligned}
& \Omega=\left\{p=\left(p_{1}, \ldots, p_{n}\right) \mid\right. \\
& \left.\quad p_{i} \geq 0, \sum p_{i}=1\right\}
\end{aligned}
$$

- classical probability theory
- noisy qubits etc.
- QT w/ superselection rules
- ... ?

$$
\left.\Omega=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\} \quad p_{i} \geq 0, \sum p_{i}=1\right\}
$$

Unambiguously testing / falsifying QT is really hard!

science
n AAAAS

Ruling Out Multi-Order Interference in Quantum Mechanics Urbasi Sinha et al. Science 329, 418 (2010); DOI: 10.1126/science.1190545

Unambiguously testing / falsifying QT is really hard!

Science
 \1 ${ }_{\text {AAAS }}$

Ruling Out Multi-Order Interference in Quantum Mechanics Urbasi Sinha et al. Science 329, 418 (2010);
DOI: 10.1126/science. 1190545

$$
\begin{align*}
I_{A B C}:= & P_{A B C}-\left(P_{A}+P_{B}+P_{C}+I_{A B}+\right. \\
& \left.I_{B C}+I_{A C}\right) \\
= & P_{A B C}-P_{A B}-P_{B C}-P_{A C}+P_{A}+ \\
& P_{B}+P_{C} \tag{5}
\end{align*}
$$

In QT, only pairs of paths

 interfere (Sorkin 1994)$$
\Rightarrow I_{A B C}=0 .
$$

Unambiguously testing / falsifying QT is really hard!

Science \1 ${ }_{\text {AAAS }}$

Ruling Out Multi-Order Interference in Quantum Mechanics

 Urbasi Sinha et al. Science 329, 418 (2010);DOI: 10.1126/science. 1190545

Non-classical paths in interference experiments
Rahul Sawant ${ }^{1}$, Joseph Samuel ${ }^{1}$, Aninda Sinha ${ }^{2}$, Supurna Sinha ${ }^{1}$ and Urbasi Sinha ${ }^{1,3}$
${ }^{1}$ Raman Research Institute, Sadashivanagar, Bangalore, India.
${ }^{2}$ Centre for High Energy Physics, Indian Institute of Science, Bangalore, India.
${ }^{3}$ Institute for Quantum Computing, 200 University Avenue West, Waterloo, Ontario, Canada. *To whom correspondence should be addressed; E-mail: usinha@rri.res.in.

1. GPTs and theory-agnostic tomography

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

Overview

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

Operational theories

(all accessible preparation procedures)

Operational theories

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

Operational theories

(all accessible preparation procedures)
$P_{1} \sim P_{2} \quad$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

Operational theories

(all accessible preparation procedures)

(all accessible measurement procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

Operational theories

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$ for all accessible preparations P.

Operational theories

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$ for all accessible preparations P.

Effect $e_{k, M}=$ equivalence class of outcome-measurement pairs

Operational theories

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if probabilities for all outcomes of all accessible measurements.
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$
for all accessible preparations P.
State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)

Effect $e_{k, M}=$ equivalence class of outcome-measurement pairs

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=$ (vector space over \mathbb{R}, normalized states, effects $)$.

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=($ vector space over \mathbb{R}, normalized states, effects $)$.

Quantum theory (QT): \mathcal{Q}_{n}
$A=\mathbb{H}_{n}(\mathbb{C}) \quad$ (complex Hermitian $n \times n$ matrices) $E_{A}=\{E \mid 0 \leq E \leq \mathbf{1}\} \quad$ (POVM elements)
$\Omega_{A}=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\}$ (density matrices) $A^{*} \simeq A$ via $\langle X, Y\rangle=\operatorname{tr}(X Y)$.

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=($ vector space over \mathbb{R}, normalized states, effects $)$.

Quantum theory (QT): \mathcal{Q}_{n}

$$
\begin{aligned}
& A=\mathbb{H}_{n}(\mathbb{C}) \quad \text { (complex Hermitian } n \times n \text { matrices) } \\
& E_{A}=\{E \mid 0 \leq E \leq \mathbf{1}\} \quad \text { (POVM elements) } \\
& \Omega_{A}=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\} \quad \text { (density matrices) } \\
& A^{*} \simeq A \text { via }\langle X, Y\rangle=\operatorname{tr}(X Y) .
\end{aligned}
$$

Classical probability theory (QT): \mathcal{C}_{n}

$$
\begin{aligned}
& A=\mathbb{R}^{n} \simeq A^{*} \\
& E_{A}=\left\{\left(e_{1}, \ldots, e_{n}\right) \mid 0 \leq e_{i} \leq 1\right\} \\
& \Omega_{A}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \sum_{i} p_{i}=1\right\}
\end{aligned}
$$

General probabilistic theories

The gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$

b) Cone of states A_{+}^{*}

c) Normalized states Ω_{A}

General probabilistic theories

The gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$

The four pure states $\alpha_{ \pm, \pm}$are pairwise perfectly distinguishable, but not jointly \Longrightarrow this cannot be a classical or quantum system.

Theory-agnostic tomography

Idea: Identify a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.

Theory-agnostic tomography

Idea: Identify a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

Theory-agnostic tomography

Idea: Identify a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

[1]: Polarization degree of freedom of a single photon: "bumpy qubit" $\approx \mathcal{Q}_{2}$.

Theory-agnostic tomography

Idea: Identify a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

[1]: Polarization degree of freedom of a single photon: "bumpy qubit" $\approx \mathcal{Q}_{2}$.

Tomographic completeness loophole: can never be sure that we probed the system completely.

What if we just see a (low-dimensional) "shadow"?

Let's drop the tomographic completeness assumption.
"Effective physical system": defined by a set of accessible procedures.

What if we just see a (low-dimensional) "shadow"?

Let's drop the tomographic completeness assumption.

"Effective physical system": defined by a set of accessible procedures.
If we do theory-agnostic tomography on an effective physical system and obtain some weird noisy GPT, is QT a possible/plausible explanation?

What if we just see a (low-dimensional) "shadow"?

Let's drop the tomographic completeness assumption.
"Effective physical system": defined by a set of accessible procedures.
If we do theory-agnostic tomography on an effective physical system and obtain some weird noisy GPT, is QT a possible/plausible explanation?

Is fundamental QT a plausible explanation of a given effective GPT?

Overview

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements
R. W. Spekkens*

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada (Dated: Feb. 25, 2005)

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements
R. W. Spekkens*

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada (Dated: Feb. 25, 2005)

Recall the notion of an operational theory.

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements
R. W. Spekkens*

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada (Dated: Feb. 25, 2005)

Recall the notion of an operational theory.

Ontological model of a system (e.g. of a qubit):
A set of classical variables Λ.

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements
R. W. Spekkens*

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada (Dated: Feb. 25, 2005)

Recall the notion of an operational theory.

Ontological model of a system (e.g. of a qubit):
A set of classical variables Λ.
Preparation procedure $P \longleftrightarrow$ distribution $\mu_{P}(\lambda)$

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements
R. W. Spekkens*

Perimeter Institute for Theoretical Physics, 35 King St. North, Waterloo, Ontario N2J 2W9, Canada (Dated: Feb. 25, 2005)

Recall the notion of an operational theory.

Ontological model of a system (e.g. of a qubit):
A set of classical variables Λ.
Preparation procedure $P \longleftrightarrow$ distribution $\mu_{P}(\lambda)$
Outcome k of measurement $M \longleftrightarrow$ response function $\chi_{M, k}(\lambda)$

Spekkens' notion of noncontextuality: quick recap

Contextuality for preparations, transformations and unsharp measurements

Recall the notion of an operational theory.

Ontological model of a system (e.g. of a qubit):
A set of classical variables Λ.
Preparation procedure $P \longleftrightarrow$ distribution $\mu_{P}(\lambda)$
Outcome k of measurement $M \longleftrightarrow$ response function $\chi_{M, k}(\lambda)$
such that

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

The ontological model is preparation-noncontextual if $P \sim P^{\prime} \Rightarrow \mu_{P}=\mu_{P^{\prime}}$

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

The ontological model is preparation-noncontextual if $P \sim P^{\prime} \Rightarrow \mu_{P}=\mu_{P^{\prime}}$

Intuition: preparation procedures are statistically indistinguishable because they prepare the same distribution over Λ.

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

The ontological model is preparation-noncontextual if $P \sim P^{\prime} \Rightarrow \mu_{P}=\mu_{P^{\prime}}$.

Intuition: preparation procedures are statistically indistinguishable because they prepare the same distribution over Λ.

Measurement-noncontextuality: $(k, M) \sim\left(k^{\prime}, M^{\prime}\right) \Rightarrow \chi_{k, M}(\lambda)=\chi_{k^{\prime}, M^{\prime}}(\lambda)$

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

The ontological model is preparation-noncontextual if $P \sim P^{\prime} \Rightarrow \mu_{P}=\mu_{P^{\prime}}$.

Intuition: preparation procedures are statistically indistinguishable because they prepare the same distribution over Λ.

Measurement-noncontextuality: $(k, M) \sim\left(k^{\prime}, M^{\prime}\right) \Rightarrow \chi_{k, M}(\lambda)=\chi_{k^{\prime}, M^{\prime}}(\lambda)$
Theorem: Ontological models of QM-systems must be preparation-contextual (and, assuming outcome-determinism for sharp meas., measurement-contextual).

Spekkens' notion of noncontextuality: quick recap

$$
\operatorname{Prob}(k \mid P, M)=\int_{\Lambda} d \lambda \mu_{P}(\lambda) \chi_{M, k}(\lambda)
$$

The ontological model is preparation-noncontextual if $P \sim P^{\prime} \Rightarrow \mu_{P}=\mu_{P^{\prime}}$.

Intuition: preparation procedures are statistically indistinguishable because they prepare the same distribution over Λ.

Measurement-noncontextuality: $(k, M) \sim\left(k^{\prime}, M^{\prime}\right) \Rightarrow \chi_{k, M}(\lambda)=\chi_{k^{\prime}, M^{\prime}}(\lambda)$
Theorem: Ontological models of QM-systems must be preparation-contextual (and, assuming outcome-determinism for sharp meas., measurement-contextual).

Intuition: Contextual models are implausible because they are fine-tuned: operationally, $P \sim P^{\prime}$, but ontologically, $\mu_{P} \neq \mu_{P^{\prime}}$.

An instance of Leibniz' principle of the "identity of the indiscernibles".

Simulations and embeddings

Effective GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$ found in the lab

Simulations and embeddings

Simulations and embeddings

Effectively preparing state ω_{A} means fundamentally preparing some ω_{B}, but ω_{B} may depend on the preparation procedure, i.e. the context. Collect all those states into a set $\Omega_{B}\left(\omega_{A}\right):=\left\{\omega_{B}\right\}$.

Simulations and embeddings

Definition. An ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :
Effective state $\omega_{A} \longmapsto$ set of simulating states $\Omega_{B}\left(\omega_{A}\right)$, effective effect $e_{A} \longmapsto$ set of simulating effects $E_{B}\left(e_{A}\right)$,

Simulations and embeddings

Definition. An ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :
Effective state $\omega_{A} \longmapsto$ set of simulating states $\Omega_{B}\left(\omega_{A}\right)$,
effective effect $e_{A} \longmapsto$ set of simulating effects $E_{B}\left(e_{A}\right)$,
such that all outcome probabilities are reproduced up to ε :

$$
\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \text { for all } \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right)
$$

and, essentially, mixtures are valid simulations of mixtures (see paper).

Simulations and embeddings

Definition. An ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} : Effective state $\omega_{A} \longmapsto$ set of simulating states $\Omega_{B}\left(\omega_{A}\right)$, effective effect $e_{A} \longmapsto$ set of simulating effects $E_{B}\left(e_{A}\right)$,
such that all outcome probabilities are reproduced up to ε :

$$
\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \text { for all } \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right)
$$

and, essentially, mixtures are valid simulations of mixtures (see paper).
Simulation is univalent if all $\Omega_{B}\left(\omega_{A}\right), E_{B}\left(e_{A}\right)$ contain one element.

Simulations and embeddings

Definition. An ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} : Effective state $\omega_{A} \longmapsto$ set of simulating states $\Omega_{B}\left(\omega_{A}\right)$, effective effect $e_{A} \longmapsto$ set of simulating effects $E_{B}\left(e_{A}\right)$,
such that all outcome probabilities are reproduced up to ε :

$$
\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \text { for all } \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right)
$$

and, essentially, mixtures are valid simulations of mixtures (see paper).
Simulation is univalent if all $\Omega_{B}\left(\omega_{A}\right), E_{B}\left(e_{A}\right)$ contain one element.

Special case $\mathcal{A}=\mathrm{QT}, \mathcal{B}=$ classical probability theory:
Simulations are ontological models, and univalence = noncontextuality.

Simulations and embeddings

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

Simulations and embeddings

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\}
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.

Simulations and embeddings

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\}
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.
(Preparation) contextuality = multivalence: the fundamental state β^{\prime} does not only depend on α^{\prime}, but must also depend on the way it has been prepared.

Simulations and embeddings

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\},
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.
(Preparation) contextuality = multivalence: the fundamental state β^{\prime} does not only depend on α^{\prime}, but must also depend on the way it has been prepared.

This is an instance of implausible fine-tuning: the statistical differences among the fundamental states are miraculously exactly "washed out" on the effective level.

Univalent simulations are embeddings

Lemma 2. Every univalent ε-simulation of \mathcal{A} by \mathcal{B} defines an ε-embedding of \mathcal{A} into \mathcal{B}, and vice versa.

Univalent simulations are embeddings

Lemma 2. Every univalent ε-simulation of \mathcal{A} by \mathcal{B} defines an ε-embedding of \mathcal{A} into \mathcal{B}, and vice versa.

An ε-embedding consists of two linear maps Ψ and Φ such that

- Ψ maps the normalized states of A into those of B,
- Φ maps the effects of A into those of B,
- outcome probabilities are preserved up to ε.

Summary of this part

Multivalent simulations (that cannot be made univalent) are implausible because they are fine-tuned, cf. Holevo projection.

Univalent simulation (of A by B) = embedding (of A into B).

Embeddable into CPT (a classical probability simplex) \mathcal{C}_{n}
= univalently simulatable by fundamental CPT
= noncontextual in the sense of Spekkens
= plausibly "classical".

Embeddable into QT (a positive semidefinite cone) \mathcal{Q}_{n}
= univalently simulatable by fundamental QT
= plausibly "quantum".

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

The qubit (actually, rebit) does not have a noncontextual ontological model.
Quantitative statement:

$$
A:=\frac{1}{6} \sum_{t \in\{1,2,3\}} \sum_{b \in\{0,1\}} P\left(b \mid p_{t, b}, m_{t}\right) \leq \frac{5}{6}
$$

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

The qubit (actually, rebit) does not have a noncontextual ontological model.
Quantitative statement:

$$
A:=\frac{1}{6} \sum_{t \in\{1,2,3\}} \sum_{b \in\{0,1\}} P\left(b \mid p_{t, b}, m_{t}\right) \leq \frac{5}{6} .
$$

These imply bounds on the approximate embeddability into classical:
Example 1. Let $\varepsilon<\frac{1}{6}$. Then the rebit (and thus, also the qubit) cannot be ε-embedded into any \mathcal{C}_{n}.
2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

Which GPTs admit of an univalent ("noncontextual") simulation by QT, i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

3. Exact embeddings into quantum theory

Which GPTs admit of an univalent ("noncontextual") simulation by QT, i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

Example: Classical PT can be embedded into QT.
$\left(p_{1}, \ldots, p_{n}\right) \xrightarrow{\Psi}\left(\begin{array}{ccc}p_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & p_{n}\end{array}\right)$.
$\left(e_{1}, \ldots, e_{n}\right) \xrightarrow{\Phi}\left(\begin{array}{ccc}e_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & e_{n}\end{array}\right)$.

$|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle$

3. Exact embeddings into quantum theory

Which GPTs admit of an univalent ("noncontextual") simulation by QT, i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

Example: Classical PT can be embedded into QT.
$\left(p_{1}, \ldots, p_{n}\right) \xrightarrow{\Psi}\left(\begin{array}{ccc}p_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & p_{n}\end{array}\right)$.
$\left(e_{1}, \ldots, e_{n}\right) \xrightarrow{\Phi}\left(\begin{array}{ccc}e_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & e_{n}\end{array}\right)$.

Similarly, QT over the real numbers can be embedded into QT.

$|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle$

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\} .
$$

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\} .
$$

Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\}
$$

> Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

- QT over real numbers \mathbb{R}, complex numbers \mathbb{C}, quaternions \mathbb{H},
- d-dimensional Bloch ball state spaces,
- direct sums of those, including CPT and QT with superselection rules.

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\} .
$$

Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

- QT over real numbers \mathbb{R}, complex numbers \mathbb{C}, quaternions \mathbb{H},
- d-dimensional Bloch ball state spaces,
- direct sums of those, including CPT and QT with superselection rules.

These are the only unrestricted GPTs that are "plausibly quantum".

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\}
$$

Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum Needs 2^{d}-dim. nly if it corresponds to a special Euclidea

Hilbert space for

 simulation!- QT over real numbers \mathbb{R}, complex ny fors, quaternions \mathbb{H},
- d-dimensional Bloch ball state spaces,
- direct sums of those, including CPT and QT with superselection rules.

These are the only unrestricted GPTs that are "plausibly quantum".

Non-exact embeddings into quantum theory

Example: the gbit

Example 2. Let $\varepsilon \leq 0.1014$. Then the gbit cannot be ε-embedded into any \mathcal{Q}_{n} or \mathcal{Q}_{∞}.

There is no better-than-10\% univalent ("noncontextual") simulation by QT.

Non-exact embeddings into quantum theory

Example: the gbit

Example 2. Let $\varepsilon \leq 0.1014$. Then the gbit cannot be ε-embedded into any \mathcal{Q}_{n} or \mathcal{Q}_{∞}.

There is no better-than-10\% univalent ("noncontextual") simulation by QT.

Also shown in our paper:
can use known results on Bell inequalities to certify nonembeddability. Impractical and inefficient, but "proof of principle".
2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory
4. An experimental test of QT

2. Contextuality, simulations, and embeddings
3. Exact embeddings into quantum theory

4. An experimental test of QT

Suggestion: experimental test of QT

Suggestion: experimental test of QT

Perform theory-agnostic tomography on an effective physical system in your laboratory.
Test whether the resulting effective GPT is ε - embeddable into QT, where ε is a function of the experimental uncertainty. If, surprisingly, "no", then this challenges QT.

Suggestion: experimental test of QT

Perform theory-agnostic tomography on an effective physical system in your laboratory.
Test whether the resulting effective GPT is ε - embeddable into QT, where ε is a function of the experimentan ncertainty. If, surprisingly, "no", then this challenges QT.

Typically a restricted GPT.

Suggestion: experimental test of QT

Perform theory-agnostic tomography on an effective physical system in your laboratory.
Test whether the resulting effective GPT is ε - embeddable into QT, where ε is a function of the experimentan neertainty. If, surprisingly, "no", then this challenges QT.

Typically a restricted GPT.

A quantum explanation of the result is then similarly implausible as a classical (contextual) explanation of the quantum state space.

- Have generalized Spekkens' notion of generalized noncontextuality: "Processes that are statistically indistinguishable in an effective theory should not require explanation by multiple distinguishable processes in a more fundamental theory."
- Results: Several structural insights, a new experimental test of QT, Jordan algebras are the only unrestricted GPTs embeddable into QT.
- Note: the experiments will not just test QT "against other probabilistic theories / GPTs", but against arbitrary modifications impacting prepare--and-measure-statistics. We use GPTs only as a tool to analyze the latter.

> arXiv: 2112.09719 (update soon), to appear in Physical Review X.

Thank you!

