Information-theoretic idealism

Markus P. Müller
Institute for Quantum Optics and Quantum Information, Vienna Perimeter Institute for Theoretical Physics, Waterloo, Canada

Figur 1.

Summary

I argue that our "standard" view of the physical world may be wrone.
 only approximately true.

To solve some important foundational and practical problems, it helps to take a (sort of) idealist approach.

I argue that our "standard" view of the physical world may be wrons.
only approximately true.

To solve some important foundational and practical problems, it helps to take a (sort of) idealist approach.

A diverse group of views that regard "mind" as primary, not matter.

Here: "mind"="pattern": mathematical, information-theoretic notion.
Irrelevant: consciousness, qualia, what we believe, want or feel.

Goal and structure of this talk

Goal: Convey the main idea and its methodological adequacy.

Goal and structure of this talk

Goal: Convey the main idea and its methodological adequacy.

Doing so, I will disregard

- most mathematical details (they are in the paper),
- most philosophical notions and issues, such as:

Relation to realism, physicalism, Humean supervenience, historical predecessors, Carnap's "Aufbau", overlap with quantum interpretations, interpretations of probability, is it really idealism? (probably not), ...

Goal and structure of this talk

Goal: Convey the main idea and its methodological adequacy.

Doing so, I will disregard

- most mathematical details (they are in the paper),
- most philosophical notions and issues, such as:

Relation to realism, physicalism, Humean supervenience, historical predecessors, Carnap's "Aufbau", overlap with quantum interpretations, interpretations of probability, is it really idealism? (probably not), ...

Colorful pictures, but notions neither inherently human nor biological.

Goal and structure of this talk

Goal: Convey the main idea and its methodological adequacy.

Doing so, I will disregard

- most mathematical details (they are in the paper),
- most philosophical notions and issues, such as:

Relation to realism, physicalism, Humean supervenience, historical predecessors, Carnap's "Aufbau", overlap with quantum interpretations, interpretations of probability, is it really idealism? (probably not), ...

Colorful pictures, but notions neither inherently human nor biological.

Suppose we removed Earth from the universe, stopped its time evolution, and gave it to a team of infinitely smart and allpowerful scientists.

Motivating observation

Suppose we removed Earth from the universe, stopped its time evolution, and gave it to a team of infinitely smart and allpowerful scientists.

From the (classical) information contained in Earth, they could reconstruct an almost-
 perfect synthetic environment (universe) for it with almost identical predictions for what happens to it in the future.

Motivating observation

Suppose we removed Earth from the universe, stopped its time evolution, and gave it to a team of infinitely smart and allpowerful scientists.

From the (classical) information contained in Earth, they could reconstruct an almost-
 perfect synthetic environment (universe) for it with almost identical predictions for what happens to it in the future.

In a sense to be made precise (algorithmic information theory), "a plausible rest of the universe" can be seen as a property of (the information contained in) Earth.

Motivating observation

Suppose we removed Earth from the universe, stopped its time evolution, and gave it to a team of infinitely smart and allpowerful scientists.

From the (classical) information contained in Earth, they could reconstruct an almostperfect synthetic environment (universe) for it with almost identical predictions for what happens to it in the future.

In a sense to be made precise (algorithmic information theory), "a plausible rest of the universe" can be seen as a property of (the information contained in) Earth. Same for smaller structures...

Motivating observation

Suppose we removed Earth from the universe, stopped its time evolution, and gave it to a team of infinitely smart and allpowerful scientists.

From the (classical) information contained in Earth, they could reconstruct an almostperfect synthetic environment (universe) for it with almost identical predictions for what happens to it in the future.

In a sense to be made precise (algorithmic information theory), "a plausible rest of the universe" can be seen as a property of (the information contained in) Earth. Same for smaller structures...

Outline

1. Conceptual puzzles
... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

Outline

1. Conceptual puzzles
 ... that challenge the standard view.

2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

1. Conceptual puzzles

Standard view:

1. Conceptual puzzles

Standard view:

Figur 1.

1. Conceptual puzzles

Figur 1.
"self pattern" (what "I am right now", including observations and memory)

Standard view:

follows from

Laws of physics apply here
state (and evolution) of the physical world

1. Conceptual puzzles

Figur 1.

follows from
state (and evolution) of the physical world

Standard methodology: to predict what happens to me next, I use physics to predict the evolution of the world, and then locate myself inside it.

- Parfit's Teletransportation Paradox

- Parfit's Teletransportation Paradox

- Parfit's Teletransportation Paradox

- Parfit's Teletransportation Paradox
- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.
next moment

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

- Parfit's Teletransportation Paradox

- The Boltzmann Brain Problem

Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence. Excludes some cosmological models?

- Wigner's Friend

nature
 ${ }_{\text {physer }}$ physics

ARTICLES

https://doi.org/10.1038/s41567-020-0990-x
D Check for updates

A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong ${ }^{1,4}$, Aníbal Utreras-Alarcónn,1,4, Farzad Ghafari ${ }^{\circ}$ ¹, Yeong-Cherng Liang ${ }^{2}$,

Does quantum theory apply at all scales, including that of observers? New light on this fundamental question has recently been shed through a resurgence of interest in the long-standing Wigner's friend paradox. This is a thought experiment addressing the quantum measurement problem-the difficulty of reconciling the (unitary, deterministic) evolution of isolated systems and the (non-unitary, probabilistic) state update after a measurement. Here, by building on a scenario with two separated but entangled friends introduced by Brukner, we prove that if quantum evolution is controllable on the scale of an observer, then one of 'No-Superdeterminism', 'Locality' or 'Absoluteness of Observed Events'-that every observed event exists absolutely, not relatively-must be false. We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived, in a theory-independent manner, that are violated by quantum correlations. This is demonstrated in a proof-of-principle experiment where a photon's path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on physical reality than Bell's theorem.

- Wigner's Friend

nature
physics
(a) Check for updates

A strong no-go theorem on the Wigner's friend paradox

Does quantum theory apply at all scales, including that of observers? New light on this fundamental question has recently been shed through a resurgence of interest in the long-standing Wigner's friend paradox. This is a thought experiment addressing the quantum measurement problem-the difficulty of reconciling the (unitary, deterministic) evolution of isolated systems and the (non-unitary, probabilistic) state update after a measurement. Here, by building on a scenario with two separated but entangled friends introduced by Brukner, we prove that if quantum evolution is controllable on the scale of an observer, then one of 'No-Superdeterminism', ‘Locality' or 'Absoluteness of Observed Events'-that every observed event exists absolutely, not relatively-must be false. We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived, in a theory-independent manner, that are violated by quantum correlations. This is demonstrated in a proof-of-principle experiment where a photon's path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on physical reality than Bell's theorem.

"Absoluteness of observed events"?

In a quantum world, it is unclear how to use the "standard methodology" without running into paradoxes.

- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

"What will I see next?"

- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
exotic regime

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
- Laboratory experiments

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
exotic regime
- Laboratory experiments

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
- Laboratory experiments

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
- Laboratory experiments
- Astronomical observations

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
- Laboratory experiments
- Astronomical observations

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem
- Laboratory experiments
- Astronomical observations

physics applies!

empirical regime

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

philosophy of mind?

exotic regime

- Laboratory experiments
- Astronomical observations

physics applies!

empirical regime

"What will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

But this appeared in physics!

philosophy of mind?

- Laboratory experiments
- Astronomical observations

physics applies!

empirical regime

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

philosophy of mind?

exotic regime

- Laboratory experiments
- Astronomical observations

physics applies!

empirical regime

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

philosophy of mind?

exotic
regime

- Laboratory experiments
- Astronomical observations

physics
 applies!

empirical regime

Wait a minute... isn't physics concerned with a different kind of question?

"What will I see next?"

Wait a minute... isn't physics concerned with a different kind of question?
"What is the world like?" instead of "what will I see"...

"What will I see next?"

Wait a minute... isn't physics concerned with a different kind of question?
"What is the world like?" instead of "what will see"...

Quantum theory: The formalism tells us the probabilities of the outcomes we will see, given our choice of measurement.

"What will I see next?"

Wait a minute... isn't physics concerned with a different kind of question?
"What is the world like?" instead of "what will I see"...

Quantum theory: The formalism tells us the probabilities of the outcomes we will see, given our choice of measurement.

Bell's Theorem: It is even inconsistent to assume that measurements always tell us what the world has been like unless we give up locality.

"What will I see next?"

Wait a minute... isn't physics concerned with a different kind of question?
"What is the world like?" instead of "what will I see"...

Quantum theory: The formalism tells us the probabilities of the outcomes we will see, given our choice of measurement.

Bell's Theorem: It is even inconsistent to assume that measurements always tell us what the world has been like unless we give up locality.

Independent motivation to consider "what will I see next?"
a more fruitful / natural question to ask than "what is the case?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

philosophy of mind?

exotic
regime

- Laboratory experiments
- Astronomical observations

physics
 applies!

empirical regime

Wanted: a universal answer to "what will I see next?"

- Simulating agents on a computer
- Parfit's Teletransportation Paradox
- Wigner's Friend
- The Boltzmann Brain Problem

A unified approach

Laboratory experiments

- Astronomical observations
empirical regime

Outline

1. Conceptual puzzles
 ... that challenge the standard view.

2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

Outline

1. Conceptual puzzles

... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

A unified approach by reversing the standard view

Figur 1.

A unified approach by reversing the standard view

Figur 1.
"self pattern" (what "I am right now", including observations and memory)

follows from
state (and evolution) of the physical world

A unified approach by reversing the standard view

Figur 1.
"self pattern" (what "I am right now", including observations and memory)

state (and evolution) of the physical world

Problem: methodologically inadequate (recall the exotic puzzles) and conceptually hard to reconcile with quantum theory.

Reversing the standard view

Figur 1.

Reversing the standard view

Figur 1.

Reversing the standard view

Figur 1.

Reversing the standard view

$$
\mathbf{P}(y \mid x)
$$

x : self pattern now
y : self pattern next
Universal probability

Reversing the standard view

Standard view as an approximation: In the long run, this will appear as if

Figur 1.

$$
\mathbf{P}(y \mid x)
$$

x : self pattern now
y : self pattern next
Universal probability

Standard view as an approximation: In the long run, this will appear as if

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111 .
$$

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111
$$

Q: But I'm not a bunch of bits! So how do I encode my pattern into bits?
A: It doesn't matter - the resulting theory is independent of the choice of encoding, similarly as GR is independent of choice of coordinates.

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111 .
$$

Q: But I'm not a bunch of bits! So how do I encode my pattern into bits?
A: It doesn't matter - the resulting theory is independent of the choice of encoding, similarly as GR is independent of choice of coordinates.

Measure: $\quad \mu(b \mid x)=\frac{\mu(x b)}{\mu(x)}$
Prob. that next bit is b if now in state x.

Ray J. Solomonoff (1964)

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111 .
$$

Q: But I'm not a bunch of bits! So how do I encode my pattern into bits?
A: It doesn't matter - the resulting theory is independent of the choice of encoding, similarly as GR is independent of choice of coordinates.

Measure: $\quad \mu(b \mid x)=\frac{\mu(x b)}{\mu(x)}$
Prob. that next bit is b if now in state x.

$$
\mu(0 \mid x)+\mu(1 \mid x)=1 .
$$

Ray J. Solomonoff (1964)

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111 .
$$

Q: But I'm not a bunch of bits! So how do I encode my pattern into bits?
A: It doesn't matter - the resulting theory is independent of the choice of encoding, similarly as GR is independent of choice of coordinates.

Measure: $\quad \mu(b \mid x)=\frac{\mu(x b)}{\mu(x)}$
Prob. that next bit is b if now in state x.

$$
\mu(0 \mid x)+\mu(1 \mid x)=1
$$

Semimeasure: $\mu(0 \mid x)+\mu(1 \mid x) \leq 1$.

Universal probability

Describe self patterns as a finite bit strings, growing one bit at a time.

$$
x=010010100010000011111 .
$$

Q: But I'm not a bunch of bits! So how do I encode my pattern into bits?
A: It doesn't matter - the resulting theory is independent of the choice of encoding, similarly as GR is independent of choice of coordinates.

Measure: $\quad \mu(b \mid x)=\frac{\mu(x b)}{\mu(x)}$
Prob. that next bit is b if now in state x.

$$
\mu(0 \mid x)+\mu(1 \mid x)=1
$$

Semimeasure: $\mu(0 \mid x)+\mu(1 \mid x) \leq 1$.
Enumerable semimeasure: there exists an algorithm that, on input x and n, computes an approx. $\mu_{n}(x)$ with $\lim _{n \rightarrow \infty} \mu_{n}(x)=\mu(x)$ and $\mu_{1} \leq \mu_{2} \leq \ldots$

Universal probability

Universal enumerable semimeasure μ :

Universal probability

Universal enumerable semimeasure μ :
For every enumerable semimeasure ν there is a constant $c_{\nu}>0$ such that $\mu(x) \geq c_{\nu} \cdot \nu(x)$ for all x. Basically, a mixture of all enumerable semimeasures.

Universal probability

Universal enumerable semimeasure μ :
For every enumerable semimeasure ν there is a constant $c_{\nu}>0$ such that $\mu(x) \geq c_{\nu} \cdot \nu(x)$ for all x. Basically, a mixture of all enumerable semimeasures. normalize it \longrightarrow universal probability \mathbf{P}.

Universal probability

Universal enumerable semimeasure μ :

For every enumerable semimeasure ν there is a constant $c_{\nu}>0$ such that $\mu(x) \geq c_{\nu} \cdot \nu(x)$ for all x. Basically, a mixture of all enumerable semimeasures.
normalize it \longrightarrow universal probability \mathbf{P}.

Application elsewhere (not in my approach):

- Gives higher probability to simpler bit strings (i.e. generated by shorter programs). Occam's razor.
- Uncomputable, but in principle useful for induction \longrightarrow "Universal Artificial Intelligence"
- Solomonoff induction: yields provably correct predictions asymptotically (quickly) in all computable environments.

Postulates of an (incomplete) idealist theory

At every (subjective) moment, "I" am a self-pattern x, and a couple of moments later, I will be a self-pattern $x y$, with universal probability $\mathbf{P}(y \mid x)$.

Postulates of an (incomplete) idealist theory

At every (subjective) moment, "I" am a self-pattern x, and a couple of moments later, I will be a self-pattern $x y$, with universal probability $\mathbf{P}(y \mid x)$.

Postulates of an (incomplete) idealist theory

At every (subjective) moment, "I" am a self-pattern x, and a couple of moments later, I will be a self-pattern $x y$, with universal probability $\mathbf{P}(y \mid x)$.

This is a fundamental, objective, private chance that does not arise from any lack of knowledge, or any "external world" in which my pattern would be embedded. "I am an unembedded pattern".

Postulates of an (incomplete) idealist theory

At every (subjective) moment, "I" am a self-pattern x, and a couple of moments later, I will be a self-pattern $x y$, with universal probability $\mathbf{P}(y \mid x)$.

This is a fundamental, objective, private chance that does not arise from any lack of knowledge, or any "external world" in which my pattern would be embedded. "I am an unembedded pattern".
(Incomplete theory, because "forgetting" not yet treated.)

Consistency with standard physics

Consistency with standard physics

The standard view would tell us to compute the "physical" probability $\mathbf{P}_{\mathrm{phys}}(y \mid x)$ arising from, say, the wave function of the universe.

Consistency with standard physics

The standard view would tell us to compute the "physical" probability $\mathbf{P}_{\text {phys }}(y \mid x)$ arising from, say, the wave function of the universe.

Theorem. In the limit of a large number $n=\ell(x)$ of self-pattern bits,

$$
\left|\mathbf{P}(y \mid x)-\mathbf{P}_{\text {phys }}(y \mid x)\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

Consistency with standard physics

The standard view would tell us to compute the "physical" probability $\mathbf{P}_{\text {phys }}(y \mid x)$ arising from, say, the wave function of the universe.

Theorem. In the limit of a large number $n=\ell(x)$ of self-pattern bits,

$$
\left|\mathbf{P}(y \mid x)-\mathbf{P}_{\text {phys }}(y \mid x)\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

Proof. Physical versions of the Church-Turing thesis $\Rightarrow \mathbf{P}_{\text {phys }}$ is in principle computable. Thus, due to Solomonoff's universal induction, convergence above happens with $\mathbf{P}_{\mathrm{phys}}$-prob. 1.

Consistency with standard physics

The standard view would tell us to compute the "physical" probability $\mathbf{P}_{\text {phys }}(y \mid x)$ arising from, say, the wave function of the universe.

Interpretation. If the self-pattern contains enough information on the (for me) relevant aspects of the physical world, then universal probability will "detect" these regularities (Solomonoff induction) and assign high probability to the fact that these regularities will remain present. Hence, physical and universal probabilities will agree in their predictions.

Consistency with standard physics

Consistency with standard physics is good news, but it is not enough.

Consistency with standard physics

Consistency with standard physics is good news, but it is not enough.

Now that I hold a large amount of information on a (possible) external physical world, universal probability predicts chances that conform with that (possible) external world in the future. Fair enough. But why should I get there in the first place if universal probability is all there is, and no external world is assumed to begin with?

Consistency with standard physics

Consistency with standard physics is good news, but it is not enough.

Now that I hold a large amount of information on a (possible) external physical world, universal probability predicts chances that conform with that (possible) external world in the future. Fair enough. But why should I get there in the first place if universal probability is all there is, and no external world is assumed to begin with?

As we will now show, universal probability predicts an "external world".

Consistency with standard physics

Consistency with standard physics is good news, but it is not enough.

Now that I hold a large amount of information on a (possible) external physical world, universal probability predicts chances that conform with that (possible) external world in the future. Fair enough.
But why should I get there in the first place if universal probability is all there is, and no external world is assumed to begin with?

As we will now show, universal probability predicts an "external world".

This does not make it a "theory of everything" because it cannot predict most properties of that world.

Candidate external worlds

Candidate external worlds

Def.: A computational ontological model for μ is a stochastic process
("world" W) that can in principle be run on a probabilistic Turing machine, together with a computable bit-string-valued random variable f ("locates / reads the self-pattern from world W") yielding self-patterns evolving as described by μ.

Candidate external worlds

Def.: A computational ontological model for μ is a stochastic process
("world" W) that can in principle be run on a probabilistic Turing machine, together with a computable bit-string-valued random variable f ("locates / reads the self-pattern from world W") yielding self-patterns evolving as described by μ.

Figur 1.

Computational ontological models
Basically, this formalizes the "standard view".

An emergent notion of external world

$\approx \mu W(y \mid x)$

Theorem: Before agent holds any information (or after loosing all info), there is universal probability \mathbf{P} of at least

$$
2^{-\mathrm{K}(W)}
$$

that ontological model ("world") W is seen in the long run, i.e. that $\left|\mathbf{P}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mu_{W}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \longrightarrow 0$.

An emergent notion of external world

$\approx \mu_{W}(y \mid x)$

Theorem: Before agent holds any information (or after loosing all info), there is universal probability \mathbf{P} of at least description length of W $2^{-K(W) \longleftarrow}$ on a universal computer that ontological model ("world") W is seen in the long run, i.e. that $\left|\mathbf{P}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mu_{W}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \longrightarrow 0$.
actual chances
according to univ. probability
chances as determined by world W.

An emergent notion of external world

Properties of this (probabilistic) world W:

- $K(W)$ probably small: W has simple "laws of nature".
- Actual realization seen by agent typically complex (compare: coin toss).
- In particular, μ_{W} is probabilistically computable (recall: \mathbf{P} isn't!)
- Such processes typically start in a state of low entropy. Big bang?

Broadly consistent with what we observe!

Theorem: Before agent holds any information (or after loosing all info), there is universal probability \mathbf{P} of at least ${ }_{\text {description length of } W}$ $2^{-K(W) \longleftarrow}$ on a universal computer that ontological model ("world") W is seen in the long run, i.e. that $\left|\mathbf{P}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mu_{W}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \longrightarrow 0$.
actual chances
according to univ. probability
chances as determined by world W.

Outline

1. Conceptual puzzles

... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

Outline

1. Conceptual puzzles

... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

An emergent notion of objective reality

Alice $\begin{gathered}\text {... goes through } \\ \text { patterns that look }\end{gathered}$
the guinea pig
like...

An emergent notion of objective reality

Alice
the guinea pig
... goes through patterns that look like...

An emergent notion of objective reality

... goes through
Alice patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.

An emergent notion of objective reality

... goes through patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, \mathbf{B}.
Does B faithfully represent some first-person perspective?

An emergent notion of objective reality

Alice ... goes through patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?

Two probability distributions:

$\mathbf{P}_{3 \text { rd }}$: how B changes over time according to the prob. laws of \mathbf{A}-world

An emergent notion of objective reality

Alice ... goes through patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?

Two probability distributions:

$\mathbf{P}_{3 \text { rd }}$: how B changes over time according to the prob. laws of A-world
$\mathbf{P}_{1 \text { st }}$: the actual "first-person" chances of Bob's self-pattern changes $\mathbf{P}_{1 \text { st }}=$ universal probability \mathbf{P}.

An emergent notion of objective reality

... goes through
Alice patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?

Two probability distributions:

$\mathbf{P}_{3 \text { rd }}$: how B changes over time according to the prob. laws of A-world
$\mathbf{P}_{1 \text { st }}$: the actual "first-person" chances of Bob's self-pattern changes $\mathbf{P}_{1 \text { st }}=$ universal probability \mathbf{P}.

Example: If Alice has a 99\% chance of seeing the sun rise tomorrow, and thus she has a 99% chance of seeing Bob see the sun rise tomorrow, will Bob's actual chance of seeing the sun rise be 99% ?

An emergent notion of objective reality

... goes through
Alice patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?

Two probability distributions:

$\mathbf{P}_{3 \text { rd }}$: how B changes over time according to the prob. laws of A-world
$\mathbf{P}_{1 \text { st }}$: the actual "first-person" chances of Bob's self-pattern changes $\mathbf{P}_{1 \text { st }}=$ universal probability \mathbf{P}.

Example: If Alice has a 99\% chance of seeing the sun rise tomorrow, and thus she has a 99% chance of seeing Bob see the sun rise tomorrow, $\mathbf{P}_{3 \text { rd }}$ will Bob's actual chance of seeing the sun rise be 99% ?

An emergent notion of objective reality

Alice patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B. Does B faithfully represent some first-person perspective?

Example: If Alice has a 99\% chance of seeing the sun rise tomorrow, and thus she has a 99% chance of seeing Bob see the sun rise tomorrow, $\mathbf{P}_{3 \text { rd }}$ will Bob's actual chance of seeing the sun rise be 99% ?

An emergent notion of objective reality

... goes through Alice patterns that look the guinea pig like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?
Theorem: As long as \mathbf{B} keeps accumulating data without (much) forgetting, $\left|\mathbf{P}_{1 \mathrm{st}}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mathbf{P}_{3 \mathrm{rd}}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \xrightarrow{n \rightarrow \infty} 0$, so the answer is "yes": A-world = B-world.

Example: If Alice has a 99\% chance of seeing the sun rise tomorrow, and thus she has a 99% chance of seeing Bob see the sun rise tomorrow, $\mathbf{P}_{3 \text { rd }}$ will Bob's actual chance of seeing the sun rise be 99% ?

An emergent notion of objective reality

Alice ... goes through patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B. Does B faithfully represent some first-person perspective?

Theorem: As long as \mathbf{B} keeps accumulating data without (much) forgetting,

$$
\left|\mathbf{P}_{1 \mathrm{st}}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mathbf{P}_{3 \mathrm{rd}}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \xrightarrow{n \rightarrow \infty} 0,
$$

so the answer is "yes": A-world = B-world.
"Objective reality" as a provable statistical phenomenon.

An emergent notion of objective reality

... goes through
Alice patterns that look like...

Suppose in A-world, there is another bit-string valued random variable, B.
Does B faithfully represent some first-person perspective?
Theorem: As long as \mathbf{B} keeps accumulating data without (much) forgetting, $\left|\mathbf{P}_{1 \text { st }}\left(y \mid x_{1}, \ldots, x_{n}\right)-\mathbf{P}_{3 \text { rd }}\left(y \mid x_{1}, \ldots, x_{n}\right)\right| \xrightarrow{n \rightarrow \infty} 0$, so the answer is "yes": A-world = B-world.
"Objective reality" as a provable statistical phenomenon.
However, if B does not hold enough data, or forgets a lot (by accident), then $\mathbf{P}_{1 \text { st }} \not 千 \mathbf{P}_{3 \text { rd }}$ is possible. "Probabilistic zombie"

Probabilistic zombies

Probabilistic zombies

- Boring cases of $\mathbf{P}_{1 \text { st }} \not 千 \mathbf{P}_{3 \text { rd }}$

Self-patterns are just a bunch of information; need not be related to humans or guinea pigs.
In A-world, Alice can simply copy a piece of information x to two places and force the two instances to evolve differently.

Then at least one of the two instances must have $\mathbf{P}_{1 \text { st }}(y \mid x) \neq \mathbf{P}_{3 \mathrm{rd}}(y \mid x)$.

Probabilistic zombies

- Boring cases of $\mathbf{P}_{1 \text { st }} \not \neq \mathbf{P}_{3 \text { rd }}$

Self-patterns are just a bunch of information; need not be related to humans or guinea pigs.
In A-world, Alice can simply copy a piece of information x to two places and force the two instances to evolve differently.

- Disturbing cases of $\mathbf{P}_{1 \text { st }} \not 千 \mathbf{P}_{3 \mathrm{rd}}$

Alice runs a cellular automaton on her supercomputer for several years. Evolution kicks in, and after a long while, agents show up - including an agent called Bob who explores his cellular world and wonders about the meaning of it all. Then, suddenly, Alice intervenes in the simulation, say, by tuning its laws. Then, it is as if "Bob's self leaks out of the simulation" and becomes replaced by an unlikely changeling.

Probabilistic zombies

- Boring cases of $\mathbf{P}_{1 \text { st }} \not \neq \mathbf{P}_{3 \text { rd }}$

Self-patterns are just a bunch of information; need not be related to humans or guinea pigs.
In A-world, Alice can simply copy a piece of information x to two places and force the two instances to evolve differently.

- Disturbing cases of $\mathbf{P}_{1 \text { st }} \not \not \mathbf{P}_{3 \text { rd }}$

Alice runs a cellular automaton on her supercomputer for several years. Evolution kicks in, and after a long while, agents show up - including an agent called Bob who explores his cellular world and wonders about the meaning of it all. Then, suddenly, Alice intervenes in the simulation, say, by tuning its laws. Then, it is as if "Bob's self leaks out of the simulation" and becomes replaced by an unlikely changeling.

Outline

1. Conceptual puzzles

... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

Outline

1. Conceptual puzzles

... that challenge the standard view.
2. Sketch of an idealist (toy) theory
... "self" fundamental, external world emergent.
3. Objective reality as a emergent approximation ... probabilistic zombies, and other surprises.
4. Example: dissolution of the Boltzmann brain problem

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.

Q: "Given what I see, and what I think I know, am I the guinea pig on this planet or one of the BB quantum fluctuations?"

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.
now

Q: "Given what I see, and what I think I know, am I the guinea pig on this planet or one of the BB quantum fluctuations?"

Standard-A: Count how many BBs there are, versus how many "standard guinea pigs" on planets. If there are far more BBs, then you are probably a BB and will soon disappear."

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.
now

Q: "Given what I see, and what I think I know, am I the guinea pig on this planet or one of the BB quantum fluctuations?"

Standard-A: Count how many BBs there are, versuc hownimes. "standard guinea pigs" on plondere are far more BB, thene men provably a BB and will soon disappear."

Dissolution of the Boltzmann brain problem

Recall: Assume some ("combinatorially large") universe with a large number of "brains" with false memories fluctuating into existence.
now

Q: "Given what I see, and what I think I know, am I the guinea pig on this planet or one of the BB quantum fluctuations?"

A: The question is meaningless. You are your self-pattern. This is unembedded structure that doesn't have a "position". In some sense, you are all BBs and planet guinea pigs at once.

Dissolution of the Boltzmann brain problem

Dissolution of the Boltzmann brain problem

Q: "Fair enough... but what happens to me next? Business as usual on Earth, or a strange BB experience?"

Dissolution of the Boltzmann brain problem

next?

Q: "Fair enough... but what happens to me next? Business as usual on Earth, or a strange BB experience?"

A: This is a meaningful question! You have to compare the universal probabilities $\mathbf{P}\left(y_{\mathrm{BB}} \mid x\right)$ versus $\mathbf{P}\left(y_{\text {Earth }} \mid x\right)$. Note: $\mathbf{P}(y \mid x)$ is larger if y is more compressible, given x. Thus $\mathbf{P}\left(y_{\text {Earth }} \mid x\right) \gg \mathbf{P}\left(y_{\mathrm{BB}} \mid x\right)$. Business as usual will prevail, no matter how many BBs exist.

- Conceptual puzzles and Quantum Theory motivate information-theoretic "idealist" approach.
- Have shown an (incomplete toy) theory of this kind, based on universal probability / algorithmic information theory.
- Predictions: agents see a simple, computable, probabilistic external world; objective reality as an excellent approximation.
- Potential to dissolve several relevant conceptual enigmas, surprising new phenomena like "probabilistic zombies".
> M. P. Müller, Quantum 4, 301 (2020) Nontechnical paper in 2023 (hopefully).

