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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

4.	Example:	dissolution	of	the	Boltzmann	brain	problem
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some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

Methodological	inadequacy	of	the	standard	view

Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.



• Parfit’s	Teletransportation	Paradox

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Assume	some	(“combinatorially	large”)	universe 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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

copy	
1

copy	2

What	will	I

see	next??

• The	Boltzmann	Brain	Problem

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).
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Wigner’s friend1 is a thought experiment that illustrates 
what is perhaps the thorniest foundational problem in 
quantum theory: the measurement problem2,3. In the 

thought experiment, we consider an observer (the ‘friend’) who 
performs a measurement on a quantum system. In accordance 
with the state update rule, the friend assigns the eigenstate corre-
sponding to their observed outcome to the measured system. The 
friend is assumed to be inside an isolated laboratory that can be 
coherently controlled by a second experimenter, Wigner, who is 
capable of performing arbitrary quantum operations on the friend’s 
laboratory and all of its contents. Although this may be possible, 
in principle, it would be a truly Herculean task if the friend were 
a macroscopic observer like a human, as we have chosen for our 
illustrations and discussions below. For this reason, Wigner is often 
called a ‘superobserver’. However, there is good reason to think that 
quantum mechanics would allow control of the type required if the 
friend were an artificial intelligence algorithm in a simulated envi-
ronment running in a large quantum computer. Wigner describes 
the laboratory and all of its contents as a unitarily evolving quantum 
state, in accordance with the rule for state evolution applicable to 
isolated systems. The case when the friend’s system is prepared in 
a superposition state leads to an apparent contradiction between 
the friend’s perspective and that of Wigner, who does not ascribe 
a well-defined value to the outcome associated with his friend’s 
observation. For a more in-depth description of the Wigner’s friend 
thought experiment, see Supplementary Section A.

Although decoherence can ‘save the appearances’ by explain-
ing the suppression of quantum effects at the macroscopic 
level, it cannot solve the measurement problem: ‘we are still left  
with a multitude of (albeit individually well-localized quasiclassi-
cal) components of the wave function, and we need to supplement  

or otherwise to interpret this situation in order to explain why 
and how single outcomes are perceived’2. Proposed resolutions  
have radical implications: they either reject the idea that measure-
ment outcomes have single, observer-independent values4–7 or 
postulate faster-than-light8,9 or retrocausal effects10,11 at a hidden 
variable level. Alternatively, some theories postulate mechanisms 
to avoid macroscopic superpositions, such as modifications to uni-
tary quantum dynamics12 or gravity-induced collapse13. Here we 
rigorously demonstrate that radical revisions of such types are in 
fact required.

Our work is inspired by the recent surge of renewed interest 
in the Wigner’s friend problem14–20. In particular, Brukner14 intro-
duced an extended Wigner’s friend scenario (EWFS) with two spa-
tially separated laboratories, each containing a friend, accompanied 
by a superobserver who can perform various measurements on 
their friend’s laboratory. Each friend measures half of an entangled 
pair of systems, establishing correlations between the results of the 
superobservers’ subsequent measurements.

In the context of this EWFS, Brukner14,15,20 considered three 
assumptions: ‘freedom of choice’, ‘locality’ (in the sense of ‘parameter 
independence’21) and ‘observer-independent facts’ (OIFs). The last 
of these means that propositions about all observables that might be 
measured (by an observer or a superobserver) are ‘assigned a truth 
value independently of which measurement Wigner performs’14.

In other words, the OIF assumption is equivalent to the assump-
tion of Kochen–Specker non-contextuality22,23 (KSNC). From these 
assumptions, Brukner derived a Bell inequality for the correlations 
of the superobservers’ results, which could be violated in quantum 
mechanics (if the superobservers could suitably manipulate the 
quantum state of the observers). A recent six-photon experiment17, 
using a set-up where the role of each friend is played by a single 

A strong no-go theorem on the Wigner’s friend 
paradox
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Does quantum theory apply at all scales, including that of observers? New light on this fundamental question has recently been 
shed through a resurgence of interest in the long-standing Wigner’s friend paradox. This is a thought experiment addressing 
the quantum measurement problem—the difficulty of reconciling the (unitary, deterministic) evolution of isolated systems 
and the (non-unitary, probabilistic) state update after a measurement. Here, by building on a scenario with two separated 
but entangled friends introduced by Brukner, we prove that if quantum evolution is controllable on the scale of an observer, 
then one of ‘No-Superdeterminism’, ‘Locality’ or ‘Absoluteness of Observed Events’—that every observed event exists abso-
lutely, not relatively—must be false. We show that although the violation of Bell-type inequalities in such scenarios is not in 
general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived, in a 
theory-independent manner, that are violated by quantum correlations. This is demonstrated in a proof-of-principle experiment 
where a photon’s path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on physical 
reality than Bell’s theorem.
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).

NATURE PHYSICS | VOL 16 | DECEMBER 2020 | 1199–1205 | www.nature.com/naturephysics1200

ARTICLES
https://doi.org/10.1038/s41567-020-0990-x

1Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics, Griffith University, 
Brisbane, Queensland, Australia. 2Department of Physics and Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung 
University, Tainan, Taiwan. 3Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum 
Dynamics, Griffith University, Southport, Queensland, Australia. 4These authors contributed equally: Kok-Wei Bong, Aníbal Utreras-Alarcón.  
✉e-mail: n.tischler@griffith.edu.au; e.cavalcanti@griffith.edu.au

Wigner’s friend1 is a thought experiment that illustrates 
what is perhaps the thorniest foundational problem in 
quantum theory: the measurement problem2,3. In the 

thought experiment, we consider an observer (the ‘friend’) who 
performs a measurement on a quantum system. In accordance 
with the state update rule, the friend assigns the eigenstate corre-
sponding to their observed outcome to the measured system. The 
friend is assumed to be inside an isolated laboratory that can be 
coherently controlled by a second experimenter, Wigner, who is 
capable of performing arbitrary quantum operations on the friend’s 
laboratory and all of its contents. Although this may be possible, 
in principle, it would be a truly Herculean task if the friend were 
a macroscopic observer like a human, as we have chosen for our 
illustrations and discussions below. For this reason, Wigner is often 
called a ‘superobserver’. However, there is good reason to think that 
quantum mechanics would allow control of the type required if the 
friend were an artificial intelligence algorithm in a simulated envi-
ronment running in a large quantum computer. Wigner describes 
the laboratory and all of its contents as a unitarily evolving quantum 
state, in accordance with the rule for state evolution applicable to 
isolated systems. The case when the friend’s system is prepared in 
a superposition state leads to an apparent contradiction between 
the friend’s perspective and that of Wigner, who does not ascribe 
a well-defined value to the outcome associated with his friend’s 
observation. For a more in-depth description of the Wigner’s friend 
thought experiment, see Supplementary Section A.

Although decoherence can ‘save the appearances’ by explain-
ing the suppression of quantum effects at the macroscopic 
level, it cannot solve the measurement problem: ‘we are still left  
with a multitude of (albeit individually well-localized quasiclassi-
cal) components of the wave function, and we need to supplement  

or otherwise to interpret this situation in order to explain why 
and how single outcomes are perceived’2. Proposed resolutions  
have radical implications: they either reject the idea that measure-
ment outcomes have single, observer-independent values4–7 or 
postulate faster-than-light8,9 or retrocausal effects10,11 at a hidden 
variable level. Alternatively, some theories postulate mechanisms 
to avoid macroscopic superpositions, such as modifications to uni-
tary quantum dynamics12 or gravity-induced collapse13. Here we 
rigorously demonstrate that radical revisions of such types are in 
fact required.

Our work is inspired by the recent surge of renewed interest 
in the Wigner’s friend problem14–20. In particular, Brukner14 intro-
duced an extended Wigner’s friend scenario (EWFS) with two spa-
tially separated laboratories, each containing a friend, accompanied 
by a superobserver who can perform various measurements on 
their friend’s laboratory. Each friend measures half of an entangled 
pair of systems, establishing correlations between the results of the 
superobservers’ subsequent measurements.

In the context of this EWFS, Brukner14,15,20 considered three 
assumptions: ‘freedom of choice’, ‘locality’ (in the sense of ‘parameter 
independence’21) and ‘observer-independent facts’ (OIFs). The last 
of these means that propositions about all observables that might be 
measured (by an observer or a superobserver) are ‘assigned a truth 
value independently of which measurement Wigner performs’14.

In other words, the OIF assumption is equivalent to the assump-
tion of Kochen–Specker non-contextuality22,23 (KSNC). From these 
assumptions, Brukner derived a Bell inequality for the correlations 
of the superobservers’ results, which could be violated in quantum 
mechanics (if the superobservers could suitably manipulate the 
quantum state of the observers). A recent six-photon experiment17, 
using a set-up where the role of each friend is played by a single 

A strong no-go theorem on the Wigner’s friend 
paradox
Kok-Wei Bong1,4, Aníbal Utreras-Alarcón1,4, Farzad Ghafari! !1, Yeong-Cherng Liang2, 
Nora Tischler! !1 ✉, Eric G. Cavalcanti! !3 ✉, Geoff J. Pryde! !1 and Howard M. Wiseman! !1

Does quantum theory apply at all scales, including that of observers? New light on this fundamental question has recently been 
shed through a resurgence of interest in the long-standing Wigner’s friend paradox. This is a thought experiment addressing 
the quantum measurement problem—the difficulty of reconciling the (unitary, deterministic) evolution of isolated systems 
and the (non-unitary, probabilistic) state update after a measurement. Here, by building on a scenario with two separated 
but entangled friends introduced by Brukner, we prove that if quantum evolution is controllable on the scale of an observer, 
then one of ‘No-Superdeterminism’, ‘Locality’ or ‘Absoluteness of Observed Events’—that every observed event exists abso-
lutely, not relatively—must be false. We show that although the violation of Bell-type inequalities in such scenarios is not in 
general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived, in a 
theory-independent manner, that are violated by quantum correlations. This is demonstrated in a proof-of-principle experiment 
where a photon’s path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on physical 
reality than Bell’s theorem.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.
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ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the
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for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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<latexit sha1_base64="tyiCHM9pJZl3nuzplkpibcvt8iY=">AAACCHicbZDLSgMxFIYzXmu9jbp0YbAI7abMiKgboeDGZQV7gc5QMmmmDU0yQ5KRlnGWbnwVNy4UcesjuPNtzLRdaOsPgS//OYfk/EHMqNKO820tLa+srq0XNoqbW9s7u/beflNFicSkgSMWyXaAFGFUkIammpF2LAniASOtYHid11v3RCoaiTs9jonPUV/QkGKkjdW1jzyelIOHUeXKCyXCaX4dBZVsCpWsa5ecqjMRXAR3BiUwU71rf3m9CCecCI0ZUqrjOrH2UyQ1xYxkRS9RJEZ4iPqkY1AgTpSfThbJ4IlxejCMpDlCw4n7eyJFXKkxD0wnR3qg5mu5+V+tk+jw0k+piBNNBJ4+FCYM6gjmqcAelQRrNjaAsKTmrxAPkAlEm+yKJgR3fuVFaJ5W3fOqc3tWqtVmcRTAITgGZeCCC1ADN6AOGgCDR/AMXsGb9WS9WO/Wx7R1yZrNHIA/sj5/ABNlmV4=</latexit>

µ(b|x) = µ(xb)

µ(x)

Prob.	that	next	bit	is	b	if	now	in	state	x.
<latexit sha1_base64="W4OBihZkvRjPjymZ/NUp775THmY=">AAAB/XicbZDLSgMxFIYz9Vbrbbzs3ASLUBGGGRF1IxTcuKxgL9AOJZNm2tAkMyQZsY7FV3HjQhG3voc738ZMOwtt/SHw8Z9zOCd/EDOqtOt+W4WFxaXlleJqaW19Y3PL3t5pqCiRmNRxxCLZCpAijApS11Qz0oolQTxgpBkMr7J6845IRSNxq0cx8TnqCxpSjLSxuvZehycV9/H+6DgDz8Cl53Ttsuu4E8F58HIog1y1rv3V6UU44URozJBSbc+NtZ8iqSlmZFzqJIrECA9Rn7QNCsSJ8tPJ9WN4aJweDCNpntBw4v6eSBFXasQD08mRHqjZWmb+V2snOrzwUyriRBOBp4vChEEdwSwK2KOSYM1GBhCW1NwK8QBJhLUJrGRC8Ga/PA+NE8c7c9yb03K1msdRBPvgAFSAB85BFVyDGqgDDB7AM3gFb9aT9WK9Wx/T1oKVz+yCP7I+fwAFb5Ok</latexit>

µ(0|x) + µ(1|x) = 1.

Describe	self	patterns	as	a	finite	bit	strings,	growing	one	bit	at	a	time.

x	=	010010100010000011111.

Q:	But	I’m	not	a	bunch	of	bits!	So	how	do	I	encode	my	pattern	into	bits?
A:	It	doesn’t	matter	—	the	resulting	theory	is	independent	of	the	choice 
					of	encoding,	similarly	as	GR	is	independent	of	choice	of	coordinates.



Universal	probability

Ray	J.	Solomonoff	(1964)

Measure:
<latexit sha1_base64="tyiCHM9pJZl3nuzplkpibcvt8iY=">AAACCHicbZDLSgMxFIYzXmu9jbp0YbAI7abMiKgboeDGZQV7gc5QMmmmDU0yQ5KRlnGWbnwVNy4UcesjuPNtzLRdaOsPgS//OYfk/EHMqNKO820tLa+srq0XNoqbW9s7u/beflNFicSkgSMWyXaAFGFUkIammpF2LAniASOtYHid11v3RCoaiTs9jonPUV/QkGKkjdW1jzyelIOHUeXKCyXCaX4dBZVsCpWsa5ecqjMRXAR3BiUwU71rf3m9CCecCI0ZUqrjOrH2UyQ1xYxkRS9RJEZ4iPqkY1AgTpSfThbJ4IlxejCMpDlCw4n7eyJFXKkxD0wnR3qg5mu5+V+tk+jw0k+piBNNBJ4+FCYM6gjmqcAelQRrNjaAsKTmrxAPkAlEm+yKJgR3fuVFaJ5W3fOqc3tWqtVmcRTAITgGZeCCC1ADN6AOGgCDR/AMXsGb9WS9WO/Wx7R1yZrNHIA/sj5/ABNlmV4=</latexit>

µ(b|x) = µ(xb)

µ(x)

Prob.	that	next	bit	is	b	if	now	in	state	x.
<latexit sha1_base64="W4OBihZkvRjPjymZ/NUp775THmY=">AAAB/XicbZDLSgMxFIYz9Vbrbbzs3ASLUBGGGRF1IxTcuKxgL9AOJZNm2tAkMyQZsY7FV3HjQhG3voc738ZMOwtt/SHw8Z9zOCd/EDOqtOt+W4WFxaXlleJqaW19Y3PL3t5pqCiRmNRxxCLZCpAijApS11Qz0oolQTxgpBkMr7J6845IRSNxq0cx8TnqCxpSjLSxuvZehycV9/H+6DgDz8Cl53Ttsuu4E8F58HIog1y1rv3V6UU44URozJBSbc+NtZ8iqSlmZFzqJIrECA9Rn7QNCsSJ8tPJ9WN4aJweDCNpntBw4v6eSBFXasQD08mRHqjZWmb+V2snOrzwUyriRBOBp4vChEEdwSwK2KOSYM1GBhCW1NwK8QBJhLUJrGRC8Ga/PA+NE8c7c9yb03K1msdRBPvgAFSAB85BFVyDGqgDDB7AM3gFb9aT9WK9Wx/T1oKVz+yCP7I+fwAFb5Ok</latexit>

µ(0|x) + µ(1|x) = 1.

Semimeasure:
<latexit sha1_base64="HlxKOATVHkXWZ/gZy7kK+ck/yOQ=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIowzIioy4IblxXsBTpDyaSZNjTJjElGLGPd+CpuXCji1rdw59uYabvQ1h8CH/85h5PzhwmjSrvut1VYWFxaXimultbWNza37O2dhopTiUkdxyyWrRApwqggdU01I61EEsRDRprh4DKvN++IVDQWN3qYkICjnqARxUgbq2Pv+TytuA/3R8c5eAZ8Rm6h53Tssuu4Y8F58KZQBlPVOvaX341xyonQmCGl2p6b6CBDUlPMyKjkp4okCA9Qj7QNCsSJCrLxBSN4aJwujGJpntBw7P6eyBBXashD08mR7qvZWm7+V2unOroIMiqSVBOBJ4uilEEdwzwO2KWSYM2GBhCW1PwV4j6SCGsTWsmE4M2ePA+NE8c7c9zr03K1Oo2jCPbBAagAD5yDKrgCNVAHGDyCZ/AK3qwn68V6tz4mrQVrOrML/sj6/AH++pVN</latexit>

µ(0|x) + µ(1|x)  1.

Describe	self	patterns	as	a	finite	bit	strings,	growing	one	bit	at	a	time.

x	=	010010100010000011111.

Q:	But	I’m	not	a	bunch	of	bits!	So	how	do	I	encode	my	pattern	into	bits?
A:	It	doesn’t	matter	—	the	resulting	theory	is	independent	of	the	choice 
					of	encoding,	similarly	as	GR	is	independent	of	choice	of	coordinates.



Universal	probability

Describe	self	patterns	as	a	finite	bit	strings,	growing	one	bit	at	a	time.

x	=	010010100010000011111.

Measure:
<latexit sha1_base64="tyiCHM9pJZl3nuzplkpibcvt8iY=">AAACCHicbZDLSgMxFIYzXmu9jbp0YbAI7abMiKgboeDGZQV7gc5QMmmmDU0yQ5KRlnGWbnwVNy4UcesjuPNtzLRdaOsPgS//OYfk/EHMqNKO820tLa+srq0XNoqbW9s7u/beflNFicSkgSMWyXaAFGFUkIammpF2LAniASOtYHid11v3RCoaiTs9jonPUV/QkGKkjdW1jzyelIOHUeXKCyXCaX4dBZVsCpWsa5ecqjMRXAR3BiUwU71rf3m9CCecCI0ZUqrjOrH2UyQ1xYxkRS9RJEZ4iPqkY1AgTpSfThbJ4IlxejCMpDlCw4n7eyJFXKkxD0wnR3qg5mu5+V+tk+jw0k+piBNNBJ4+FCYM6gjmqcAelQRrNjaAsKTmrxAPkAlEm+yKJgR3fuVFaJ5W3fOqc3tWqtVmcRTAITgGZeCCC1ADN6AOGgCDR/AMXsGb9WS9WO/Wx7R1yZrNHIA/sj5/ABNlmV4=</latexit>

µ(b|x) = µ(xb)

µ(x)

Prob.	that	next	bit	is	b	if	now	in	state	x.
<latexit sha1_base64="W4OBihZkvRjPjymZ/NUp775THmY=">AAAB/XicbZDLSgMxFIYz9Vbrbbzs3ASLUBGGGRF1IxTcuKxgL9AOJZNm2tAkMyQZsY7FV3HjQhG3voc738ZMOwtt/SHw8Z9zOCd/EDOqtOt+W4WFxaXlleJqaW19Y3PL3t5pqCiRmNRxxCLZCpAijApS11Qz0oolQTxgpBkMr7J6845IRSNxq0cx8TnqCxpSjLSxuvZehycV9/H+6DgDz8Cl53Ttsuu4E8F58HIog1y1rv3V6UU44URozJBSbc+NtZ8iqSlmZFzqJIrECA9Rn7QNCsSJ8tPJ9WN4aJweDCNpntBw4v6eSBFXasQD08mRHqjZWmb+V2snOrzwUyriRBOBp4vChEEdwSwK2KOSYM1GBhCW1NwK8QBJhLUJrGRC8Ga/PA+NE8c7c9yb03K1msdRBPvgAFSAB85BFVyDGqgDDB7AM3gFb9aT9WK9Wx/T1oKVz+yCP7I+fwAFb5Ok</latexit>

µ(0|x) + µ(1|x) = 1.

Semimeasure:
<latexit sha1_base64="HlxKOATVHkXWZ/gZy7kK+ck/yOQ=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIowzIioy4IblxXsBTpDyaSZNjTJjElGLGPd+CpuXCji1rdw59uYabvQ1h8CH/85h5PzhwmjSrvut1VYWFxaXimultbWNza37O2dhopTiUkdxyyWrRApwqggdU01I61EEsRDRprh4DKvN++IVDQWN3qYkICjnqARxUgbq2Pv+TytuA/3R8c5eAZ8Rm6h53Tssuu4Y8F58KZQBlPVOvaX341xyonQmCGl2p6b6CBDUlPMyKjkp4okCA9Qj7QNCsSJCrLxBSN4aJwujGJpntBw7P6eyBBXashD08mR7qvZWm7+V2unOroIMiqSVBOBJ4uilEEdwzwO2KWSYM2GBhCW1PwV4j6SCGsTWsmE4M2ePA+NE8c7c9zr03K1Oo2jCPbBAagAD5yDKrgCNVAHGDyCZ/AK3qwn68V6tz4mrQVrOrML/sj6/AH++pVN</latexit>

µ(0|x) + µ(1|x)  1.

Enumerable	semimeasure:	there	exists	an	algorithm	that,	on	input	x	and	n, 
computes	an	approx.															with																																							and

<latexit sha1_base64="E8pbNkd7Vkvgk1lTDPTqTGirs+8=">AAAB73icbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeCF48V7Ae0S8mm2TY0ya5JVixL/4QXD4p49e9489+YtnvQ1gcDj/dmmJkXJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2TZxqyho0FrFuh8QwwRVrWG4FayeaERkK1gpHN1O/9ci04bG6t+OEBZIMFI84JdZJ7a5Me6rydNYrlb2qNwNeJn5OypCj3it9dfsxTSVTlgpiTMf3EhtkRFtOBZsUu6lhCaEjMmAdRxWRzATZ7N4JPnVKH0exdqUsnqm/JzIijRnL0HVKYodm0ZuK/3md1EbXQcZVklqm6HxRlApsYzx9Hve5ZtSKsSOEau5uxXRINKHWRVR0IfiLLy+T5nnVv6x6dxflWi2PowDHcAIV8OEKanALdWgABQHP8Apv6AG9oHf0MW9dQfnMEfwB+vwBiE+PoQ==</latexit>

µn(x)
<latexit sha1_base64="NPrSGn+QzS0++qAPGiNHK1XIC3k=">AAACCXicbZDLSgMxFIYzXmu9jbp0EyxC3ZQZEXUjFNy4rGAv0ClDJs20oUlmSM6IZejWja/ixoUibn0Dd76N6WWhrQdCPv7/HJLzR6ngBjzv21laXlldWy9sFDe3tnd23b39hkkyTVmdJiLRrYgYJrhideAgWCvVjMhIsGY0uB77zXumDU/UHQxT1pGkp3jMKQErhS4OBJdhrgJIAq5iGI4CmYWq/HByZcFeoVvyKt6k8CL4MyihWdVC9yvoJjSTTAEVxJi276XQyYkGTgUbFYPMsJTQAemxtkVFJDOdfLLJCB9bpYvjRNujAE/U3xM5kcYMZWQ7JYG+mffG4n9eO4P4spNzlWbAFJ0+FGcCQ4LHseAu14yCGFogVHP7V0z7RBMKNryiDcGfX3kRGqcV/7zi3Z6VqtVZHAV0iI5QGfnoAlXRDaqhOqLoET2jV/TmPDkvzrvzMW1dcmYzB+hPOZ8/gbqaLg==</latexit>

lim
n!1

µn(x) = µ(x)
<latexit sha1_base64="VI3Ednw7hxgOs9YyibuweQ0gUXo=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclKaIuC25cVrAXaEKYTCbt0JlMnJkIpdSNr+LGhSJufQt3vo2TNAtt/WHg4z/ncOb8Ycqo0o7zbVVWVtfWN6qbta3tnd09e/+gq0QmMelgwYTsh0gRRhPS0VQz0k8lQTxkpBeOr/N674FIRUVypycp8TkaJjSmGGljBfaRx7PA9Ri5z6FZAIuEVoFddxpOIbgMbgl1UKod2F9eJHDGSaIxQ0oNXCfV/hRJTTEjs5qXKZIiPEZDMjCYIE6UPy0umMFT40QwFtK8RMPC/T0xRVypCQ9NJ0d6pBZruflfbZDp+Mqf0iTNNEnwfFGcMagFzOOAEZUEazYxgLCk5q8Qj5BEWJvQaiYEd/HkZeg2G+5Fw7k9r7daZRxVcAxOwBlwwSVogRvQBh2AwSN4Bq/gzXqyXqx362PeWrHKmUPwR9bnD5STlvk=</latexit>

µ1  µ2  . . .

Q:	But	I’m	not	a	bunch	of	bits!	So	how	do	I	encode	my	pattern	into	bits?
A:	It	doesn’t	matter	—	the	resulting	theory	is	independent	of	the	choice 
					of	encoding,	similarly	as	GR	is	independent	of	choice	of	coordinates.



Universal	probability

Universal	enumerable	semimeasure				:<latexit sha1_base64="CYcjRP6ilNDXnnYLAUyZXNY8oaQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cVbC10hpJJM21okhnyEMrQ33DjQhG3/ow7/8ZMOwttPRA4nHMv9+TEGWfa+P63V1lb39jcqm7Xdnb39g/qh0ddnVpFaIekPFW9GGvKmaQdwwynvUxRLGJOH+PJbeE/PlGlWSofzDSjkcAjyRJGsHFSGApsxnGSh8LOBvWG3/TnQKskKEkDSrQH9a9wmBIrqDSEY637gZ+ZKMfKMMLprBZaTTNMJnhE+45KLKiO8nnmGTpzyhAlqXJPGjRXf2/kWGg9FbGbLDLqZa8Q//P61iQ3Uc5kZg2VZHEosRyZFBUFoCFTlBg+dQQTxVxWRMZYYWJcTTVXQrD85VXSvWgGV03//rLRapV1VOEETuEcAriGFtxBGzpAIINneIU3z3ov3rv3sRiteOXOMfyB9/kDfOaR+Q==</latexit>µ



Universal	probability

Universal	enumerable	semimeasure				:<latexit sha1_base64="CYcjRP6ilNDXnnYLAUyZXNY8oaQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cVbC10hpJJM21okhnyEMrQ33DjQhG3/ow7/8ZMOwttPRA4nHMv9+TEGWfa+P63V1lb39jcqm7Xdnb39g/qh0ddnVpFaIekPFW9GGvKmaQdwwynvUxRLGJOH+PJbeE/PlGlWSofzDSjkcAjyRJGsHFSGApsxnGSh8LOBvWG3/TnQKskKEkDSrQH9a9wmBIrqDSEY637gZ+ZKMfKMMLprBZaTTNMJnhE+45KLKiO8nnmGTpzyhAlqXJPGjRXf2/kWGg9FbGbLDLqZa8Q//P61iQ3Uc5kZg2VZHEosRyZFBUFoCFTlBg+dQQTxVxWRMZYYWJcTTVXQrD85VXSvWgGV03//rLRapV1VOEETuEcAriGFtxBGzpAIINneIU3z3ov3rv3sRiteOXOMfyB9/kDfOaR+Q==</latexit>µ

For	every	enumerable	semimeasure						there	is	a 
constant																	such	that																																			for	all				.

<latexit sha1_base64="XlccxFD+AxcwBAwj81EaHPChmHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPAi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ09l/WrNrbtzkFXiFaQGBRr96ldvkLAs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXSeui7l3V3fvLmu8XcZThBE7hHDy4Bh/uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1/vjdo=</latexit>⌫
<latexit sha1_base64="pI0n/LLJxfZopmwF/a7fBPbS/rk=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqicpePFYwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWemT9rKfS6Y1L+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnpIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7H0yEJozlBNLKNPC3krYiGrK0IZUsiF4yy+vktZF1atV3fvLSr2ex1GEEziFc/DgCupwBw1oAgMFz/AKb45xXpx352PRWnDymWP4A+fzB+i8kGg=</latexit>

c⌫ > 0
<latexit sha1_base64="UK0r5Fjel/NyWSQOa4FnekUkqlQ=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JRNRlwY3LCvYCTQiTyaQdOjOJMxOxhK7c+CpuXCji1mdw59s4bbPQ1h8GPv5zDmfOH6aMKu0431ZpaXllda28XtnY3NresXf32irJJCYtnLBEdkOkCKOCtDTVjHRTSRAPGemEw6tJvXNPpKKJuNWjlPgc9QWNKUbaWIF96PGs9nDi9ckdxIEnMujhKNHQkLEDu+rUnangIrgFVEGhZmB/eVGCM06Exgwp1XOdVPs5kppiRsYVL1MkRXiI+qRnUCBOlJ9PzxjDY+NEME6keULDqft7IkdcqREPTSdHeqDmaxPzv1ov0/Gln1ORZpoIPFsUZwzqBE4ygRGVBGs2MoCwpOavEA+QRFib5ComBHf+5EVon9bd87pzc1ZtNIo4yuAAHIEacMEFaIBr0AQtgMEjeAav4M16sl6sd+tj1lqyipl98EfW5w+Fg5ff</latexit>

µ(x) � c⌫ · ⌫(x) <latexit sha1_base64="2SSeaqm4RFVsbfqVbssAKtyiwgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1W3cVmp1fI4inACp3AOHlxDDe6gDk1ggPAMr/DmPDgvzrvzsWgtOPnMMfyB8/kD50WM/w==</latexit>x

Basically,	a	mixture	of	all	enumerable	semimeasures.



Universal	probability

Universal	enumerable	semimeasure				:<latexit sha1_base64="CYcjRP6ilNDXnnYLAUyZXNY8oaQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cVbC10hpJJM21okhnyEMrQ33DjQhG3/ow7/8ZMOwttPRA4nHMv9+TEGWfa+P63V1lb39jcqm7Xdnb39g/qh0ddnVpFaIekPFW9GGvKmaQdwwynvUxRLGJOH+PJbeE/PlGlWSofzDSjkcAjyRJGsHFSGApsxnGSh8LOBvWG3/TnQKskKEkDSrQH9a9wmBIrqDSEY637gZ+ZKMfKMMLprBZaTTNMJnhE+45KLKiO8nnmGTpzyhAlqXJPGjRXf2/kWGg9FbGbLDLqZa8Q//P61iQ3Uc5kZg2VZHEosRyZFBUFoCFTlBg+dQQTxVxWRMZYYWJcTTVXQrD85VXSvWgGV03//rLRapV1VOEETuEcAriGFtxBGzpAIINneIU3z3ov3rv3sRiteOXOMfyB9/kDfOaR+Q==</latexit>µ

For	every	enumerable	semimeasure						there	is	a 
constant																	such	that																																			for	all				.

<latexit sha1_base64="XlccxFD+AxcwBAwj81EaHPChmHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPAi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ09l/WrNrbtzkFXiFaQGBRr96ldvkLAs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXSeui7l3V3fvLmu8XcZThBE7hHDy4Bh/uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1/vjdo=</latexit>⌫
<latexit sha1_base64="pI0n/LLJxfZopmwF/a7fBPbS/rk=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqicpePFYwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWemT9rKfS6Y1L+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnpIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7H0yEJozlBNLKNPC3krYiGrK0IZUsiF4yy+vktZF1atV3fvLSr2ex1GEEziFc/DgCupwBw1oAgMFz/AKb45xXpx352PRWnDymWP4A+fzB+i8kGg=</latexit>

c⌫ > 0
<latexit sha1_base64="UK0r5Fjel/NyWSQOa4FnekUkqlQ=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JRNRlwY3LCvYCTQiTyaQdOjOJMxOxhK7c+CpuXCji1mdw59s4bbPQ1h8GPv5zDmfOH6aMKu0431ZpaXllda28XtnY3NresXf32irJJCYtnLBEdkOkCKOCtDTVjHRTSRAPGemEw6tJvXNPpKKJuNWjlPgc9QWNKUbaWIF96PGs9nDi9ckdxIEnMujhKNHQkLEDu+rUnangIrgFVEGhZmB/eVGCM06Exgwp1XOdVPs5kppiRsYVL1MkRXiI+qRnUCBOlJ9PzxjDY+NEME6keULDqft7IkdcqREPTSdHeqDmaxPzv1ov0/Gln1ORZpoIPFsUZwzqBE4ygRGVBGs2MoCwpOavEA+QRFib5ComBHf+5EVon9bd87pzc1ZtNIo4yuAAHIEacMEFaIBr0AQtgMEjeAav4M16sl6sd+tj1lqyipl98EfW5w+Fg5ff</latexit>

µ(x) � c⌫ · ⌫(x) <latexit sha1_base64="2SSeaqm4RFVsbfqVbssAKtyiwgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1W3cVmp1fI4inACp3AOHlxDDe6gDk1ggPAMr/DmPDgvzrvzsWgtOPnMMfyB8/kD50WM/w==</latexit>x

Basically,	a	mixture	of	all	enumerable	semimeasures.

normalize	it																			universal	probability	P.



Universal	probability

Universal	enumerable	semimeasure				:<latexit sha1_base64="CYcjRP6ilNDXnnYLAUyZXNY8oaQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cVbC10hpJJM21okhnyEMrQ33DjQhG3/ow7/8ZMOwttPRA4nHMv9+TEGWfa+P63V1lb39jcqm7Xdnb39g/qh0ddnVpFaIekPFW9GGvKmaQdwwynvUxRLGJOH+PJbeE/PlGlWSofzDSjkcAjyRJGsHFSGApsxnGSh8LOBvWG3/TnQKskKEkDSrQH9a9wmBIrqDSEY637gZ+ZKMfKMMLprBZaTTNMJnhE+45KLKiO8nnmGTpzyhAlqXJPGjRXf2/kWGg9FbGbLDLqZa8Q//P61iQ3Uc5kZg2VZHEosRyZFBUFoCFTlBg+dQQTxVxWRMZYYWJcTTVXQrD85VXSvWgGV03//rLRapV1VOEETuEcAriGFtxBGzpAIINneIU3z3ov3rv3sRiteOXOMfyB9/kDfOaR+Q==</latexit>µ

For	every	enumerable	semimeasure						there	is	a 
constant																	such	that																																			for	all				.

<latexit sha1_base64="XlccxFD+AxcwBAwj81EaHPChmHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPAi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSQ09l/WrNrbtzkFXiFaQGBRr96ldvkLAs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXSeui7l3V3fvLmu8XcZThBE7hHDy4Bh/uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1/vjdo=</latexit>⌫
<latexit sha1_base64="pI0n/LLJxfZopmwF/a7fBPbS/rk=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqicpePFYwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWemT9rKfS6Y1L+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnpIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7H0yEJozlBNLKNPC3krYiGrK0IZUsiF4yy+vktZF1atV3fvLSr2ex1GEEziFc/DgCupwBw1oAgMFz/AKb45xXpx352PRWnDymWP4A+fzB+i8kGg=</latexit>

c⌫ > 0
<latexit sha1_base64="UK0r5Fjel/NyWSQOa4FnekUkqlQ=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JRNRlwY3LCvYCTQiTyaQdOjOJMxOxhK7c+CpuXCji1mdw59s4bbPQ1h8GPv5zDmfOH6aMKu0431ZpaXllda28XtnY3NresXf32irJJCYtnLBEdkOkCKOCtDTVjHRTSRAPGemEw6tJvXNPpKKJuNWjlPgc9QWNKUbaWIF96PGs9nDi9ckdxIEnMujhKNHQkLEDu+rUnangIrgFVEGhZmB/eVGCM06Exgwp1XOdVPs5kppiRsYVL1MkRXiI+qRnUCBOlJ9PzxjDY+NEME6keULDqft7IkdcqREPTSdHeqDmaxPzv1ov0/Gln1ORZpoIPFsUZwzqBE4ygRGVBGs2MoCwpOavEA+QRFib5ComBHf+5EVon9bd87pzc1ZtNIo4yuAAHIEacMEFaIBr0AQtgMEjeAav4M16sl6sd+tj1lqyipl98EfW5w+Fg5ff</latexit>

µ(x) � c⌫ · ⌫(x) <latexit sha1_base64="2SSeaqm4RFVsbfqVbssAKtyiwgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1W3cVmp1fI4inACp3AOHlxDDe6gDk1ggPAMr/DmPDgvzrvzsWgtOPnMMfyB8/kD50WM/w==</latexit>x

Basically,	a	mixture	of	all	enumerable	semimeasures.

normalize	it																			universal	probability	P.

Application	elsewhere	(not	in	my	approach):
• Gives	higher	probability	to	simpler	bit	strings	(i.e. 
generated	by	shorter	programs).	Occam’s	razor.


• Uncomputable,	but	in	principle	useful	for 
induction													“Universal	Artificial	Intelligence”


• Solomonoff	induction:	yields	provably	correct 
predictions	asymptotically	(quickly)	in	all 
computable	environments.



Postulates	of	an	(incomplete)	idealist	theory



Postulates	of	an	(incomplete)	idealist	theory

At	every	(subjective)	moment,	“I”	am	a	self-pattern	x,	and	a	couple	of 
moments	later,	I	will	be	a	self-pattern	xy,	with	universal	probability	P(y|x).



Postulates	of	an	(incomplete)	idealist	theory

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

At	every	(subjective)	moment,	“I”	am	a	self-pattern	x,	and	a	couple	of 
moments	later,	I	will	be	a	self-pattern	xy,	with	universal	probability	P(y|x).



Postulates	of	an	(incomplete)	idealist	theory

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

At	every	(subjective)	moment,	“I”	am	a	self-pattern	x,	and	a	couple	of 
moments	later,	I	will	be	a	self-pattern	xy,	with	universal	probability	P(y|x).

This	is	a	fundamental,	objective,	private	chance	that	does	not	arise 
from	any	lack	of	knowledge,	or	any	“external	world”	in	which	my	pattern 
would	be	embedded.	“I	am	an	unembedded	pattern”.



Postulates	of	an	(incomplete)	idealist	theory

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

This	is	a	fundamental,	objective,	private	chance	that	does	not	arise 
from	any	lack	of	knowledge,	or	any	“external	world”	in	which	my	pattern 
would	be	embedded.	“I	am	an	unembedded	pattern”.

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

(Incomplete	theory,	because	“forgetting”	not	yet	treated.)

At	every	(subjective)	moment,	“I”	am	a	self-pattern	x,	and	a	couple	of 
moments	later,	I	will	be	a	self-pattern	xy,	with	universal	probability	P(y|x).



Consistency	with	standard	physics

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

universal	probability



Consistency	with	standard	physics

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

The	standard	view	would	tell	us	to	compute	the	“physical”	probability 
																								arising	from,	say,	the	wave	function	of	the	universe.

<latexit sha1_base64="wCUzO/EsdHurQckg+ifo+D7mQ5M=">AAACEXicbVA7T8MwGHR4lvIKMLJYVEhlqRKEgLESC2OR6ENqoshxndaqnUS2g4hC/gILf4WFAYRY2dj4NzhpBmg5ydLp7nv5/JhRqSzr21haXlldW69t1De3tnd2zb39nowSgUkXRywSAx9JwmhIuooqRgaxIIj7jPT96VXh9++IkDQKb1UaE5ejcUgDipHSkmc2HY7UxA+yTu5ljuAwnqQyb2ZOOTrzWULyNH+4P/HMhtWySsBFYlekASp0PPPLGUU44SRUmCEph7YVKzdDQlHMSF53EklihKdoTIaahogT6Wbl2hwea2UEg0joFypYqr87MsSlTLmvK4v75bxXiP95w0QFl25GwzhRJMSzRUHCoIpgEQ8cUUGwYqkmCAuqb4V4ggTCSodY1yHY819eJL3Tln3esm7OGu12FUcNHIIj0AQ2uABtcA06oAsweATP4BW8GU/Gi/FufMxKl4yq5wD8gfH5A1sLnps=</latexit>

Pphys(y|x)

universal	probability



Consistency	with	standard	physics

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

The	standard	view	would	tell	us	to	compute	the	“physical”	probability 
																								arising	from,	say,	the	wave	function	of	the	universe.

<latexit sha1_base64="wCUzO/EsdHurQckg+ifo+D7mQ5M=">AAACEXicbVA7T8MwGHR4lvIKMLJYVEhlqRKEgLESC2OR6ENqoshxndaqnUS2g4hC/gILf4WFAYRY2dj4NzhpBmg5ydLp7nv5/JhRqSzr21haXlldW69t1De3tnd2zb39nowSgUkXRywSAx9JwmhIuooqRgaxIIj7jPT96VXh9++IkDQKb1UaE5ejcUgDipHSkmc2HY7UxA+yTu5ljuAwnqQyb2ZOOTrzWULyNH+4P/HMhtWySsBFYlekASp0PPPLGUU44SRUmCEph7YVKzdDQlHMSF53EklihKdoTIaahogT6Wbl2hwea2UEg0joFypYqr87MsSlTLmvK4v75bxXiP95w0QFl25GwzhRJMSzRUHCoIpgEQ8cUUGwYqkmCAuqb4V4ggTCSodY1yHY819eJL3Tln3esm7OGu12FUcNHIIj0AQ2uABtcA06oAsweATP4BW8GU/Gi/FufMxKl4yq5wD8gfH5A1sLnps=</latexit>

Pphys(y|x)

Theorem.	In	the	limit	of	a	large	number																					of	self-pattern	bits,
<latexit sha1_base64="tuT2X1xpL+aAFvc4YyC6QShWET4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRL0IAS8eI5iHJEuYnXSSIbOzy8ysGJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqNx9RaR7JezOO0Q/pQPI+Z9RY6UFed1CI8tNpt1hyK+4MZJl4GSlBhlq3+NXpRSwJURomqNZtz42Nn1JlOBM4KXQSjTFlIzrAtqWShqj9dHbwhJxYpUf6kbIlDZmpvydSGmo9DgPbGVIz1IveVPzPayemf+WnXMaJQcnmi/qJICYi0+9JjytkRowtoUxxeythQ6ooMzajgg3BW3x5mTTOKt5Fxb07L1WrWRx5OIJjKIMHl1CFW6hBHRiE8Ayv8OYo58V5dz7mrTknmzmEP3A+fwAFw4/k</latexit>

n = `(x)
<latexit sha1_base64="ZBwEnqgTZ8MXZPvM7brZFRzqQ9A="></latexit>

|P(y|x)�Pphys(y|x)|
n!1�! 0.

universal	probability



Consistency	with	standard	physics

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

The	standard	view	would	tell	us	to	compute	the	“physical”	probability 
																								arising	from,	say,	the	wave	function	of	the	universe.

<latexit sha1_base64="wCUzO/EsdHurQckg+ifo+D7mQ5M=">AAACEXicbVA7T8MwGHR4lvIKMLJYVEhlqRKEgLESC2OR6ENqoshxndaqnUS2g4hC/gILf4WFAYRY2dj4NzhpBmg5ydLp7nv5/JhRqSzr21haXlldW69t1De3tnd2zb39nowSgUkXRywSAx9JwmhIuooqRgaxIIj7jPT96VXh9++IkDQKb1UaE5ejcUgDipHSkmc2HY7UxA+yTu5ljuAwnqQyb2ZOOTrzWULyNH+4P/HMhtWySsBFYlekASp0PPPLGUU44SRUmCEph7YVKzdDQlHMSF53EklihKdoTIaahogT6Wbl2hwea2UEg0joFypYqr87MsSlTLmvK4v75bxXiP95w0QFl25GwzhRJMSzRUHCoIpgEQ8cUUGwYqkmCAuqb4V4ggTCSodY1yHY819eJL3Tln3esm7OGu12FUcNHIIj0AQ2uABtcA06oAsweATP4BW8GU/Gi/FufMxKl4yq5wD8gfH5A1sLnps=</latexit>

Pphys(y|x)

Theorem.	In	the	limit	of	a	large	number																					of	self-pattern	bits,
<latexit sha1_base64="tuT2X1xpL+aAFvc4YyC6QShWET4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRL0IAS8eI5iHJEuYnXSSIbOzy8ysGJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqNx9RaR7JezOO0Q/pQPI+Z9RY6UFed1CI8tNpt1hyK+4MZJl4GSlBhlq3+NXpRSwJURomqNZtz42Nn1JlOBM4KXQSjTFlIzrAtqWShqj9dHbwhJxYpUf6kbIlDZmpvydSGmo9DgPbGVIz1IveVPzPayemf+WnXMaJQcnmi/qJICYi0+9JjytkRowtoUxxeythQ6ooMzajgg3BW3x5mTTOKt5Fxb07L1WrWRx5OIJjKIMHl1CFW6hBHRiE8Ayv8OYo58V5dz7mrTknmzmEP3A+fwAFw4/k</latexit>

n = `(x)
<latexit sha1_base64="ZBwEnqgTZ8MXZPvM7brZFRzqQ9A="></latexit>

|P(y|x)�Pphys(y|x)|
n!1�! 0.

Proof.	Physical	versions	of	the	Church-Turing	thesis 
																															is	in	principle	computable.	Thus,	due	to	Solomonoff’s 
												universal	induction,	convergence	above	happens	with												-prob.	1.

																											

<latexit sha1_base64="JM2xJXMA69rkjcKww8SDludXaWI=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0VwVRIRdVlw47KKfUATwmQ6aYbOJGFmooSQtRt/xY0LRdz6Be78GydtFtp64MLhnHu59x4/YVQqy/o2akvLK6tr9fXGxubW9o65u9eTcSow6eKYxWLgI0kYjUhXUcXIIBEEcZ+Rvj+5Kv3+PRGSxtGdyhLicjSOaEAxUlryzEPnlo5DhYSIH6DDkQr9IO8UXu4IDpMwk4VnNq2WNQVcJHZFmqBCxzO/nFGMU04ihRmScmhbiXJzJBTFjBQNJ5UkQXiCxmSoaYQ4kW4+faWAx1oZwSAWuiIFp+rviRxxKTPu687yWDnvleJ/3jBVwaWb0yhJFYnwbFGQMqhiWOYCR1QQrFimCcKC6lshDpFAWOn0GjoEe/7lRdI7bdnnLevmrNluV3HUwQE4AifABhegDa5BB3QBBo/gGbyCN+PJeDHejY9Za82oZvbBHxifPxuDmyk=</latexit>

) Pphys
<latexit sha1_base64="fHQwc2t3VmsA1iqyqRigY3jEer8=">AAAB/nicbVBNS8NAFHypX7V+RcWTl8UieCqJiHosePFYwdZCE8Jmu2mX7iZhdyOUEPCvePGgiFd/hzf/jZs2B20dWBhm3uPNTphyprTjfFu1ldW19Y36ZmNre2d3z94/6Kkkk4R2ScIT2Q+xopzFtKuZ5rSfSopFyOlDOLkp/YdHKhVL4ns9Takv8ChmESNYGymwjzyB9TiM8k4R5J4UKB1PVRHYTaflzICWiVuRJlToBPaXN0xIJmisCcdKDVwn1X6OpWaE06LhZYqmmEzwiA4MjbGgys9n8Qt0apQhihJpXqzRTP29kWOh1FSEZrIMqxa9UvzPG2Q6uvZzFqeZpjGZH4oyjnSCyi7QkElKNJ8agolkJisiYywx0aaxhinBXfzyMumdt9zLlnN30Wy3qzrqcAwncAYuXEEbbqEDXSCQwzO8wpv1ZL1Y79bHfLRmVTuH8AfW5w/Wz5YM</latexit>

Pphys

universal	probability



Consistency	with	standard	physics

<latexit sha1_base64="CoHoywnHWLtGlmcrb++KJZNIW6k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU8mKqBeh4MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxmL87RVWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3Uz91iPThit5b8cJC2IykDzilFgnNZ+ufYz9XrmCq3gGtEz8nFQgR71X/ur2FU1jJi0VxJiOjxMbZERbTgWblLqpYQmhIzJgHUcliZkJstm1E3TilD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQyYXgL768TJpnVf+iiu/OK7VaHkcRjuAYTsGHS6jBLdShARQe4Ble4c1T3ov37n3MWwtePnMIf+B9/gAm5Y4w</latexit>

x = 1001

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

<latexit sha1_base64="CV49YWOkdK+c6HUXMUCadYJz0AE=">AAACFnicbVDLSgMxFM3UV62vUZduBovoxpKIqJtCwY3LCvYB7VAyaaYNzTxIMtJhmK9w46+4caGIW3Hn35iZzsK2HrhwOOfe3NzjhJxJBeGPUVpZXVvfKG9WtrZ3dvfM/YO2DCJBaIsEPBBdB0vKmU9biilOu6Gg2HM47TiT28zvPFIhWeA/qDiktodHPnMZwUpLA/N8elpHEKKkn7+VODyiKcoAUVqfzslxOjCrsAZzWMsEFaQKCjQH5nd/GJDIo74iHEvZQzBUdoKFYoTTtNKPJA0xmeAR7WnqY49KO8l3ptaJVoaWGwhdvrJy9e9Egj0pY8/RnR5WY7noZeJ/Xi9S7o2dMD+MFPXJbJEbcUsFVpaRNWSCEsVjTTARTP/VImMsMFE6yYoOAS2evEzaFzV0VYP3l9VGo4ijDI7AMTgDCFyDBrgDTdACBDyBF/AG3o1n49X4MD5nrSWjmDkEczC+fgEGJZ64</latexit>

x0 = 10011111101 = xy

The	standard	view	would	tell	us	to	compute	the	“physical”	probability 
																								arising	from,	say,	the	wave	function	of	the	universe.

<latexit sha1_base64="wCUzO/EsdHurQckg+ifo+D7mQ5M=">AAACEXicbVA7T8MwGHR4lvIKMLJYVEhlqRKEgLESC2OR6ENqoshxndaqnUS2g4hC/gILf4WFAYRY2dj4NzhpBmg5ydLp7nv5/JhRqSzr21haXlldW69t1De3tnd2zb39nowSgUkXRywSAx9JwmhIuooqRgaxIIj7jPT96VXh9++IkDQKb1UaE5ejcUgDipHSkmc2HY7UxA+yTu5ljuAwnqQyb2ZOOTrzWULyNH+4P/HMhtWySsBFYlekASp0PPPLGUU44SRUmCEph7YVKzdDQlHMSF53EklihKdoTIaahogT6Wbl2hwea2UEg0joFypYqr87MsSlTLmvK4v75bxXiP95w0QFl25GwzhRJMSzRUHCoIpgEQ8cUUGwYqkmCAuqb4V4ggTCSodY1yHY819eJL3Tln3esm7OGu12FUcNHIIj0AQ2uABtcA06oAsweATP4BW8GU/Gi/FufMxKl4yq5wD8gfH5A1sLnps=</latexit>

Pphys(y|x)

Interpretation.	If	the	self-pattern	contains	enough	information	on	the	(for 
me)	relevant	aspects	of	the	physical	world,	then	universal	probability	will 
“detect”	these	regularities	(Solomonoff	induction)	and	assign	high 
probability	to	the	fact	that	these	regularities	will	remain	present. 
Hence,	physical	and	universal	probabilities	will	agree	in	their	predictions.

universal	probability
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Consistency	with	standard	physics

Consistency	with	standard	physics	is	good	news,	but	it	is	not	enough.

Now	that	I	hold	a	large	amount	of	information	on	a	(possible)	external 
physical	world,	universal	probability	predicts	chances	that	conform	with 
that	(possible)	external	world	in	the	future.	Fair	enough. 
But	why	should	I	get	there	in	the	first	place	if	universal	probability	is 
all	there	is,	and	no	external	world	is	assumed	to	begin	with?

As	we	will	now	show,	universal	probability	predicts	an	“external	world”.

This	does	not	make	it	a	“theory	of	everything”	because 
it	cannot	predict	most	properties	of	that	world.
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Def.:	A	computational	ontological	model	for	𝛍	is	a	stochastic	process 
									(“world”	W)	that	can	in	principle	be	run	on	a	probabilistic	Turing 
									machine,	together	with	a	computable	bit-string-valued	random 
									variable	f	(“locates	/	reads	the	self-pattern	from	world	W”) 
									yielding	self-patterns	evolving	as	described	by	𝛍.



Candidate	external	worlds

Def.:	A	computational	ontological	model	for	𝛍	is	a	stochastic	process 
									(“world”	W)	that	can	in	principle	be	run	on	a	probabilistic	Turing 
									machine,	together	with	a	computable	bit-string-valued	random 
									variable	f	(“locates	/	reads	the	self-pattern	from	world	W”) 
									yielding	self-patterns	evolving	as	described	by	𝛍.

f W

~𝛍



Computational	ontological	models

Basically,	this	formalizes	the	“standard	view”.

<latexit sha1_base64="S6ysMPLU0hbotXt+zCNiiu+zkjM=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAR6qYkIuqy4MZlBfuAJoTJdNIOnUzCzEQMMW78FTcuFHHrX7jzb5ymWWjrgQuHc+6dO/f4MaNSWda3UVlaXlldq67XNja3tnfM3b2ujBKBSQdHLBJ9H0nCKCcdRRUj/VgQFPqM9PzJ1dTv3REhacRvVRoTN0QjTgOKkdKSZx44YeL1GplTPJX5LCF5mj/cn3hm3WpaBeAisUtSByXanvnlDCOchIQrzJCUA9uKlZshoShmJK85iSQxwhM0IgNNOQqJdLNibQ6PtTKEQSR0cQUL9fdEhkIp09DXnSFSYznvTcX/vEGigks3ozxOFOF4tihIGFQRnMYBh1QQrFiqCcKC6r9CPEYCYaVDq+kQ7PmTF0n3tGmfN62bs3qrVcZRBYfgCDSADS5AC1yDNugADB7BM3gFb8aT8WK8Gx+z1opRzuyDPzA+fwA6EZdj</latexit>

µW (y|x)

<latexit sha1_base64="3162nf01ZdHgVtXB0LErUOEenxY=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI8BLx4jmAdklzA7mU2GzGOZmRXCkt/w4kERr/6MN//GSbIHTSxoKKq66e6KU86M9f1vr7SxubW9U96t7O0fHB5Vj086RmWa0DZRXOlejA3lTNK2ZZbTXqopFjGn3XhyN/e7T1QbpuSjnaY0EngkWcIItk4K81AL1NIqng26g2rNr/sLoHUSFKQGBVqD6lc4VCQTVFrCsTH9wE9tlGNtGeF0VgkzQ1NMJnhE+45KLKiJ8sXNM3ThlCFKlHYlLVqovydyLIyZith1CmzHZtWbi/95/cwmt1HOZJpZKslyUZJxZBWaB4CGTFNi+dQRTDRztyIyxhoT62KquBCC1ZfXSeeqHjTq/sN1rdks4ijDGZzDJQRwA024hxa0gUAKz/AKb17mvXjv3seyteQVM6fwB97nD94HkZE=</latexit>

ProbW

f f



An	emergent	notion	of	external	world

Theorem:	Before	agent	holds	any	information	(or	after	loosing	all	info),

that	ontological	model	(“world”)									is	seen	in	the	long	run,

i.e.	that

2�K(W )
<latexit sha1_base64="3uc8fXYJByascPSOziWkpP0ENS4=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBHqwpJUQZcFN4KbCvYBbSyT6bQdOjMJMxOxhPyKGxeKuPVH3Pk3TtostPXAwOGce7lnThAxqrTrflsrq2vrG5uFreL2zu7evn1Qaqkwlpg0cchC2QmQIowK0tRUM9KJJEE8YKQdTK4zv/1IpKKhuNfTiPgcjQQdUoy0kfp2qfaQnPU40mPJk9u00j5N+3bZrbozOMvEy0kZcjT69ldvEOKYE6ExQ0p1PTfSfoKkppiRtNiLFYkQnqAR6RoqECfKT2bZU+fEKANnGErzhHZm6u+NBHGlpjwwk1lKtehl4n9eN9bDKz+hIoo1EXh+aBgzR4dOVoQzoJJgzaaGICypyergMZIIa1NX0ZTgLX55mbRqVe+8Wru7KNfreR0FOIJjqIAHl1CHG2hAEzA8wTO8wpuVWi/Wu/UxH12x8p1D+APr8wc20ZPm</latexit>

W
<latexit sha1_base64="aj+SPHOEsYhLO3ssgwDPF4EDiec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlW9q2qteV2p1/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDtOmM3Q==</latexit>

<latexit sha1_base64="/aZXDGn8ASbqUZRNhxumLDnwBvE=">AAACCHicbVDLSsNAFJ34rPUVdenCYBHqpiQi6rLgxmUF+4AmhMl00g6dJMM8pCFm6cZfceNCEbd+gjv/xmmahbYeuHA45965c0/AKBHStr+NpeWV1bX1ykZ1c2t7Z9fc2++IRHGE2yihCe8FUGBKYtyWRFLcYxzDKKC4G4yvp373HnNBkvhOpgx7ERzGJCQISi355pELGePJxI2U361nbvFiFlCF8zR/mJz6Zs1u2AWsReKUpAZKtHzzyx0kSEU4lohCIfqOzaSXQS4JojivukpgBtEYDnFf0xhGWHhZsTa3TrQysMKE64qlVai/JzIYCZFGge6MoByJeW8q/uf1lQyvvIzETEkco9miUFFLJtY0FWtAOEaSpppAxIn+q4VGkEMkdXZVHYIzf/Ii6Zw1nIuGfXteazbLOCrgEByDOnDAJWiCG9ACbYDAI3gGr+DNeDJejHfjY9a6ZJQzB+APjM8fC0Sanw==</latexit>

⇡ µW (y|x)

<latexit sha1_base64="Sy+lAu80MK778DCJnSqFc1T9kI8=">AAACMXicbVDLSgMxFM34tr6qLt0Ei6CgZUZEXRbcdFnBPqBThkyaaYOZZEjuqGXaX3Ljn4ibLhRx60+YPhbaeiBwOOdebs4JE8ENuO7QWVhcWl5ZXVvPbWxube/kd/dqRqWasipVQulGSAwTXLIqcBCskWhG4lCwenh/M/LrD0wbruQd9BLWiklH8ohTAlYK8uW+HxPohlFWGRz3+k+Bd+qLtgJz+hTIkzM/ToP6vN73hZIdzTtdIFqrR+wWg3zBLbpj4HniTUkBTVEJ8q9+W9E0ZhKoIMY0PTeBVkY0cCrYIOenhiWE3pMOa1oqScxMKxsnHuAjq7RxpLR9EvBY/b2RkdiYXhzayVE8M+uNxP+8ZgrRdSvjMkmBSTo5FKUCg8Kj+nCba0ZB9CwhVHP7V0y7RBMKtuScLcGbjTxPaudF77Lo3l4USqVpHWvoAB2iY+ShK1RCZVRBVUTRM3pD7+jDeXGGzqfzNRldcKY7++gPnO8ffFKqWg==</latexit>

|P(y|x1, . . . , xn)� µW (y|x1, . . . , xn)| �! 0.

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

there	is	universal	probability	P	of	at	least



An	emergent	notion	of	external	world

Theorem:	Before	agent	holds	any	information	(or	after	loosing	all	info),
there	is	universal	probability	P	of	at	least

that	ontological	model	(“world”)									is	seen	in	the	long	run,

i.e.	that

2�K(W )
<latexit sha1_base64="3uc8fXYJByascPSOziWkpP0ENS4=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBHqwpJUQZcFN4KbCvYBbSyT6bQdOjMJMxOxhPyKGxeKuPVH3Pk3TtostPXAwOGce7lnThAxqrTrflsrq2vrG5uFreL2zu7evn1Qaqkwlpg0cchC2QmQIowK0tRUM9KJJEE8YKQdTK4zv/1IpKKhuNfTiPgcjQQdUoy0kfp2qfaQnPU40mPJk9u00j5N+3bZrbozOMvEy0kZcjT69ldvEOKYE6ExQ0p1PTfSfoKkppiRtNiLFYkQnqAR6RoqECfKT2bZU+fEKANnGErzhHZm6u+NBHGlpjwwk1lKtehl4n9eN9bDKz+hIoo1EXh+aBgzR4dOVoQzoJJgzaaGICypyergMZIIa1NX0ZTgLX55mbRqVe+8Wru7KNfreR0FOIJjqIAHl1CHG2hAEzA8wTO8wpuVWi/Wu/UxH12x8p1D+APr8wc20ZPm</latexit>

W
<latexit sha1_base64="aj+SPHOEsYhLO3ssgwDPF4EDiec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlW9q2qteV2p1/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDtOmM3Q==</latexit>

<latexit sha1_base64="/aZXDGn8ASbqUZRNhxumLDnwBvE=">AAACCHicbVDLSsNAFJ34rPUVdenCYBHqpiQi6rLgxmUF+4AmhMl00g6dJMM8pCFm6cZfceNCEbd+gjv/xmmahbYeuHA45965c0/AKBHStr+NpeWV1bX1ykZ1c2t7Z9fc2++IRHGE2yihCe8FUGBKYtyWRFLcYxzDKKC4G4yvp373HnNBkvhOpgx7ERzGJCQISi355pELGePJxI2U361nbvFiFlCF8zR/mJz6Zs1u2AWsReKUpAZKtHzzyx0kSEU4lohCIfqOzaSXQS4JojivukpgBtEYDnFf0xhGWHhZsTa3TrQysMKE64qlVai/JzIYCZFGge6MoByJeW8q/uf1lQyvvIzETEkco9miUFFLJtY0FWtAOEaSpppAxIn+q4VGkEMkdXZVHYIzf/Ii6Zw1nIuGfXteazbLOCrgEByDOnDAJWiCG9ACbYDAI3gGr+DNeDJejHfjY9a6ZJQzB+APjM8fC0Sanw==</latexit>

⇡ µW (y|x)

<latexit sha1_base64="Sy+lAu80MK778DCJnSqFc1T9kI8="></latexit>

|P(y|x1, . . . , xn)� µW (y|x1, . . . , xn)| �! 0.

<latexit sha1_base64="lA2C/AvKEb54C5JaRUJojSdJT+w=">AAACBnicbVDNS8MwHE3n15xfVY8iBIcwL6MVUY8DLx4nuA9Yy0izdAtL05KkYqk9efFf8eJBEa/+Dd78b0y7HnTzQeDx3u8rz4sYlcqyvo3K0vLK6lp1vbaxubW9Y+7udWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa9yv3dHhKQhv1VJRNwAjTn1KUZKS0Pz0AmQmnh+2s4aqVPMSz0WkyzJHu5PhmbdaloF4CKxS1IHJdpD88sZhTgOCFeYISkHthUpN0VCUcxIVnNiSSKEp2hMBppyFBDppsXaDB5rZQT9UOjHFSzU3x0pCqRMAk9X5kfLeS8X//MGsfIv3ZTyKFaE49kiP2ZQhTDPBI6oIFixRBOEBdW3QjxBAmGlk6vpEOz5Ly+S7mnTPm9aN2f1VquMowoOwBFoABtcgBa4Bm3QARg8gmfwCt6MJ+PFeDc+ZqUVo+zZB39gfP4AZm+Ztw==</latexit>

P(y|x)

description	length	of	W

on	a	universal	computer

actual	chances

according	to	univ.	probability

chances	as	determined	by

world	W.
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Theorem:	Before	agent	holds	any	information	(or	after	loosing	all	info),

that	ontological	model	(“world”)									is	seen	in	the	long	run,

i.e.	that

2�K(W )
<latexit sha1_base64="3uc8fXYJByascPSOziWkpP0ENS4=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBHqwpJUQZcFN4KbCvYBbSyT6bQdOjMJMxOxhPyKGxeKuPVH3Pk3TtostPXAwOGce7lnThAxqrTrflsrq2vrG5uFreL2zu7evn1Qaqkwlpg0cchC2QmQIowK0tRUM9KJJEE8YKQdTK4zv/1IpKKhuNfTiPgcjQQdUoy0kfp2qfaQnPU40mPJk9u00j5N+3bZrbozOMvEy0kZcjT69ldvEOKYE6ExQ0p1PTfSfoKkppiRtNiLFYkQnqAR6RoqECfKT2bZU+fEKANnGErzhHZm6u+NBHGlpjwwk1lKtehl4n9eN9bDKz+hIoo1EXh+aBgzR4dOVoQzoJJgzaaGICypyergMZIIa1NX0ZTgLX55mbRqVe+8Wru7KNfreR0FOIJjqIAHl1CHG2hAEzA8wTO8wpuVWi/Wu/UxH12x8p1D+APr8wc20ZPm</latexit>

W
<latexit sha1_base64="aj+SPHOEsYhLO3ssgwDPF4EDiec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlW9q2qteV2p1/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDtOmM3Q==</latexit>

<latexit sha1_base64="Sy+lAu80MK778DCJnSqFc1T9kI8="></latexit>

|P(y|x1, . . . , xn)� µW (y|x1, . . . , xn)| �! 0.

description	length	of	W

on	a	universal	computer

actual	chances

according	to	univ.	probability

chances	as	determined	by

world	W.

Properties	of	this	(probabilistic)	world	W:

• K(W)	probably	small:	W	has	simple	“laws	of	nature”.

• Actual	realization	seen	by	agent	typically	complex	(compare:	coin	toss).

• In	particular,										is	probabilistically	computable	(recall:	P	isn’t!)

• Such	processes	typically	start	in	a	state	of	low	entropy.	Big	bang?

Broadly	consistent	with	what	we	observe!
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

4.	Example:	dissolution	of	the	Boltzmann	brain	problem

?

2.	Sketch	of	an	idealist	(toy)	theory 
													…	“self”	fundamental,	external	world	emergent.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Does	B	faithfully	represent	some	first-person	perspective?
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Suppose	in	A-world,	there	is	another	bit-string	valued	random	variable,	B.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Example:	If	Alice	has	a	99%	chance	of	seeing	the	sun	rise	tomorrow,	and 
thus	she	has	a	99%	chance	of	seeing	Bob	see	the	sun	rise	tomorrow, 
will	Bob’s	actual	chance	of	seeing	the	sun	rise	be	99%?
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

Alice 
the	guinea	pig

Suppose	in	A-world,	there	is	another	bit-string	valued	random	variable,	B.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

Alice 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Suppose	in	A-world,	there	is	another	bit-string	valued	random	variable,	B.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Does	B	faithfully	represent	some	first-person	perspective?

Example:	If	Alice	has	a	99%	chance	of	seeing	the	sun	rise	tomorrow,	and 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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

Alice 
the	guinea	pig

Suppose	in	A-world,	there	is	another	bit-string	valued	random	variable,	B.

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

x = 101100...
A-world

Does	B	faithfully	represent	some	first-person	perspective?

Theorem:	As	long	as	B	keeps	accumulating	data	without	(much)	forgetting,
|P1st(y|x1, . . . , xn)�P3rd(y|x1, . . . , xn)|
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so	the	answer	is	“yes”:	A-world	=	B-world.
“Objective	reality”	as	a	provable	statistical	phenomenon.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Suppose	in	A-world,	there	is	another	bit-string	valued	random	variable,	B.

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

x = 101100...
A-world

Does	B	faithfully	represent	some	first-person	perspective?

Theorem:	As	long	as	B	keeps	accumulating	data	without	(much)	forgetting,
|P1st(y|x1, . . . , xn)�P3rd(y|x1, . . . , xn)|

n!1�! 0,
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so	the	answer	is	“yes”:	A-world	=	B-world.

However,	if	B	does	not	hold	enough	data,	or	forgets	a	lot	(by	accident),	then

																									is	possible.	“Probabilistic	zombie”P1st 6' P3rd
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“Objective	reality”	as	a	provable	statistical	phenomenon.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

x = 101100...x = 101100...

Then	at	least	one	of	the 
two	instances	must	have
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P1st(y|x) 6= P3rd(y|x).

• Boring	cases	of
Self-patterns	are	just	a	bunch	of	information;	need	not	be	related 
to	humans	or	guinea	pigs. 
In	A-world,	Alice	can	simply	copy	a	piece	of	information	x	to	two 
places	and	force	the	two	instances	to	evolve	differently.

P1st 6' P3rd
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Alice	runs	a	cellular	automaton	on	her	supercomputer	for	several	years. 
Evolution	kicks	in,	and	after	a	long	while,	agents	show	up	—	including 
an	agent	called	Bob	who	explores	his	cellular	world	and 
wonders	about	the	meaning	of	it	all.	Then,	suddenly,	Alice 
intervenes	in	the	simulation,	say,	by	tuning	its	laws. 
Then,	it	is	as	if	“Bob’s	self	leaks	out	of	the	simulation” 
and	becomes	replaced	by	an	unlikely	changeling.
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1.	Conceptual	puzzles 
													…	that	challenge	the	standard	view.

3.	Objective	reality	as	a	emergent	approximation 
													…	probabilistic	zombies,	and	other	surprises.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

4.	Example:	dissolution	of	the	Boltzmann	brain	problem
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the
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for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Dissolution	of	the	Boltzmann	brain	problem

Recall:	Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.
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ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
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!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0
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described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
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is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

next	moment

What?

Aargh…

What?

Aargh…

What?

Aargh…



Dissolution	of	the	Boltzmann	brain	problem
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

now



Dissolution	of	the	Boltzmann	brain	problem

Recall:	Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

now

Q:	“Given	what	I	see,	and	what	I	think	I	know,	am	I	the	guinea 
							pig	on	this	planet	or	one	of	the	BB	quantum	fluctuations?”



Dissolution	of	the	Boltzmann	brain	problem

Recall:	Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

now

Q:	“Given	what	I	see,	and	what	I	think	I	know,	am	I	the	guinea 
							pig	on	this	planet	or	one	of	the	BB	quantum	fluctuations?”

Standard-A:	Count	how	many	BBs	there	are,	versus	how	many 
“standard	guinea	pigs”	on	planets.	If	there	are	far	more	BBs, 
then	you	are	probably	a	BB	and	will	soon	disappear.”



Dissolution	of	the	Boltzmann	brain	problem

Recall:	Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

now

Q:	“Given	what	I	see,	and	what	I	think	I	know,	am	I	the	guinea 
							pig	on	this	planet	or	one	of	the	BB	quantum	fluctuations?”

Standard-A:	Count	how	many	BBs	there	are,	versus	how	many 
“standard	guinea	pigs”	on	planets.	If	there	are	far	more	BBs, 
then	you	are	probably	a	BB	and	will	soon	disappear.”



Dissolution	of	the	Boltzmann	brain	problem

Recall:	Assume	some	(“combinatorially	large”)	universe 
with	a	large	number	of	“brains”	with	false	memories 
fluctuating	into	existence.
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

now

Q:	“Given	what	I	see,	and	what	I	think	I	know,	am	I	the	guinea 
							pig	on	this	planet	or	one	of	the	BB	quantum	fluctuations?”

A:	The	question	is	meaningless.	You	are	your	self-pattern.	This 
					is	unembedded	structure	that	doesn’t	have	a	“position”. 
					In	some	sense,	you	are	all	BBs	and	planet	guinea	pigs	at	once.



Dissolution	of	the	Boltzmann	brain	problem
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-

37 10. Emergence of objective reality

?

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
0
0
1
1

0
1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

1
0
0
1
1
0
1

0
0
0
1
1
1
0
1

0
1
0
0
1
1
0
1

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0

1
1
1
0
0
1
1
0

0
1
1
1
0
1
0
1

0
0
1
0
1
0
0
0

0
1
1
0
0
1
1
1

1
1
1
0
0
1
1
0

0
1
1
0
0
1
1
1

1
0
0
1
1
0

FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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What?
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Q:	“Fair	enough…	but	what	happens	to	me	next?	Business	as 
							usual	on	Earth,	or	a	strange	BB	experience?”
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the

observer graph is a successor state of itself, i.e. if x
B
!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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FIG. 8. Informal illustration of the setup that is considered in this section. We have an observer A (Abby) whose experience is well
described by a simple computational process which generates some A-measure µ (we know from Theorem 8.5 that this happens with
high probability). This means that the computational process is what she may call her “external world” as explained in Section 9;
her observational history (here e.g. (x1, x2, x3, x4)) is a function fA of the process’ state (see also Figure 7). Suppose that there is
another simple computable function fB , acting on the states of this graph machine, which produces a B-history, where B is another
observer (Bambi). Then it will look for Abby as if there was another observer “in her world”, and she may predict what Bambi
is supposed to experience in the future. However, Bambi’s first-person perspective is determined by Postulates 6.1; she experiences
a sequence of successor states determined by transition probabilities P(·;B) that may apriori be completely unrelated to Abby’s
predictions, symbolized by the grey speech bubble. But as we show in Theorem 10.2 below, if Bambi is “old” enough, then she will
indeed subjectively experience the same probabilities that Abby predicts — in other words, she sees the same world (depicted as the
galaxy) as Abby does. This is a probabilistic form of emergent objective reality.

some computational process that generates Abby’s experi-
ences (histories over an observer graph A), and a computable
function fA which “reads out” Abby’s current history from
the full computational process. But now, in addition, we
have another computable map fB which reads out another
history, corresponding to another observer graph B, as illus-
trated in Figure 8. Basically, fB reads out what Abby sees
Bambi experience; or, in more detail, the information con-
tent of Bambi’s brain, as she is appearing in Abby’s external
computational world.

Since the computational process is probabilistic, the state
of this computation (say, of the universal graph machine U)
at some computational time t is a random variable, g(t). For
every t, the function fA reads out the A-history fA(g(t))
that Abby has experienced until that computational mo-
ment. Similarly, fB(g(t)) will yield a B-history. If fB is
suitably chosen, then fB(g(t+1)) will always be either equal
to, or an extension of, fB(g(t)). For fA, this is true auto-
matically due to the way that the output of a graph machine
is defined, cf. Figure 7.

For example, fB can simply read out “the current informa-
tion content of Bambi’s brain”, and infer the corresponding
information content at all earlier times (if the computational
process is reversible), patching all of them together47 to pro-
duce a history fB(g(t)).

47 This specific example will only work, however, if no vertex of the
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!x is impossible

for all x. This is because then a new entry in Bambi’s history can
appear whenever the current information content changes; if there is
no change from time t to time t+ 1 then fB(g(t+ 1)) = fB(g(t)).

Since g(t) is a random variable (depending on the random
input bits supplied to the graph machine), we thus have to
distinguish the following two probability distributions:

1. The distribution on fB(g(t)) that is induced by the
probabilities of the di↵erent computations g(t);

2. the distribution P(·;B) that is predicted by our the-
ory (according to Postulates 6.1) to determine what B
actually experiences.

In our example, case 1. corresponds to the unit probability
that Abby assigns to the statement “tomorrow I will see
Bambi experience a rising sun”, whereas case 2. corresponds
to the probability that Bambi will actually see a rising sun
herself.

Apriori, both probabilities could be very di↵erent. How-
ever, if they were in fact di↵erent, then we would have a very
strange situation, reminiscent of Wittgenstein’s philosophi-
cal concept of a “zombie” [76]: the observer called Bambi
that Abby sees would in fact not subjectively experience
what Abby sees her experience, but would divert into her
own “parallel world”, leaving a material remainder that be-
haves like an observer, but does not correspond to a valid
first-person perspective that is actually taken by anybody48.

48 Note that this would be much stranger than the simple e↵ect of
having di↵erent “computational branches”, following di↵erent values
that the random variable g(t) can take. Similarly as in Everettian
interpretations of quantum mechanics, a “many-worlds”-like picture
would automatically suggest that we should imagine di↵erent “in-
stances” of Abby and Bambi, following the di↵erent branches. Nev-
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Q:	“Fair	enough…	but	what	happens	to	me	next?	Business	as 
							usual	on	Earth,	or	a	strange	BB	experience?”

A:	This	is	a	meaningful	question!	You	have	to	compare	the 
					universal	probabilities																							versus 
					Note:																is	larger	if	y	is	more	compressible,	given	x. 
					Thus
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P(yEarth|x) � P(yBB|x).
Business	as	usual	will	prevail, no	matter	how	many	BBs	exist.



Conclusions

• Conceptual	puzzles	and	Quantum	Theory	motivate 
information-theoretic	“idealist”	approach.

• Have	shown	an	(incomplete	toy)	theory	of	this	kind,	based 
on	universal	probability	/	algorithmic	information	theory.

• Predictions:	agents	see	a	simple,	computable,	probabilistic 
external	world;	objective	reality	as	an	excellent	approximation.

• Potential	to	dissolve	several	relevant	conceptual	enigmas, 
surprising	new	phenomena	like	“probabilistic	zombies”.

M.	P.	Müller,	Quantum	4,	301	(2020) 
Nontechnical	paper	in	2023	(hopefully).


