Theory-independent randomness generation with spacetime symmetries

Caroline L. Jones, Stefan L. Ludescher, Albert Aloy, Markus P. Müller Institute for Quantum Optics and Quantum Information (IQOQI), Vienna Perimeter Institute for Theoretical Physics (PI), Waterloo, Canada

Der Wissenschaftsfonds.

Overview

1. Motivations: QG and device-independent QIT

2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT

2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory
4. Conclusions

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.
Device-independent: works for completely untrusted devices. Needs a loophole-free Bell test to be realized. Extremely difficult.

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.
Device-independent: works for completely untrusted devices. Needs a loophole-free Bell test to be realized. Extremely difficult.

Semi-device-independent (SDI): allow communication between devices.
Make some (modest?!) assumption on the transmitted phys. system.

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.
Device-independent: works for completely untrusted devices.
Needs a loophole-free Bell test to be realized. Extremely difficult.
Semi-device-independent (SDI): allow communication between devices.
Make some (modest?!) assumption on the transmitted phys. system.

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.
Device-independent: works for completely untrusted devices.
Needs a loophole-free Bell test to be realized. Extremely difficult.
Semi-device-independent (SDI): allow communication between devices.
Make some (modest?!) assumption on the transmitted phys. system.

From observed correlations $p(a \mid x, y)$, infer $H(A \mid X, Y, \Lambda) \geq \ldots>0$.

Motivation 1: SDI randomness expansion

Goal: Generate certifiably random bits, unpredictable even by eavesdroppers with arbitrary classical side information.
Device-independent: works for completely untrusted devices. Needs a loophole-free Bell test to be realized. Extremely difficult.

Semi-device-independent (SDI): allow communication between devices.
Make some (modest?!) assumption on the transmitted phys. system.

From observed correlations $p(a \mid x, y)$, infer $H(A \mid X, Y, \Lambda) \geq \ldots>0$.
Problems: assumption not very well motivated; assumes QT is correct.

Motivation 1: SDI randomness expansion

Our SDI assumption: essentially, a bound on how sensitive the system responds to spatial rotations (in QT: "spin quantum number"). This turns out to make sense (and work) without assuming QT.

From observed correlations $p(a \mid x, y)$, infer $H(A \mid X, Y, \Lambda) \geq \ldots>0$.

Motivation 2: quantum gravity

Motivation 2: quantum gravity

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics: how do QT and spacetime constrain each other?

Motivation 2: quantum gravity

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics:
how do QT and spacetime constrain each other?

Analogy: suppose we would like to find a detailed theory of (bio.) evolution.

Motivation 2: quantum gravity

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics:
how do QT and spacetime constrain each other?

Analogy: suppose we would like to find a detailed theory of (bio.) evolution.
biology of life \longleftrightarrow geological environment

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics:
how do QT and spacetime constrain each other?

Analogy: suppose we would like to find a detailed theory of (bio.) evolution.
biology of life \longleftrightarrow geological environment

- Possibility 1: construct detailed theory how evolution supposedly unfolded.
- Possibility 2: first, study the relation of the two as presented right now.

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics:
how do QT and spacetime constrain each other?

Analogy: suppose we would like to find a detailed theory of (bio.) evolution. biology of life \longleftrightarrow geological environment

- Possibility 1: construct detailed theory how evolution supposedly unfolded.
- Possibilitv 2: first, study the relation of the two as presented right now.

Camel humps and thorns as a consequence of environment. What kind of life fits into a given environment in principle?

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics:
how do QT and spacetime constrain each other?

Analogy: suppose we would like to find a detailed theory of (bio.) evolution. biology of life \leftrightarrow geological environment

- Possibility 1: construct detailed theory how evolution supposedly unfolded. - Possibility 2: first, study the relation of the two as presented right now.

Qubit Bloch ball and quantum correlations as consequences of spacetime structure? Which detector click probabilities fit in principle into space and time?

Overview

1. Motivations: QG and device-independent QIT

2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT

2. Our protocol, and its quantum analysis

3. Rotation boxes beyond quantum theory
4. Conclusions

Our protocol and its quantum analysis

Our protocol and its quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle α.

Our protocol and its quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle α.

SDI assumption: spin of system $\leq \mathbf{J}$
No further assumptions on devices / system.

Our protocol and its quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle $\boldsymbol{\alpha}$.

SDI assumption: spin of system $\leq \mathbf{J}$
No further assumptions on devices / system.
Rotation described by (projective) unitary representation of SO(2):

$$
U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}, \quad P(b \mid \alpha)=\sum_{\lambda} p(\lambda) \operatorname{tr}\left(M_{b}(\lambda) U_{\alpha} \rho_{1}(\lambda) U_{\alpha}^{\dagger}\right)
$$

Our protocol and its quantum analysis

Our protocol and its quantum analysis

Theorem. The following correlations are possible:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cll}\cos (J \alpha) & \text { if } & |J \alpha|<\frac{\pi}{2} \\ 0 & \text { if } & |J \alpha| \geq \frac{\pi}{2}\end{array}\right.$

Our protocol and its quantum analysis

Theorem. The following correlations are possible:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 & \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$

Our protocol and its quantum analysis

Theorem. The following correlations are possible:

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

Angle $|J \alpha| \geq \pi / 2$:
Rotated and unrotated states may be orthogonal; outcome b may carry perfect classical info on x, i.e. $\left(E_{1}, E_{2}\right)=(\pm 1, \mp 1)$ All correlations possible, no certifiable randomness.

Our protocol and its quantum analysis

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

$$
\operatorname{spin} \leq \mathbf{J}
$$

$$
P(b \mid x)
$$

Theorem. The following correlations are possible:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 & \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$

The curved set of correlations is possible. b cannot carry full information on x, hence b must contain some randomness, even relative to classical side information λ, if E outside the red ("classical") line: non-zero amount of certified randomness.

A slide to scare the non-experts

Overview

1. Motivations: QG and device-independent QIT

2. Our protocol, and its quantum analysis

3. Rotation boxes beyond quantum theory
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory
4. Conclusions

Rotation boxes beyond quantum theory

Rotation boxes beyond quantum theory

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

- Can we understand our SDI assumption without assuming QT?
- Can we use the protocol to certify random numbers without QT?

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

- Can we understand our SDI assumption without assuming QT?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

- Can we understand our SDI assumption without assuming QT?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

Yes we can!

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes: $\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$, $\left\{E_{b}\right\}$ some POVM, ρ some density matrix, $U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:
$\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$,
$\left\{E_{b}\right\}$ some POVM, ρ some density matrix,
$U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.
Consequence: every p is a trigonometric polynomial of degree $\mathbf{2 J}$

$$
\text { (e.g. } p(+\mid \alpha)=\frac{1}{2}+\frac{1}{2} \cos \alpha \quad \text { for } J=\frac{1}{2} \text {). }
$$

- Definition of quantum spin-J boxes:
$\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$, $\left\{E_{b}\right\}$ some POVM, ρ some density matrix,
$U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.
Consequence: every p is a trigonometric polynomial of degree $2 \mathbf{J}$

$$
\text { (e.g. } p(+\mid \alpha)=\frac{1}{2}+\frac{1}{2} \cos \alpha \quad \text { for } J=\frac{1}{2} \text {). }
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

$$
0 \leq p(+1 \mid \alpha) \leq 1 \quad \text { for all } \alpha
$$

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Clearly $\mathcal{Q}_{J} \subseteq \mathcal{R}_{J}$.
It can be shown directly that $\mathcal{Q}_{1 / 2}=\mathcal{R}_{1 / 2}$.
Upcoming paper (mid-2023): $\mathcal{Q}_{3 / 2} \subsetneq \mathcal{R}_{3 / 2}$.
We do not know whether $\mathcal{Q}_{1}=\mathcal{R}_{1}$, but numerics suggests equality!

Rotation boxes beyond quantum theory

Quantum boxes: real representation of $\mathrm{SO}(2)$ on the density matrices. Rotation boxes: real rep. of SO(2) on "orbitope" state spaces.

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Clearly $\mathcal{Q}_{J} \subseteq \mathcal{R}_{J}$.
It can be shown directly that $\mathcal{Q}_{1 / 2}=\mathcal{R}_{1 / 2}$.
Upcoming paper (mid-2023): $\mathcal{Q}_{3 / 2} \subsetneq \mathcal{R}_{3 / 2}$.
We do not know whether $\mathcal{Q}_{1}=\mathcal{R}_{1}$, but numerics suggests equality!

Boxes for only two input angles

$\mathcal{Q}_{J, \alpha}=\left\{\left(E_{1}, E_{2}\right) \quad \mid \quad E_{1}=P(+1 \mid 0)-P(-1 \mid 0), E_{2}=P(+1 \mid \alpha)-P(-1 \mid \alpha)\right.$, P is some spin-J quantum box\},

Boxes for only two input angles

$$
\mathcal{R}_{J, \alpha}=\left\{\left(E_{1}, E_{2}\right) \quad \mid \quad E_{1}=P(+1 \mid 0)-P(-1 \mid 0), E_{2}=P(+1 \mid \alpha)-P(-1 \mid \alpha),\right.
$$

$$
P \text { is some spin-J rotation box }\}
$$

Boxes for only two input angles

$$
\mathcal{R}_{J, \alpha}=\left\{\left(E_{1}, E_{2}\right) \quad \mid \quad E_{1}=P(+1 \mid 0)-P(-1 \mid 0), E_{2}=P(+1 \mid \alpha)-P(-1 \mid \alpha),\right.
$$

$$
P \text { is some spin-J rotation box }\}
$$

Theorem: $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$.

Boxes for only two input angles

$\mathcal{Q}_{J, \alpha}=\left\{\left(E_{1}, E_{2}\right) \quad \mid \quad E_{1}=P(+1 \mid 0)-P(-1 \mid 0), E_{2}=P(+1 \mid \alpha)-P(-1 \mid \alpha)\right.$, P is some spin-J quantum box\},

$$
\begin{gathered}
\mathcal{R}_{J, \alpha}=\left\{\left(E_{1}, E_{2}\right) \quad \mid \quad E_{1}=P(+1 \mid 0)-P(-1 \mid 0), E_{2}=P(+1 \mid \alpha)-P(-1 \mid \alpha),\right. \\
\\
P \text { is some spin-J rotation box }\}
\end{gathered}
$$

Theorem: $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$.
We do not need to assume QT to derive the blue set of correlations!

$$
\text { Consequences of } \mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}
$$

Consequences of $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

spin $\leq \mathbf{J}$
$P(b \mid x)$

Theorem. The following correlations are possible:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{c}\cos (J \alpha) \\ \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 \\ \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$

Consequences of $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

Theorem. The following correlations are possible:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cc}\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 & \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$
All results for our protocol remain valid beyond QT:

- The set of correlations,
- the number of certifiable random bits,
- security against eavesdropper with classical side information...
... and this may include information about beyond-quantum systems that are sent between the devices (whose average is quantum).

Overview

1. Motivations: QG and device-independent QIT
2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Our protocol, and its quantum analysis
3. Rotation boxes beyond quantum theory

4. Conclusions

Conclusions

- Modest approach complementing direct QG approaches: use SDI quantum information to study the relation between spacetime and QT.
- Simplest setup: rotations around fixed axis, but can study more general setups. "Spacetime boxes".

$$
\mathrm{SO}(2) \subset \mathrm{SO}(3) \subset \mathrm{SO}(3,1)
$$

- Result: protocols can be formulated and analyzed without assuming QT. Sets of correlations agreed in our case!
\longrightarrow Many actual experiments work on spatiotemporal DOFs. Our approach may admit a theory-agnostic analysis and security proofs.
- Spacetime structure determines part of quantum correlations.

