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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 & 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA' R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L * 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
* 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This

H16

H9

H17

H5

H11

H18

H15
H10

H6

H7

H12 H13

H14

H8

H19

H1

H2

H4 H3

I(1:2)

FIG. 1: An “information graph” in which vertices represent factors in a decomposition of

Hilbert space, and edges are weighted by the mutual information between the factors. In

redundancy-constrained states, the entropy of a group of factors (such as the shaded region

B containing H1 ⌦H2 ⌦H3 ⌦H4 ⌦H5.) can be calculated by summing over the mutual

information of the cut edges, as in (9). In the following section we put a metric on graphs

of this form by relating the distance between vertices to the mutual information, in (13)

and (14).

We therefore choose to concentrate on mutual information as a way of characterizing emer-
gent distance without picking out any preferred set of operators.

Consider grouping a set of non-overlapping subregions Ap into a larger region B, dividing
space into B and its complement B. Taking advantage of the short-ranged entanglement
in such states, the approximate entanglement entropy of B can be calculated using the cut
function,

S(B) =
1

2

X

p2B,q2B

I(Ap :Aq). (9)

To find the approximate entanglement of region B, one simply cuts all edges connecting B
and its complement B. The entanglement entropy is the sum over all the weights assigned
to the cut edges. This is similar to counting the entanglement entropy by the bond cutting
in tensor networks, except in this special case where we are content with approximate entan-
glement entropy for large regions, a simple graph representation is su�cient. Comparatively,
a tensor network that characterizes this state contains far more entanglement information
than the simple connectivity captured by the graphs considered here.

Our conjecture is that this graph information is enough to capture the coarse geometry of
this area-law state. If we restrict ourselves to work at scales for which S / A, all information
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Hilbert space, and edges are weighted by the mutual information between the factors. In

redundancy-constrained states, the entropy of a group of factors (such as the shaded region

B containing H1 ⌦H2 ⌦H3 ⌦H4 ⌦H5.) can be calculated by summing over the mutual

information of the cut edges, as in (9). In the following section we put a metric on graphs

of this form by relating the distance between vertices to the mutual information, in (13)

and (14).

We therefore choose to concentrate on mutual information as a way of characterizing emer-
gent distance without picking out any preferred set of operators.

Consider grouping a set of non-overlapping subregions Ap into a larger region B, dividing
space into B and its complement B. Taking advantage of the short-ranged entanglement
in such states, the approximate entanglement entropy of B can be calculated using the cut
function,

S(B) =
1

2

X

p2B,q2B

I(Ap :Aq). (9)

To find the approximate entanglement of region B, one simply cuts all edges connecting B
and its complement B. The entanglement entropy is the sum over all the weights assigned
to the cut edges. This is similar to counting the entanglement entropy by the bond cutting
in tensor networks, except in this special case where we are content with approximate entan-
glement entropy for large regions, a simple graph representation is su�cient. Comparatively,
a tensor network that characterizes this state contains far more entanglement information
than the simple connectivity captured by the graphs considered here.

Our conjecture is that this graph information is enough to capture the coarse geometry of
this area-law state. If we restrict ourselves to work at scales for which S / A, all information
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(partially	for	historical	reasons,	as	we	will	see).
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of this form by relating the distance between vertices to the mutual information, in (13)

and (14).

We therefore choose to concentrate on mutual information as a way of characterizing emer-
gent distance without picking out any preferred set of operators.

Consider grouping a set of non-overlapping subregions Ap into a larger region B, dividing
space into B and its complement B. Taking advantage of the short-ranged entanglement
in such states, the approximate entanglement entropy of B can be calculated using the cut
function,
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To find the approximate entanglement of region B, one simply cuts all edges connecting B
and its complement B. The entanglement entropy is the sum over all the weights assigned
to the cut edges. This is similar to counting the entanglement entropy by the bond cutting
in tensor networks, except in this special case where we are content with approximate entan-
glement entropy for large regions, a simple graph representation is su�cient. Comparatively,
a tensor network that characterizes this state contains far more entanglement information
than the simple connectivity captured by the graphs considered here.

Our conjecture is that this graph information is enough to capture the coarse geometry of
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PSU(2)
<latexit sha1_base64="jswrkoEYdXYdpI5x8dLJ2Y8R86Q=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoMQL2E3mqi3gBdvRjQP2CxhdjKbDJnHMjMrhCWf4cWDIl79Gm/+jZNkBRUtaCiquunuCmNGtXHdDye3tLyyupZfL2xsbm3vFHf32lomCpMWlkyqbog0YVSQlqGGkW6sCOIhI51wfDnzO/dEaSrFnZnEJOBoKGhEMTJW8tOe4vD2elo+Oe4XS27FnQMuiFe1pOZ6F/U69DKrBDI0+8X33kDihBNhMENa+54bmyBFylDMyLTQSzSJER6jIfEtFYgTHaTzk6fwyCoDGEllSxg4V79PpIhrPeGh7eTIjPRvbyb+5fmJic6DlIo4MUTgxaIoYdBIOPsfDqgi2LCJJQgram+FeIQUwsamVLAhfH0K/yftasWrV2o3p6VGI4sjDw7AISgDD5yBBrgCTdACGEjwAJ7As2OcR+fFeV205pxsZh/8gPP2CSaakIc=</latexit>

SO(3)
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Qubit	Bloch	ball

<latexit sha1_base64="vQO5EcD5mSItZlB3ZHtb24Fg8Gc="></latexit>

⇢ =
1

2
1+ ~r · ~� =

1

2

✓
1 + z x� iy
x+ iy 1� z

◆

<latexit sha1_base64="4KnngJlIP/GyYva8ARLZdVleRGM=">AAACKnicbVDLSgMxFM34tr6qLt0Ei6AgZUZ8bYSKGxcuFKwKTSmZ9E4bzEzG5I5Spv0eN/6Kmy4UceuHmNYufB24cHLOveTeE6ZKWvT9N29sfGJyanpmtjA3v7C4VFxeubI6MwKqQittbkJuQckEqihRwU1qgMehguvw9mTgX9+DsVInl9hJoR7zViIjKTg6qVE8zpmJKZreJjNtvXUUbLO7jDfp4MVacEd9ys4gQiNbbeTG6AfaZfcgqOky5eyg3CiW/LI/BP1LghEpkRHOG8U+a2qRxZCgUNzaWuCnWM+5QSkU9Aoss5BycctbUHM04THYej48tUc3nNKkkTauEqRD9ftEzmNrO3HoOmOObfvbG4j/ebUMo8N6LpM0Q0jE10dRpihqOsiNNqUBgarjCBdGul2paHPDBbp0Cy6E4PfJf8nVTjnYL+9d7JYqlVEcM2SNrJNNEpADUiGn5JxUiSCP5Jm8kFfvyet7b977V+uYN5pZJT/gfXwCB/+mbA==</latexit>

tr(⇢) = 1, ⇢ � 0 , |~r|  1.

<latexit sha1_base64="k4HdsfS7lOL8lhuuUylfiJuCeY8=">AAACBXicdVBPS8MwHE39O+e/qkc9BIfgabTDTb0NvHicYLfBWkeapl1YmpYkFUbZxYtfxYsHRbz6Hbz5bUy3Cir6IPDy3u9H8p6fMiqVZX0YC4tLyyurlbXq+sbm1ra5s9uVSSYwcXDCEtH3kSSMcuIoqhjpp4Kg2Gek548vCr93S4SkCb9Wk5R4MYo4DSlGSktD88AVo8SNUSpVAh1Y3KBz4wYoiogYmjWrbs0A58RuaNK07PNWC9qlVQMlOkPz3Q0SnMWEK8yQlAPbSpWXI6EoZmRadTNJUoTHKCIDTTmKifTyWYopPNJKAMNE6MMVnKnfN3IUSzmJfT0ZIzWSv71C/MsbZCo883LK00wRjucPhRmDOnFRCQyoIFixiSYIC6r/CvEICYSVLq6qS/hKCv8n3UbdbtWbVye1drusowL2wSE4BjY4BW1wCTrAARjcgQfwBJ6Ne+PReDFe56MLRrmzB37AePsEEnyYUQ==</latexit>

⇢ 7! U⇢U† <latexit sha1_base64="jZZa5esFLtB6gIFfFwK0lCpy6iM=">AAACAnicdVDNSsNAGNzUv1r/op7Ey2IRPJWk2Kq3ghePVUxbaELYbDft0s0m7G4KJRQvvooXD4p49Sm8+TZumwgqOrAwzHwf384ECaNSWdaHUVpaXlldK69XNja3tnfM3b2OjFOBiYNjFotegCRhlBNHUcVILxEERQEj3WB8Ofe7EyIkjfmtmibEi9CQ05BipLTkmwfuhGAooBuhRKoY3vgOzCXfrFo1awGYE7uuScOyL5pNaBdWFRRo++a7O4hxGhGuMENS9m0rUV6GhKKYkVnFTSVJEB6jIelrylFEpJctIszgsVYGMIyFflzBhfp9I0ORlNMo0JMRUiP525uLf3n9VIXnXkZ5kirCcX4oTBnUWed9wAEVBCs21QRhQfVfIR4hgbDSrVV0CV9J4f+kU6/ZzVrj+rTaahV1lMEhOAInwAZnoAWuQBs4AIM78ACewLNxbzwaL8ZrPloyip198APG2yfgdZZ5</latexit>

~r 7! RU~r
<latexit sha1_base64="fLNUfws9nAcUI8nm+GGAZ1Y0jO0=">AAAB83icdVBNS8NAEJ3Ur1q/qh69LBahXkpSbNVbwYvHiqYtNKFstpt26W4SdjdCCf0bXjwo4tU/481/47aNoKIPBh7vzTAzL0g4U9q2P6zCyura+kZxs7S1vbO7V94/6Kg4lYS6JOax7AVYUc4i6mqmOe0lkmIRcNoNJldzv3tPpWJxdKenCfUFHkUsZARrI3mZJwVq37qzav10UK7YNXsBtCRO3ZCG7Vw2m8jJrQrkaA/K794wJqmgkSYcK9V37ET7GZaaEU5nJS9VNMFkgke0b2iEBVV+trh5hk6MMkRhLE1FGi3U7xMZFkpNRWA6BdZj9dubi395/VSHF37GoiTVNCLLRWHKkY7RPAA0ZJISzaeGYCKZuRWRMZaYaBNTyYTw9Sn6n3TqNadZa9ycVVqtPI4iHMExVMGBc2jBNbTBBQIJPMATPFup9Wi9WK/L1oKVzxzCD1hvn9AzkOY=</latexit>

PSU(2)
<latexit sha1_base64="jswrkoEYdXYdpI5x8dLJ2Y8R86Q=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoMQL2E3mqi3gBdvRjQP2CxhdjKbDJnHMjMrhCWf4cWDIl79Gm/+jZNkBRUtaCiquunuCmNGtXHdDye3tLyyupZfL2xsbm3vFHf32lomCpMWlkyqbog0YVSQlqGGkW6sCOIhI51wfDnzO/dEaSrFnZnEJOBoKGhEMTJW8tOe4vD2elo+Oe4XS27FnQMuiFe1pOZ6F/U69DKrBDI0+8X33kDihBNhMENa+54bmyBFylDMyLTQSzSJER6jIfEtFYgTHaTzk6fwyCoDGEllSxg4V79PpIhrPeGh7eTIjPRvbyb+5fmJic6DlIo4MUTgxaIoYdBIOPsfDqgi2LCJJQgram+FeIQUwsamVLAhfH0K/yftasWrV2o3p6VGI4sjDw7AISgDD5yBBrgCTdACGEjwAJ7As2OcR+fFeV205pxsZh/8gPP2CSaakIc=</latexit>

SO(3)

InvitaGon:	the	qubit	and	spaGal	rotaGons



Today

2.	Some	history:	von	Weizsäcker	&	Wootters

3.	Relativity	of	simultaneity	and	the	qubit

1.	Motivation



Today

2.	Some	history:	von	Weizsäcker	&	Wootters

3.	Relativity	of	simultaneity	and	the	qubit

1.	Motivation



MoGvaGon

• New	(“semi-device-independent”)	quantum	informaDon	protocols:	
inputs	/	outputs	now	spaGotemporal	DOFs.



MoGvaGon

• New	(“semi-device-independent”)	quantum	informaDon	protocols:	
inputs	/	outputs	now	spaGotemporal	DOFs.

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)



MoGvaGon

• New	(“semi-device-independent”)	quantum	informaDon	protocols:	
inputs	/	outputs	now	spaGotemporal	DOFs.

• Rigorous	insights	into	the	structural	architecture	of	physics	
(geometry	vs.	probability)	
												very	modest	steps	towards	QG?

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)
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Quantum	gravity:	an	analogy

Wanted:	a	complete	theory	of	evoluDon.
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The system (22) - (25) is not a null-tetrad. The dreibein-frame (!x, !y, !z) is a tangent-space
at the point (w, x, y, z) = (1, 0, 0, 0) of S3 according to (5) such that (2) becomes the identity
matrix 1l2×2. The dreibein (23) - (25) must be SO(4)-rotated in order to get a tangent-space at
each point of S3.

2.3 The Quantized Ur-Tetrad

Up to this point we have used urs as spinorial wavefunctions, i.e., we considered an ur as the first
step of quantization of a simple alternative. The second quantization is done by the replacement
ur → âr and u∗

r → â+
r and the Bose commutation relations

[âr, â
+
s ] = δrs, [âr, âs] = [â+

r , â+
s ] = 0. (26)

Thus, we get a quantum field theory of urs, i.e., a many-ur - theory with a variable number
of urs. Consequently from (26) the quantization of the ur-tetrad (22) - (25) follows. We use a
special choise of the components of the bispinorial ur

(

u
u∗

)

, i.e., ur with r=1...4 (u∗ denotes an
anti-ur), which belongs to a representation of SL(2,C) ⊕ SL∗(2,C)

u1 = a eiϕ, u2 = −b∗ eiϕ, u3 = b eiϕ, u4 = a∗ eiϕ,

u∗
1 = a∗ e−iϕ, u∗

2 = −b e−iϕ, u∗
3 = b∗ e−iϕ, u∗

4 = a e−iϕ.
(27)
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Thus, we can associate with each value of 6I a
region of uncertainty, extending from 0 —Ag to
8+ LH, whose size could in principle depend on 8
since both p and dp/d8 on the right-hand side of
Eq. (1) depend on 8. Let us call two neighboring

~8 —8 ~-~8+t 8 . (2)

We now define the statistical distance d(8„8,)
between any two orientations 9, and 9, to be

orientations 8 and 8' distinguiskgblein n trials
if their regions of uncertainty do not overlap, that
is, if

I

d(8„8,) = lim x[maximum number of intermediate orientations each of which is
tl

distinguishable (in n trials) from its neighbors].

In other words, the statistical distance is obtained
essentially by counting the number of distinguish-
able orientations between 0, and 9,. The factor
n ' ' is included so that the limit will exist, the
number of distinguishable orientations going as
n' '. The statistical distance is intended to be a
measure of how far apart 8, and e, are in a statis-
tical sense. It does not have anything to do,
a priori, with the, usual notion of distance (or
angle) between 8, and 8„which is

~ 8, —8, ~
. We

now show, however, that these two kinds of dis-
tance are in fact the same.
From Eqs. (1)-(3) we obtain the following ex-

pression for statistical distance in terms of the
function p(8) (aseuming that 8, ~ 8,):" d8 " Idpld81

2~8 2[p(1-p)]»2 '

Upon substituting the actual form of the probability
law p(8) = cos'8 into this expression, we find that
the statistical distance is

d(8„82)= 82 —8j;
that is, it is equal to the angle between the two
orientations. This equality expresses the main re-
sult of this paper as it applies to the simple case
of linear polarization of photons.
The fact that the proportionality constant be-

tween statistical distance and "actual distance" is
unity is not particularly significant; it is due to
our decision to divide by Mn in Eq. (3) rather than
by some multiple of ~n. However, the propor-
tionality itself is nontrivial and depends on the
fact that

something which would typically not be true if
the probability law were different from p(8)
= cos'8. In fact, the only periodic functions (with
period 2v) satisfying Eq. (4) are those of the form

P(8) = cos' —(8 —8,)
where m is an integer and 90 is a constant. Thus,

I

if one were to demand of nature that the statistical
distance be proportional to ~8, —82 ~, the cos
shape of the probability function would follow ne-
cessarily.
Another way of stating the above result is as

follows. In the sequence of orientations given by
(8=0, 8=q, 8=2g, .. .), all the orientations are
equally distinguishable from their respective
neighbors. This would follow trivially from rota-
tional invariance if the nicol prism were allowed
to be rotated. But w'e have assumed that the
prism is fixed, and this is why the result is not
empty.
In the above discussion, we defined statistical

distance directly on the set of orientations of the
polarizing filter. In the more general case—in-
cluding measurements with more than two possible
outcomes, also including elliptical polarizations in
the case of photons —we must use a more round-
about approach. We first define in Sec. II the
concept of statistical distance on probability
space, a concept which applies to any probabilistic
experiment, such as the throwing of dice. We then
adapt this idea to quantum measurements in Sec.
III. Finally, in Sec. IV we discuss the possible
significance of the equivalence between statistical
distance and angle in Hilbert space.

II. STATISTICAL DISTANCE ON PROBABILITY
SPACE

The concept of statistical distance is quite in-
dependent of quantum mechanics and can be de-
fined on any probability space. To emphasize
this point, we now define the statistical distance
between two differently weighted coins.
In a case such as this where there are exactly

two possible outcomes, the probability space is
one-dimensional, every coin being characterized
by its probability of heads. The statistical dis-
tance d(p„p2) between two coins with probabil-
ities p, and p, of heads is defined in a way anal-
ogous to that of the preceding section:
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I.' INTRODUCTION: PHOTON POLARIZATION

If someone tosses a coin one hundred times and
finds that "heads" occurs thirty times, he will
conclude that the probability of heads is roughly
0.30 (the coin is weighted unusually). However,
because of the unavoidable statistical fluctuations
associated with a finite sample, he cannot know
the value of this probability exactly. In the above
example the probability of heads may well be
around 0.26 or 0.34. The same thing happens in
quantum measurements. If a finite ensemble of
identically prepared quantum systems is analyzed
by some fixed measuring device, the observed
frequencies of occurrence of the various outcomes
typically differ somewhat from the actual prob-
abilities. Because. of this statistical error, one
cannot necessarily distinguish (in a fixed number
of trials) between two slightly different prepara-
tions of the same quantum systems. We can say
that two preparations are indistinguishable in a
given number of trials if the difference in the
actual probabilities is smaller than the size of a
typical fluctuation.
In the present paper we use this idea of disting-

uishability to define a notion of distance, called
"statistical distance, "between quantum prepara-
tions. The definition involves counting the number
of distinguishable states between two given states,
when all states are analyzed by the same measur-
ing device. Statistical distance is determined en-
tirely by the size of statistical fluctuations, and has
nothing particularly to do with the usual distance be-
tween pure states, i.e. , the angle between rays in
a Hilbert space. We shall find, however, that nature
rather mysteriously makes these two kinds of dis-
tance identical. This will be our main result. It
shows that there is a definite mathematical connec-
tion between the ubiquitous statistical fluctuations
in the outcomes of measurements and the geome-
try of the set of states.
The concept of statistical distance is most easily

introduced in terms of photons and polarizing
filters. Imagine a beam of photons prepared by a

polarizing filter and analyzed by a nicol prism.
Let 9 c [0, v] be the angle by which the filter has
been rotated (say, clockwise as viewed from the
nicol prism) around the axis of the beam, starting
from a standard position (8=0) in which the filter's
preferred axis is vertical. The filter is unmarked
so that one cannot tell just by looking at it which
axis is the preferred one.
Each photon, when it encounters the nicol

prism, has exactly two options: to pass straight
through the prism (call this the "yes" outcome)
or to be deflected in a specific direction char-
acteristic of the prism (the "no" outcome). Let
us assume that the orientation of the nicol prism
is fixed once and for all in such a way that ver-
tically polarized photons always pass straight
through. By counting how many photons yield each
of the two possible outcomes, an experimenter
can learn something about the value of 0 via the
formula p = cos'8, where p is the probability of
yes.
Let us now suppose that the experimenter, in

making his determination of the value of 8, has
only a limited number of photons to work with,
so that precisely n photons actually pass through
the filter to be analyzed by the nicol prism. Then,
because of the statistical fluctuations associated
with a finite sample, the observed frequency of
occurrence of yes is only an approximation to the
actual probability of yes, the typical error being
of the order of n ' '. More precisely, the experi-
menter's uncertainty (root-mean-square deviation)
in the value of p is"

p(l-p) '"
n

(This expression for hp follows from elementary
probability theory without any input from physics.
The same formula would apply, for example, if
one were trying to find the probability of heads of
a weighted coin. ) This uncertainty causes the, ex-
perimenter to be uncertain of the value of I9 by an
amount
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tions. The definition involves counting the number
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nothing particularly to do with the usual distance be-
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tion between the ubiquitous statistical fluctuations
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The concept of statistical distance is most easily

introduced in terms of photons and polarizing
filters. Imagine a beam of photons prepared by a
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Let 9 c [0, v] be the angle by which the filter has
been rotated (say, clockwise as viewed from the
nicol prism) around the axis of the beam, starting
from a standard position (8=0) in which the filter's
preferred axis is vertical. The filter is unmarked
so that one cannot tell just by looking at it which
axis is the preferred one.
Each photon, when it encounters the nicol

prism, has exactly two options: to pass straight
through the prism (call this the "yes" outcome)
or to be deflected in a specific direction char-
acteristic of the prism (the "no" outcome). Let
us assume that the orientation of the nicol prism
is fixed once and for all in such a way that ver-
tically polarized photons always pass straight
through. By counting how many photons yield each
of the two possible outcomes, an experimenter
can learn something about the value of 0 via the
formula p = cos'8, where p is the probability of
yes.
Let us now suppose that the experimenter, in

making his determination of the value of 8, has
only a limited number of photons to work with,
so that precisely n photons actually pass through
the filter to be analyzed by the nicol prism. Then,
because of the statistical fluctuations associated
with a finite sample, the observed frequency of
occurrence of yes is only an approximation to the
actual probability of yes, the typical error being
of the order of n ' '. More precisely, the experi-
menter's uncertainty (root-mean-square deviation)
in the value of p is"

p(l-p) '"
n

(This expression for hp follows from elementary
probability theory without any input from physics.
The same formula would apply, for example, if
one were trying to find the probability of heads of
a weighted coin. ) This uncertainty causes the, ex-
perimenter to be uncertain of the value of I9 by an
amount
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Thus, we can associate with each value of 6I a
region of uncertainty, extending from 0 —Ag to
8+ LH, whose size could in principle depend on 8
since both p and dp/d8 on the right-hand side of
Eq. (1) depend on 8. Let us call two neighboring

~8 —8 ~-~8+t 8 . (2)

We now define the statistical distance d(8„8,)
between any two orientations 9, and 9, to be

orientations 8 and 8' distinguiskgblein n trials
if their regions of uncertainty do not overlap, that
is, if

I

d(8„8,) = lim x[maximum number of intermediate orientations each of which is
tl

distinguishable (in n trials) from its neighbors].

In other words, the statistical distance is obtained
essentially by counting the number of distinguish-
able orientations between 0, and 9,. The factor
n ' ' is included so that the limit will exist, the
number of distinguishable orientations going as
n' '. The statistical distance is intended to be a
measure of how far apart 8, and e, are in a statis-
tical sense. It does not have anything to do,
a priori, with the, usual notion of distance (or
angle) between 8, and 8„which is

~ 8, —8, ~
. We

now show, however, that these two kinds of dis-
tance are in fact the same.
From Eqs. (1)-(3) we obtain the following ex-

pression for statistical distance in terms of the
function p(8) (aseuming that 8, ~ 8,):" d8 " Idpld81

2~8 2[p(1-p)]»2 '

Upon substituting the actual form of the probability
law p(8) = cos'8 into this expression, we find that
the statistical distance is

d(8„82)= 82 —8j;
that is, it is equal to the angle between the two
orientations. This equality expresses the main re-
sult of this paper as it applies to the simple case
of linear polarization of photons.
The fact that the proportionality constant be-

tween statistical distance and "actual distance" is
unity is not particularly significant; it is due to
our decision to divide by Mn in Eq. (3) rather than
by some multiple of ~n. However, the propor-
tionality itself is nontrivial and depends on the
fact that

something which would typically not be true if
the probability law were different from p(8)
= cos'8. In fact, the only periodic functions (with
period 2v) satisfying Eq. (4) are those of the form

P(8) = cos' —(8 —8,)
where m is an integer and 90 is a constant. Thus,

I

if one were to demand of nature that the statistical
distance be proportional to ~8, —82 ~, the cos
shape of the probability function would follow ne-
cessarily.
Another way of stating the above result is as

follows. In the sequence of orientations given by
(8=0, 8=q, 8=2g, .. .), all the orientations are
equally distinguishable from their respective
neighbors. This would follow trivially from rota-
tional invariance if the nicol prism were allowed
to be rotated. But w'e have assumed that the
prism is fixed, and this is why the result is not
empty.
In the above discussion, we defined statistical

distance directly on the set of orientations of the
polarizing filter. In the more general case—in-
cluding measurements with more than two possible
outcomes, also including elliptical polarizations in
the case of photons —we must use a more round-
about approach. We first define in Sec. II the
concept of statistical distance on probability
space, a concept which applies to any probabilistic
experiment, such as the throwing of dice. We then
adapt this idea to quantum measurements in Sec.
III. Finally, in Sec. IV we discuss the possible
significance of the equivalence between statistical
distance and angle in Hilbert space.

II. STATISTICAL DISTANCE ON PROBABILITY
SPACE

The concept of statistical distance is quite in-
dependent of quantum mechanics and can be de-
fined on any probability space. To emphasize
this point, we now define the statistical distance
between two differently weighted coins.
In a case such as this where there are exactly

two possible outcomes, the probability space is
one-dimensional, every coin being characterized
by its probability of heads. The statistical dis-
tance d(p„p2) between two coins with probabil-
ities p, and p, of heads is defined in a way anal-
ogous to that of the preceding section:
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because of the unavoidable statistical fluctuations
associated with a finite sample, he cannot know
the value of this probability exactly. In the above
example the probability of heads may well be
around 0.26 or 0.34. The same thing happens in
quantum measurements. If a finite ensemble of
identically prepared quantum systems is analyzed
by some fixed measuring device, the observed
frequencies of occurrence of the various outcomes
typically differ somewhat from the actual prob-
abilities. Because. of this statistical error, one
cannot necessarily distinguish (in a fixed number
of trials) between two slightly different prepara-
tions of the same quantum systems. We can say
that two preparations are indistinguishable in a
given number of trials if the difference in the
actual probabilities is smaller than the size of a
typical fluctuation.
In the present paper we use this idea of disting-

uishability to define a notion of distance, called
"statistical distance, "between quantum prepara-
tions. The definition involves counting the number
of distinguishable states between two given states,
when all states are analyzed by the same measur-
ing device. Statistical distance is determined en-
tirely by the size of statistical fluctuations, and has
nothing particularly to do with the usual distance be-
tween pure states, i.e. , the angle between rays in
a Hilbert space. We shall find, however, that nature
rather mysteriously makes these two kinds of dis-
tance identical. This will be our main result. It
shows that there is a definite mathematical connec-
tion between the ubiquitous statistical fluctuations
in the outcomes of measurements and the geome-
try of the set of states.
The concept of statistical distance is most easily

introduced in terms of photons and polarizing
filters. Imagine a beam of photons prepared by a

polarizing filter and analyzed by a nicol prism.
Let 9 c [0, v] be the angle by which the filter has
been rotated (say, clockwise as viewed from the
nicol prism) around the axis of the beam, starting
from a standard position (8=0) in which the filter's
preferred axis is vertical. The filter is unmarked
so that one cannot tell just by looking at it which
axis is the preferred one.
Each photon, when it encounters the nicol

prism, has exactly two options: to pass straight
through the prism (call this the "yes" outcome)
or to be deflected in a specific direction char-
acteristic of the prism (the "no" outcome). Let
us assume that the orientation of the nicol prism
is fixed once and for all in such a way that ver-
tically polarized photons always pass straight
through. By counting how many photons yield each
of the two possible outcomes, an experimenter
can learn something about the value of 0 via the
formula p = cos'8, where p is the probability of
yes.
Let us now suppose that the experimenter, in

making his determination of the value of 8, has
only a limited number of photons to work with,
so that precisely n photons actually pass through
the filter to be analyzed by the nicol prism. Then,
because of the statistical fluctuations associated
with a finite sample, the observed frequency of
occurrence of yes is only an approximation to the
actual probability of yes, the typical error being
of the order of n ' '. More precisely, the experi-
menter's uncertainty (root-mean-square deviation)
in the value of p is"

p(l-p) '"
n

(This expression for hp follows from elementary
probability theory without any input from physics.
The same formula would apply, for example, if
one were trying to find the probability of heads of
a weighted coin. ) This uncertainty causes the, ex-
perimenter to be uncertain of the value of I9 by an
amount
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through the prism (call this the "yes" outcome)
or to be deflected in a specific direction char-
acteristic of the prism (the "no" outcome). Let
us assume that the orientation of the nicol prism
is fixed once and for all in such a way that ver-
tically polarized photons always pass straight
through. By counting how many photons yield each
of the two possible outcomes, an experimenter
can learn something about the value of 0 via the
formula p = cos'8, where p is the probability of
yes.
Let us now suppose that the experimenter, in

making his determination of the value of 8, has
only a limited number of photons to work with,
so that precisely n photons actually pass through
the filter to be analyzed by the nicol prism. Then,
because of the statistical fluctuations associated
with a finite sample, the observed frequency of
occurrence of yes is only an approximation to the
actual probability of yes, the typical error being
of the order of n ' '. More precisely, the experi-
menter's uncertainty (root-mean-square deviation)
in the value of p is"

p(l-p) '"
n

(This expression for hp follows from elementary
probability theory without any input from physics.
The same formula would apply, for example, if
one were trying to find the probability of heads of
a weighted coin. ) This uncertainty causes the, ex-
perimenter to be uncertain of the value of I9 by an
amount
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dP ~p dP P( —P)
6 Id

Thus, we can associate with each value of 6I a
region of uncertainty, extending from 0 —Ag to
8+ LH, whose size could in principle depend on 8
since both p and dp/d8 on the right-hand side of
Eq. (1) depend on 8. Let us call two neighboring

~8 —8 ~-~8+t 8 . (2)

We now define the statistical distance d(8„8,)
between any two orientations 9, and 9, to be

orientations 8 and 8' distinguiskgblein n trials
if their regions of uncertainty do not overlap, that
is, if

I

d(8„8,) = lim x[maximum number of intermediate orientations each of which is
tl

distinguishable (in n trials) from its neighbors].

In other words, the statistical distance is obtained
essentially by counting the number of distinguish-
able orientations between 0, and 9,. The factor
n ' ' is included so that the limit will exist, the
number of distinguishable orientations going as
n' '. The statistical distance is intended to be a
measure of how far apart 8, and e, are in a statis-
tical sense. It does not have anything to do,
a priori, with the, usual notion of distance (or
angle) between 8, and 8„which is

~ 8, —8, ~
. We

now show, however, that these two kinds of dis-
tance are in fact the same.
From Eqs. (1)-(3) we obtain the following ex-

pression for statistical distance in terms of the
function p(8) (aseuming that 8, ~ 8,):" d8 " Idpld81

2~8 2[p(1-p)]»2 '

Upon substituting the actual form of the probability
law p(8) = cos'8 into this expression, we find that
the statistical distance is

d(8„82)= 82 —8j;
that is, it is equal to the angle between the two
orientations. This equality expresses the main re-
sult of this paper as it applies to the simple case
of linear polarization of photons.
The fact that the proportionality constant be-

tween statistical distance and "actual distance" is
unity is not particularly significant; it is due to
our decision to divide by Mn in Eq. (3) rather than
by some multiple of ~n. However, the propor-
tionality itself is nontrivial and depends on the
fact that

something which would typically not be true if
the probability law were different from p(8)
= cos'8. In fact, the only periodic functions (with
period 2v) satisfying Eq. (4) are those of the form

P(8) = cos' —(8 —8,)
where m is an integer and 90 is a constant. Thus,

I

if one were to demand of nature that the statistical
distance be proportional to ~8, —82 ~, the cos
shape of the probability function would follow ne-
cessarily.
Another way of stating the above result is as

follows. In the sequence of orientations given by
(8=0, 8=q, 8=2g, .. .), all the orientations are
equally distinguishable from their respective
neighbors. This would follow trivially from rota-
tional invariance if the nicol prism were allowed
to be rotated. But w'e have assumed that the
prism is fixed, and this is why the result is not
empty.
In the above discussion, we defined statistical

distance directly on the set of orientations of the
polarizing filter. In the more general case—in-
cluding measurements with more than two possible
outcomes, also including elliptical polarizations in
the case of photons —we must use a more round-
about approach. We first define in Sec. II the
concept of statistical distance on probability
space, a concept which applies to any probabilistic
experiment, such as the throwing of dice. We then
adapt this idea to quantum measurements in Sec.
III. Finally, in Sec. IV we discuss the possible
significance of the equivalence between statistical
distance and angle in Hilbert space.

II. STATISTICAL DISTANCE ON PROBABILITY
SPACE

The concept of statistical distance is quite in-
dependent of quantum mechanics and can be de-
fined on any probability space. To emphasize
this point, we now define the statistical distance
between two differently weighted coins.
In a case such as this where there are exactly

two possible outcomes, the probability space is
one-dimensional, every coin being characterized
by its probability of heads. The statistical dis-
tance d(p„p2) between two coins with probabil-
ities p, and p, of heads is defined in a way anal-
ogous to that of the preceding section:
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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TA
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=

Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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TA

TB = TA
–1

=

Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that

7

<latexit sha1_base64="OjKTxTKcPlHJKnYOd01FXPjEiCg=">AAAB73icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VrCm0oWw2L+3SzSbsboQS+iO8eFAQr/4db/4bt20O2jqwMMzMY9+bMBNcG9f9dipr6xubW9Xt2s7u3v5B/fDoUae5YthhqUhVN6QaBZfYMdwI7GYKaRIK9MPx7cz3n1BpnsoHM8kwSOhQ8pgzaqzk94WNRnRQb7hNdw6ySrySNKBEe1D/6kcpyxOUhgmqdc9zMxMUVBnOBE5r/VxjRtmYDrFnqaQJ6qCYrzslZ1aJSJwq+6Qhc/X3REETrSdJaJMJNSO97M3E/7xebuLroOAyyw1KtvgozgUxKZndTiKukBkxsYQyxe2uhI2ooszYhmq2BG/55FXiXzS9y6bn3V82WjdlH1U4gVM4Bw+uoAV30IYOMBjDM7zCm5M5L86787GIVpxy5hj+wPn8AdUhj7Y=</latexit>

�

Black	boxes	and	correlaGons



• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that

7

• In	quantum	physics:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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Black	boxes	and	correlaGons



• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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• In	quantum	physics:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.
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<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.
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Black	boxes	and	correlaGons

Why	study	such	correlations?	
• Foundational:	“Why”	does	nature	admit	Q	but	not	
more?	Principles?		

• Applications	in	DI-independent	protocols.



Single	black	boxes

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	/	or	outputs)	
are	spatiotemporal	quantities?

R Rd
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2J
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Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seWngs.

What	if	inputs	(and	/	or	outputs)	
are	spatiotemporal	quantities?



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seWngs.

• Study	interplay	of	probability,	space	and	Dme	under	minimal	
assumpGons	(even	without	assuming	QT).

What	if	inputs	(and	/	or	outputs)	
are	spatiotemporal	quantities?



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seWngs.

• Study	interplay	of	probability,	space	and	Dme	under	minimal	
assumpGons	(even	without	assuming	QT).

• Use	spaceGme	symmetries	in	protocols?

What	if	inputs	(and	/	or	outputs)	
are	spatiotemporal	quantities?



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seWngs.

• Study	interplay	of	probability,	space	and	Dme	under	minimal	
assumpGons	(even	without	assuming	QT).

• Use	spaceGme	symmetries	in	protocols?

• How	could	possible	beyond-quantum	physics	fit	into	space	and	Gme?

What	if	inputs	(and	/	or	outputs)	
are	spatiotemporal	quantities?



Example:	Stern-Gerlach	experiment



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcGon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaGal	rotaGon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcGon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaGal	rotaGon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcGon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaGal	rotaGon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.

• Manifold	of	inputs:	the	unit	sphere,
<latexit sha1_base64="KptQG99GS8cFf5fV6euSdliAKy8=">AAACBnicbZDNSgMxFIUz9a/Wv1GXuggWod2MM7WgG6Hoxp2VWltox5JJM21oJjMkGaEM3bjxVdy4UBC3PoM738a0HURbDwQ+zr2Xm3u8iFGpbPvLyCwsLi2vZFdza+sbm1vm9s6tDGOBSR2HLBRND0nCKCd1RRUjzUgQFHiMNLzBxbjeuCdC0pDfqGFE3AD1OPUpRkpbHXO/dlc6S9oigLWrUeG4ePTDpaLVMfO2ZU8E58FJIQ9SVTvmZ7sb4jggXGGGpGw5dqTcBAlFMSOjXDuWJEJ4gHqkpZGjgEg3mVwxgofa6UI/FPpxBSfu74kEBVIOA093Bkj15WxtbP5Xa8XKP3UTyqNYEY6ni/yYQRXCcSSwSwXBig01ICyo/ivEfSQQVjq4nA7BmT15HholyylbjnNdzlfO0zyyYA8cgAJwwAmogEtQBXWAwQN4Ai/g1Xg0no03433amjHSmV3wR8bHN259lmo=</latexit>

S2
= SO(3)/SO(2).



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcGon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaGal	rotaGon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.

• Manifold	of	inputs:	the	unit	sphere,
<latexit sha1_base64="KptQG99GS8cFf5fV6euSdliAKy8=">AAACBnicbZDNSgMxFIUz9a/Wv1GXuggWod2MM7WgG6Hoxp2VWltox5JJM21oJjMkGaEM3bjxVdy4UBC3PoM738a0HURbDwQ+zr2Xm3u8iFGpbPvLyCwsLi2vZFdza+sbm1vm9s6tDGOBSR2HLBRND0nCKCd1RRUjzUgQFHiMNLzBxbjeuCdC0pDfqGFE3AD1OPUpRkpbHXO/dlc6S9oigLWrUeG4ePTDpaLVMfO2ZU8E58FJIQ9SVTvmZ7sb4jggXGGGpGw5dqTcBAlFMSOjXDuWJEJ4gHqkpZGjgEg3mVwxgofa6UI/FPpxBSfu74kEBVIOA093Bkj15WxtbP5Xa8XKP3UTyqNYEY6ni/yYQRXCcSSwSwXBig01ICyo/ivEfSQQVjq4nA7BmT15HholyylbjnNdzlfO0zyyYA8cgAJwwAmogEtQBXWAwQN4Ai/g1Xg0no03433amjHSmV3wR8bHN259lmo=</latexit>

S2
= SO(3)/SO(2).

• In	general,	inputs	are	elements	of	a	homogeneous	space,
<latexit sha1_base64="SdLlbRE4auj+NWprLJY6uu8b7sk=">AAACAnicbZDNSsNAFIVv6l+tf1E3gptgEVzFRAq6LLqwywrWFtpQJtNJO3QyCTMToYS48VXcuFAQtz6FO9/GSRtEWw8MfJx7L3Pv8WNGpXKcL6O0tLyyulZer2xsbm3vmLt7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2x1d5vX1PhKQRv1WTmHghGnIaUIyUtvrmQS9EaoQRS6+z0x9uZHbfrDq2M5W1CG4BVSjU7JufvUGEk5BwhRmSsus6sfJSJBTFjGSVXiJJjPAYDUlXI0chkV46vSCzjrUzsIJI6MeVNXV/T6QolHIS+roz31HO13Lzv1o3UcGFl1IeJ4pwPPsoSJilIiuPwxpQQbBiEw0IC6p3tfAICYSVDq2iQ3DnT16E9pnt1mzXvalV65dFHmU4hCM4ARfOoQ4NaEILMDzAE7zAq/FoPBtvxvustWQUM/vwR8bHNxmVlxw=</latexit>

G/H.
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SpaceGme	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup



SpaceGme	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Stern-Gerlach	experiment
<latexit sha1_base64="JMsOo5FCUx3xDuSW4CnCRcKumOg=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSaEEvQsGD3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2FxaXlldXSWnl9Y3Nr297ZfVBRIjFp4YhFshMgRRgVpKWpZqQTS4J4wEg7GF3mfvuRSEUjca/HMfE5GggaUoy0kXr2vseRHmLE0qvsIvUkh3c3WfX0uGdXnJozAZwnbkEqoECzZ395/QgnnAiNGVKq6zqx9lMkNcWMZGUvUSRGeIQGpGuoQJwoP508kMEjo/RhGElTQsOJ+nsiRVypMQ9MZ36umvVy8T+vm+jw3E+piBNNBJ4uChMGdQTzNGCfSoI1GxuCsKTmVoiHSCKsTWZlE4I7+/I8aZ/U3HrNdW/rlUajyKMEDsAhqAIXnIEGuAZN0AIYZOAZvII368l6sd6tj2nrglXM7IE/sD5/ADhAlfM=</latexit>

G = SO(3) (spaGal	rotaGons)
<latexit sha1_base64="Coj8Yg2sYsp7iU1GyGkOmwXihZU=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSlIJehIKX3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2V1bX1jc3SVnl7Z3dv3z44fFBRIjHp4IhFshcgRRgVpKOpZqQXS4J4wEg3mFznfveRSEUjca+nMfE5GgkaUoy0kQb2sceRHmPE0lZ2lXqSw7ubrFo/H9gVp+bMAJeJW5AKKNAe2F/eMMIJJ0JjhpTqu06s/RRJTTEjWdlLFIkRnqAR6RsqECfKT2cPZPDMKEMYRtKU0HCm/p5IEVdqygPTmZ+rFr1c/M/rJzq89FMq4kQTgeeLwoRBHcE8DTikkmDNpoYgLKm5FeIxkghrk1nZhOAuvrxMuvWa26i57m2j0mwWeZTACTgFVeCCC9AELdAGHYBBBp7BK3iznqwX6936mLeuWMXMEfgD6/MHOEyV8w==</latexit>

H = SO(2) (axial	symmetry	of	magneGc	field)
<latexit sha1_base64="TUzV7CTzfI8zI5I/5dS4dQZlkHA=">AAACD3icbZDNSsNAFIUn/tb6F3XpZrAUXNWkFHQjFFzYZUVrC00sk+mkHTqZhJlJsYQ8gRtfxY0LBXHr1p1v46QNoq0HBj7OvZe593gRo1JZ1pextLyyurZe2Chubm3v7Jp7+7cyjAUmLRyyUHQ8JAmjnLQUVYx0IkFQ4DHS9kYXWb09JkLSkN+oSUTcAA049SlGSls9s+yMCU7uU4dyJ0BqiBFLLtOTH26k59d31Z5ZsirWVHAR7BxKIFezZ346/RDHAeEKMyRl17Yi5SZIKIoZSYtOLEmE8AgNSFcjRwGRbjI9J4Vl7fShHwr9uIJT9/dEggIpJ4GnO7M15XwtM/+rdWPln7kJ5VGsCMezj/yYQRXCLBvYp4JgxSYaEBZU7wrxEAmElU6wqEOw509ehHa1Ytcqtn1VK9XreR4FcAiOwDGwwSmogwZoghbA4AE8gRfwajwaz8ab8T5rXTLymQPwR8bHN4B6nMs=</latexit>

~x 2 G/H = S2 (unit	vector:	field	direcGon)

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H



SpaceGme	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Polarizer,
(rotaGons	around	beam	axis)

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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<latexit sha1_base64="M10ismzGHcg260B1/ID38qYHMIc=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBahXkIiBT0WvXisYG2hCWWy3bRLN5tldyOU2L/hxYOCePXHePPfuG1z0NYHA4/3ZpiZF0nOtPG8b6e0tr6xuVXeruzs7u0fVA+PHnSaKULbJOWp6kagKWeCtg0znHalopBEnHai8c3M7zxSpVkq7s1E0jCBoWAxI2CsFLTq8BQAlyM4d/vVmud6c+BV4hekhgq0+tWvYJCSLKHCEA5a93xPmjAHZRjhdFoJMk0lkDEMac9SAQnVYT6/eYrPrDLAcapsCYPn6u+JHBKtJ0lkOxMwI73szcT/vF5m4qswZ0JmhgqyWBRnHJsUzwLAA6YoMXxiCRDF7K2YjEABMTamig3BX355lXQuXL/h+v5do9a8LvIooxN0iurIR5eoiW5RC7URQRI9o1f05mTOi/PufCxaS04xc4z+wPn8AZ0HkTk=</latexit>

P (a|↵).
<latexit sha1_base64="vv6ehmEg9sOFvDFCtTD8AS/6FV4=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSlIJehIIHvVnR2kITyma7aZfubsLuRighF/+KFw8K4tV/4c1/46bNQVsfDDzem2FmXhAzqrTjfFtLyyura+uljfLm1vbOrr23/6CiRGLSxhGLZDdAijAqSFtTzUg3lgTxgJFOML7M/c4jkYpG4l5PYuJzNBQ0pBhpI/XtQ48jPcKIpVfZRepJDu9usmr9tG9XnJozBVwkbkEqoECrb395gwgnnAiNGVKq5zqx9lMkNcWMZGUvUSRGeIyGpGeoQJwoP50+kMETowxgGElTQsOp+nsiRVypCQ9MZ36umvdy8T+vl+jw3E+piBNNBJ4tChMGdQTzNOCASoI1mxiCsKTmVohHSCKsTWZlE4I7//Ii6dRrbqPmureNSrNZ5FECR+AYVIELzkATXIMWaAMMMvAMXsGb9WS9WO/Wx6x1ySpmDsAfWJ8/NrqV8g==</latexit>

G = SO(2)

click	/	no	click:
<latexit sha1_base64="6HJP10xY25elA168ONOWLmnQVyo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KRgl6EghePFawttEvJptk2NMmuSVYoS/+EFw8K4tWf481/Y9ruQVsfDDzem2FmXpQKbmwQfHultfWNza3ydmVnd2//oHp49GCSTFPWoolIdCcihgmuWMtyK1gn1YzISLB2NL6Z+e0npg1P1L2dpCyUZKh4zCmxTuqQ614qEfb71VrgB3OgVYILUoMCzX71qzdIaCaZslQQY7o4SG2YE205FWxa6WWGpYSOyZB1HVVEMhPm83un6MwpAxQn2pWyaK7+nsiJNGYiI9cpiR2ZZW8m/ud1MxtfhTlXaWaZootFcSaQTdDseTTgmlErJo4Qqrm7FdER0YRaF1HFhYCXX14l7Qsf132M7+q1RqPIowwncArngOESGnALTWgBBQHP8Apv3qP34r17H4vWklfMHMMfeJ8/XhePVw==</latexit>

a = ±1.

<latexit sha1_base64="0ENZV2mtR3qZmK5bNM5Ni5LHoDU=">AAACBHicbVBNS8NAEJ34WetX1JteFovgqSRS0ItQ8NJjBWsLTSmb7aZdutmE3Y1QQsCLf8WLBwXx6o/w5r9xk+agrQ8W3r43w8w8P+ZMacf5tlZW19Y3Nitb1e2d3b19++DwXkWJJLRDIh7Jno8V5UzQjmaa014sKQ59Trv+9Cb3uw9UKhaJOz2L6SDEY8ECRrA20tA+9kKsJwTztJVde2nx84PUzbxsaNeculMALRO3JDUo0R7aX94oIklIhSYcK9V3nVgPUiw1I5xmVS9RNMZkise0b6jAIVWDtLghQ2dGGaEgkuYJjQr1d0eKQ6VmoW8q8x3VopeL/3n9RAdXg5SJONFUkPmgIOFIRygPBI2YpETzmSGYSGZ2RWSCJSbaxFY1IbiLJy+T7kXdbdRd97ZRazbLPCpwAqdwDi5cQhNa0IYOEHiEZ3iFN+vJerHerY956YpV9hzBH1ifPxgfmEA=</latexit>

H = {1} (no	addiGonal	symmetry)
<latexit sha1_base64="/2ReI7v9ddmm2ptkNs2KBsbB/fc=">AAACF3icbZDLSgMxFIYzXmu9jbp0EyxCXVhnSkE3QsGF3VnR2kKnlDNp2oZmMkOSEcowT+HGV3HjQkHc6s63Mb0g2vpD4OM/55Bzfj/iTGnH+bIWFpeWV1Yza9n1jc2tbXtn906FsSS0RkIeyoYPinImaE0zzWkjkhQCn9O6P7gY1ev3VCoWils9jGgrgJ5gXUZAG6ttH3vAoz54THgB6D4BnlymJz9cSc8TTwb45irNF48KbTvnFJyx8Dy4U8ihqapt+9PrhCQOqNCEg1JN14l0KwGpGeE0zXqxohGQAfRo06CAgKpWMj4rxYfG6eBuKM0TGo/d3xMJBEoNA990jvZVs7WR+V+tGevuWSthIoo1FWTyUTfmWId4lBHuMEmJ5kMDQCQzu2LSBwlEmySzJgR39uR5qBcLbqngutelXLk8zSOD9tEByiMXnaIyqqAqqiGCHtATekGv1qP1bL1Z75PWBWs6s4f+yPr4BlLYnzY=</latexit>

↵ 2 G/H = SO(2).



<latexit sha1_base64="Hvblbwuc4V2XKZzLR2n/ZHpR9kc=">AAACBHicbVBNS8NAEJ3Ur1q/ot70EixCRSmJFPQiFDzosYq1hTaUzXbbLt1swu5GKCHgxb/ixYOCePVHePPfuElz0NYHC2/fm2FmnhcyKpVtfxuFhcWl5ZXiamltfWNzy9zeuZdBJDBp4oAFou0hSRjlpKmoYqQdCoJ8j5GWN75M/dYDEZIG/E5NQuL6aMjpgGKktNQz97o+UiOMWHyVXFSyj+fFt8nJ8VHPLNtVO4M1T5yclCFHo2d+dfsBjnzCFWZIyo5jh8qNkVAUM5KUupEkIcJjNCQdTTnyiXTj7IbEOtRK3xoEQj+urEz93REjX8qJ7+nKdEk566Xif14nUoNzN6Y8jBTheDpoEDFLBVYaiNWngmDFJpogLKje1cIjJBBWOraSDsGZPXmetE6rTq3qODe1cr2e51GEfTiACjhwBnW4hgY0AcMjPMMrvBlPxovxbnxMSwtG3rMLf2B8/gCtd5dU</latexit>

G = (R,+)

SpaceGme	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Input	is	Gme	t,														.
(group	of	Gme	translaGons)

(no	addiGonal	symmetry)

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="0ENZV2mtR3qZmK5bNM5Ni5LHoDU=">AAACBHicbVBNS8NAEJ34WetX1JteFovgqSRS0ItQ8NJjBWsLTSmb7aZdutmE3Y1QQsCLf8WLBwXx6o/w5r9xk+agrQ8W3r43w8w8P+ZMacf5tlZW19Y3Nitb1e2d3b19++DwXkWJJLRDIh7Jno8V5UzQjmaa014sKQ59Trv+9Cb3uw9UKhaJOz2L6SDEY8ECRrA20tA+9kKsJwTztJVde2nx84PUzbxsaNeculMALRO3JDUo0R7aX94oIklIhSYcK9V3nVgPUiw1I5xmVS9RNMZkise0b6jAIVWDtLghQ2dGGaEgkuYJjQr1d0eKQ6VmoW8q8x3VopeL/3n9RAdXg5SJONFUkPmgIOFIRygPBI2YpETzmSGYSGZ2RWSCJSbaxFY1IbiLJy+T7kXdbdRd97ZRazbLPCpwAqdwDi5cQhNa0IYOEHiEZ3iFN+vJerHerY956YpV9hzBH1ifPxgfmEA=</latexit>

H = {1}
<latexit sha1_base64="DzuHcprT6J5Zwlm1YLWIL6B3fpI=">AAAB/3icbVBNS8NAFNzUr1q/ouLJy2IRPJVECnoRCl48VrG20ISy2b60SzebsLspllDwr3jxoCBe/Rve/Ddu2hy0dWBhmHmPNztBwpnSjvNtlVZW19Y3ypuVre2d3T17/+BBxamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB6Pr3G+PQSoWi3s9ScCPyECwkFGijdSzj7wxUPx4pT0mvIjoYRBkd9OeXXVqzgx4mbgFqaICzZ795fVjmkYgNOVEqa7rJNrPiNSMcphWvFRBQuiIDKBrqCARKD+bxZ/iU6P0cRhL84TGM/X3RkYipSZRYCbzhGrRy8X/vG6qw0s/YyJJNQg6PxSmHOsY513gPpNANZ8YQqhkJiumQyIJ1aaxiinBXfzyMmmf19x6zXVv69VGo+ijjI7RCTpDLrpADXSDmqiFKMrQM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDZCZXe</latexit>

~x = t 2 R

<latexit sha1_base64="EL7x3Qu3Y8re2MyKUcki4RozZFQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisYFuhDWWz3bRrN5uwOxFK7H/w4kFBvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2Ws7wNquBSKt1Cg5PeJ5jQKJO8E4+uZ33nk2ohY3eEk4X5Eh0qEglG0UrtZpU943i9X3Jo7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7ZScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZq+TgdCcoZxYQpkW9lbCRlRThjagkg3BW355lXQual695nm39UqjkedRhBM4hSp4cAkNuIEmtIDBAzzDK7w5sfPivDsfi9aCk88cwx84nz93mo7f</latexit>

P (a|t)



SpaceGme	boxes



Theorem.	ProbabilisGc	consistency	implies	that																		is	a	linear	
combinaGon	of	matrix	entries	of	a	real	group	representaDon	of G.

<latexit sha1_base64="KAyGCFzzA+xDEj1heevCbCpzt98=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwNcyIoO4KLnRZwT6gM5RMmmlDM5khyQhl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tywlRwbVz3G1XW1jc2t6rbtZ3dvf2D+uFRRyeZoqxNE5GoXkg0E1yytuFGsF6qGIlDwbrh5Lbwu09MaZ7IRzNNWRCTkeQRp8RYyfdjYsaUiPxu5gzqDddx58CrxCtJA0q0BvUvf5jQLGbSUEG07ntuaoKcKMOpYLOan2mWEjohI9a3VJKY6SCfZ57hM6sMcZQo+6TBc/X3Rk5iradxaCeLjHrZK8T/vH5mousg5zLNDJN0cSjKBDYJLgrAQ64YNWJqCaGK26yYjoki1NiaarYEb/nLq6Rz4XiXzs3DZaPZLOuowgmcwjl4cAVNuIcWtIFCCs/wCm8oQy/oHX0sRiuo3DmGP0CfP+vXkZ8=</latexit>

P (a|~x)

<latexit sha1_base64="Oqb8glMDzwZmHe1CLrPmbV5eXxo=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9mVgnorePFYwX7AdinZNNuGZpMlyRbL2p/hxYMiXv013vw3pu0etPXBwOO9GWbmhQln2rjut7O2vrG5tV3YKe7u7R8clo6OW1qmitAmkVyqTog15UzQpmGG006iKI5DTtvh6Hbmt8dUaSbFg5kkNIjxQLCIEWys5Dcq+Kk7pgQ9XvRKZbfqzoFWiZeTMuRo9Epf3b4kaUyFIRxr7XtuYoIMK8MIp9NiN9U0wWSEB9S3VOCY6iCbnzxF51bpo0gqW8Kgufp7IsOx1pM4tJ0xNkO97M3E/zw/NdF1kDGRpIYKslgUpRwZiWb/oz5TlBg+sQQTxeytiAyxwsTYlIo2BG/55VXSuqx6terNfa1cr+dxFOAUzqACHlxBHe6gAU0gIOEZXuHNMc6L8+58LFrXnHzmBP7A+fwBTumQog==</latexit>

This	must	be	true	even	if	we	do	not	assume	that	QT	holds.

SpaceGme	boxes



GARNER, KRUMM, AND MÜLLER PHYSICAL REVIEW RESEARCH 2, 013112 (2020)

Alice Bob
polarizer

detector

polarizer

a b

detector

(b)
Alice Bob

x y
a b

(a)

FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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G = SO(2)⇥ SO(2)
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tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)

013112-2

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

<latexit sha1_base64="cg9YpohgEAY4P1BEnkG7rh5Dkak=">AAACE3icbVDNSsNAGNzUv1r/oh69LBahvZRECnoRCh70ZkVrC00om82mXbrZhN2NUEKewYuv4sWDgnj14s23cdPmUFsHFoaZ7+PbGS9mVCrL+jFKK6tr6xvlzcrW9s7unrl/8CCjRGDSwRGLRM9DkjDKSUdRxUgvFgSFHiNdb3yZ+91HIiSN+L2axMQN0ZDTgGKktDQw606I1Agjll5lF6kjQnh3k9X8uqNoSCScUwZm1WpYU8BlYhekCgq0B+a340c4CQlXmCEp+7YVKzdFQlHMSFZxEklihMdoSPqacqQPuuk0UgZPtOLDIBL6cQWn6vxGikIpJ6GnJ/MActHLxf+8fqKCczelPE4U4Xh2KEgYVBHM+4E+FQQrNtEEYUH1XyEeIYGw0i1WdAn2YuRl0j1t2M2Gbd82q61W0UcZHIFjUAM2OAMtcA3aoAMweAIv4A28G8/Gq/FhfM5GS0axcwj+wPj6BX3UnSA=</latexit>

G = SO(d)⇥ SO(d)

<latexit sha1_base64="gRvBG+OY2Uo4SueGlRKeHG7VLho=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBg4RECvVY8OKxftQW2lA22027dHcTdjdCCf0LXjwoiFd/kDf/jZs2B219MPB4b4aZeWHCmTae9+2U1tY3NrfK25Wd3b39g+rh0aOOU0Vom8Q8Vt0Qa8qZpG3DDKfdRFEsQk474eQ69ztPVGkWywczTWgg8EiyiBFscunu4t4dVGue682BVolfkBoUaA2qX/1hTFJBpSEca93zvcQEGVaGEU5nlX6qaYLJBI9oz1KJBdVBNr91hs6sMkRRrGxJg+bq74kMC62nIrSdApuxXvZy8T+vl5roKsiYTFJDJVksilKOTIzyx9GQKUoMn1qCiWL2VkTGWGFibDwVG4K//PIq6Vy6ft31/dt6rdks8ijDCZzCOfjQgCbcQAvaQGAMz/AKb45wXpx352PRWnKKmWP4A+fzB7lHjdg=</latexit>

R,S.

<latexit sha1_base64="TWHmTWeRgiX9k1QYRCAW5wFIbj4=">AAACBHicbZDLSsNAFIYn9VbrLepON4NFqFBKIgVdFty4rJfaQhvCZDpph04mYWZSDLHgxldx40JB3PoQ7nwbp2kW2vrDwMd/zuHM+b2IUaks69soLC2vrK4V10sbm1vbO+bu3p0MY4FJC4csFB0PScIoJy1FFSOdSBAUeIy0vdHFtN4eEyFpyG9VEhEnQANOfYqR0pZrHjQrqOo9XPfGBMN716reZJS41olrlq2alQkugp1DGeRquuZXrx/iOCBcYYak7NpWpJwUCUUxI5NSL5YkQniEBqSrkaOASCfNbpjAY+30oR8K/biCmft7IkWBlEng6c4AqaGcr03N/2rdWPnnTkp5FCvC8WyRHzOoQjgNBPapIFixRAPCguq/QjxEAmGlYyvpEOz5kxehfVqz6zXbvqqXG408jyI4BEegAmxwBhrgEjRBC2DwCJ7BK3gznowX4934mLUWjHxmH/yR8fkDAK2WRg==</latexit>

P (a, b|R~x0, S~y0)

Theorem.	In	any	world	where	these	assumpGons	hold	(not	assuming	
																		QT!),	Alice	and	Bob	see	quantum	correlaDons	(i.e.	in	Q).	
																		(For	arbitrarily	many	sevngs,	2	outcomes.)

AssumpDons	for	now:	
ProbabiliGes	transform	locally	fundamentally,	
i.e.																																		is	linear	in	the	
rotaGon	matrices	

Reversing	the	input	
reverses	the	output

<latexit sha1_base64="yiddG5YM5wxJqH0I+/E0/uTXOcE=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEN5ZEfC2LblxWsA9oQplMJ+3QmSTMTIolduGvuHGhiFt/w51/47TNQlsPDJw5517uvSdIOFPacb6thcWl5ZXVwlpxfWNza9ve2a2rOJWE1kjMY9kMsKKcRbSmmea0mUiKRcBpI+jfjP3GgErF4uheDxPqC9yNWMgI1kZq2/vegBL0gDyBE6VjdDL9t+2SU3YmQPPEzUkJclTb9pfXiUkqaKQJx0q1XCfRfoalZoTTUdFLFU0w6eMubRkaYUGVn032H6Ejo3RQGEvzIo0m6u+ODAulhiIwlQLrnpr1xuJ/XivV4ZWfsShJNY3IdFCYcmQOHYeBOkxSovnQEEwkM7si0sMSE20iK5oQ3NmT50n9tOxelM/vzkqV6zyOAhzAIRyDC5dQgVuoQg0IPMIzvMKb9WS9WO/Wx7R0wcp79uAPrM8fyDuVUg==</latexit>

~x 7! �~x
<latexit sha1_base64="RnTh73E4JVP35JCLvuXwFUw7S5k=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwY0jE17LoxmUF+4AmlJvppB06mQwzE6GE/oYbF4q49Wfc+TdO2yy09cCFwzn3cu89keRMG8/7dkorq2vrG+XNytb2zu5edf+gpdNMEdokKU9VJwJNORO0aZjhtCMVhSTitB2N7qZ++4kqzVLxaMaShgkMBIsZAWOlAIIEpDYpPgO3V615rjcDXiZ+QWqoQKNX/Qr6KckSKgzhoHXX96QJc1CGEU4nlSDTVAIZwYB2LRWQUB3ms5sn+MQqfRynypYweKb+nsgh0XqcRLYzATPUi95U/M/rZia+CXMmZGaoIPNFccaxfXIaAO4zRYnhY0uAKGZvxWQICoixMVVsCP7iy8ukde76V+7lw0WtflvEUUZH6BidIh9dozq6Rw3URARJ9Ixe0ZuTOS/Ou/Mxby05xcwh+gPn8wc3/JEp</latexit>

a 7! �a.<latexit sha1_base64="I0wAJXpgoW8vrKvKkdhgqjQddpM=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIjHBC9klvo5ELx4xkYeBDZmdHWDCzOw6M2tCNnyFFw8a49XP8ebfOMAeFKykk0pVd7q7gpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6Gbqt56o0iyS92YcU1/ggWR9RrCx0kM57A7oI6qe9oolt+LOgJaJl5ESZKj3il/dMCKJoNIQjrXueG5s/BQrwwink0I30TTGZIQHtGOpxIJqP50dPEEnVglRP1K2pEEz9fdEioXWYxHYToHNUC96U/E/r5OY/pWfMhknhkoyX9RPODIRmn6PQqYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXlfO7s1LtOosjD0dwDGXw4BJqcAt1aAABAc/wCm+Ocl6cd+dj3ppzsplD+APn8wdhPI9+</latexit>

(d � 2)



FoundaGonal	consequences

GARNER, KRUMM, AND MÜLLER PHYSICAL REVIEW RESEARCH 2, 013112 (2020)

Alice Bob
polarizer

detector

polarizer

a b

detector

(b)
Alice Bob

x y
a b

(a)

FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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																		and	supplemented	with	shared	randomness.
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MM,	S.	Carrozza,	and	P.	A.	Höhn,	Is	the	local	linearity	of	space--me	inherited	from	the	
linearity	of	probabili-es?,	J.	Phys.	A:	Math.	Theor.	50,	054003	(2017).

Very	related	to	Wooqers’	insights.	See	also:

R.	Penrose,	Angular	Momentum:	An	Approach	to	Combinatorial	Space-Time,	1971.

Why	should	there	be	linear	or	Euclidean	structure	in	our	world?!



Open	Research:	geometry	from	probability

These	structures	are	very	well-moGvated	in	probability	theory!

<latexit sha1_base64="ZpXciKSYgzTtLk25eB9Z3LB8rKM=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhHYzzIi3jVBw47KCvUA7DJk004YmmSHJCGWsG1/FjQtF3PoW7nwb03YW2nog5OP/zyE5f5gwqrTrfluFpeWV1bXiemljc2t7x97da6o4lZg0cMxi2Q6RIowK0tBUM9JOJEE8ZKQVDq8nfuueSEVjcadHCfE56gsaUYy0kQL7IKmg6lVXpTwIoeGHsGqusOoEdtl13GnBRfByKIO86oH91e3FOOVEaMyQUh3PTbSfIakpZmRc6qaKJAgPUZ90DArEifKz6QZjeGyUHoxiaY7QcKr+nsgQV2rEQ9PJkR6oeW8i/ud1Uh1d+hkVSaqJwLOHopRBHcNJHLBHJcGajQwgLKn5K8QDJBHWJrSSCcGbX3kRmieOd+6c3Z6Wa7U8jiI4BEegAjxwAWrgBtRBA2DwCJ7BK3iznqwX6936mLUWrHxmH/wp6/MHiWaVBQ==</latexit>

p(a) =
X

b

p(a|b)p(b).

MM,	S.	Carrozza,	and	P.	A.	Höhn,	Is	the	local	linearity	of	space--me	inherited	from	the	
linearity	of	probabili-es?,	J.	Phys.	A:	Math.	Theor.	50,	054003	(2017).

Very	related	to	Wooqers’	insights.	See	also:

R.	Penrose,	Angular	Momentum:	An	Approach	to	Combinatorial	Space-Time,	1971.

Why	should	there	be	linear	or	Euclidean	structure	in	our	world?!



Open	Research:	geometry	from	probability

Bill	Wooqers,	PhD	thesis,	1980:	“The	Acquisi-on	of	
Informa-on	from	Quantum	Measurements”:

<latexit sha1_base64="3/01Lq4FMy8kKSCQIR0xd5FpmI8=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48RjBPCBZwuxkNhkzO7PM9Aoh5B+8eFDEq//jzb9xkuxBEwsaiqpuuruiVAqLvv/trayurW9sFraK2zu7e/ulg8OG1ZlhvM601KYVUculULyOAiVvpYbTJJK8GQ1vp37ziRsrtHrAUcrDhPaViAWj6KRGBwccabdU9iv+DGSZBDkpQ45at/TV6WmWJVwhk9TaduCnGI6pQcEknxQ7meUpZUPa521HFU24Dcezayfk1Ck9EmvjSiGZqb8nxjSxdpRErjOhOLCL3lT8z2tnGN+EY6HSDLli80VxJglqMn2d9IThDOXIEcqMcLcSNqCGMnQBFV0IweLLy6RxXgmuKpf3F+VqNY+jAMdwAmcQwDVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4App2PMA==</latexit>

✓ <latexit sha1_base64="M4YnvWP336rD+CSYvIJmzB+QPTM=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4Kon4dSx48VjBfkATymY7bZduNmF3IoRY/4oXD4p49Yd489+4bXPQ1gcDj/dmmJkXJoJrdN1va2V1bX1js7RV3t7Z3du3Dw5bOk4VgyaLRaw6IdUguIQmchTQSRTQKBTQDsc3U7/9AErzWN5jlkAQ0aHkA84oGqlnVx79RPOejyNA6isqhwJ6dtWtuTM4y8QrSJUUaPTsL78fszQCiUxQrbuem2CQU4WcCZiU/VRDQtmYDqFrqKQR6CCfHT9xTozSdwaxMiXRmam/J3IaaZ1FoemMKI70ojcV//O6KQ6ug5zLJEWQbL5okAoHY2eahNPnChiKzBDKFDe3OmxEFWVo8iqbELzFl5dJ66zmXdYu7s6r9XoRR4kckWNySjxyRerkljRIkzCSkWfySt6sJ+vFerc+5q0rVjFTIX9gff4AWi+VOw==</latexit>

| ✓i



Open	Research:	geometry	from	probability

Bill	Wooqers,	PhD	thesis,	1980:	“The	Acquisi-on	of	
Informa-on	from	Quantum	Measurements”:

<latexit sha1_base64="3/01Lq4FMy8kKSCQIR0xd5FpmI8=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48RjBPCBZwuxkNhkzO7PM9Aoh5B+8eFDEq//jzb9xkuxBEwsaiqpuuruiVAqLvv/trayurW9sFraK2zu7e/ulg8OG1ZlhvM601KYVUculULyOAiVvpYbTJJK8GQ1vp37ziRsrtHrAUcrDhPaViAWj6KRGBwccabdU9iv+DGSZBDkpQ45at/TV6WmWJVwhk9TaduCnGI6pQcEknxQ7meUpZUPa521HFU24Dcezayfk1Ck9EmvjSiGZqb8nxjSxdpRErjOhOLCL3lT8z2tnGN+EY6HSDLli80VxJglqMn2d9IThDOXIEcqMcLcSNqCGMnQBFV0IweLLy6RxXgmuKpf3F+VqNY+jAMdwAmcQwDVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4App2PMA==</latexit>

✓ <latexit sha1_base64="M4YnvWP336rD+CSYvIJmzB+QPTM=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4Kon4dSx48VjBfkATymY7bZduNmF3IoRY/4oXD4p49Yd489+4bXPQ1gcDj/dmmJkXJoJrdN1va2V1bX1js7RV3t7Z3du3Dw5bOk4VgyaLRaw6IdUguIQmchTQSRTQKBTQDsc3U7/9AErzWN5jlkAQ0aHkA84oGqlnVx79RPOejyNA6isqhwJ6dtWtuTM4y8QrSJUUaPTsL78fszQCiUxQrbuem2CQU4WcCZiU/VRDQtmYDqFrqKQR6CCfHT9xTozSdwaxMiXRmam/J3IaaZ1FoemMKI70ojcV//O6KQ6ug5zLJEWQbL5okAoHY2eahNPnChiKzBDKFDe3OmxEFWVo8iqbELzFl5dJ66zmXdYu7s6r9XoRR4kckWNySjxyRerkljRIkzCSkWfySt6sJ+vFerc+5q0rVjFTIX9gff4AWi+VOw==</latexit>

| ✓i

“But	why	should	the	staGsGcal	distance	between	two	orientaGons	be	
equal	to	the	angle	between	them?	The	best	answer	we	know	is	the	one	
given	at	the	end	of	SecGon	A,	namely,	that	the	angles	we	observe	in	
nature	may	ulGmately	be	derived	from	the	probabiliGes	of	the	outcomes	
of	spin	measurements,	which	are	more	primary.”



Rules	of	the	game

<latexit sha1_base64="5a/tdyGjWHD03IVRwIWsEbhpJWM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfICO2VK27VnYOsEi8nFchR75W/uv2YpRFKwwTVuuO5ifEzqgxnAqelbqoxoWxEB9ixVNIItZ/Nr52SM6v0SRgrW9KQufp7IqOR1pMosJ0RNUO97M3E/7xOasJbP+MySQ1KtlgUpoKYmMxeJ32ukBkxsYQyxe2thA2poszYgEo2BG/55VXSvKh619Wrh8tKrZbHUYQTOIVz8OAGanAPdWgAgyd4hld4c2LnxXl3PhatBSefOYY/cD5/ACJojtk=</latexit>

~a
<latexit sha1_base64="nwm/cZYViRanReHeiiFxmqmB0EM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfISNArV9yqOwdZJV5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjqaQRaj+bXzslZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZm9TvpcITNiYgllittbCRtSRZmxAZVsCN7yy6ukeVH1rqtXD5eVWi2PowgncArn4MEN1OAe6tAABk/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ACPsjto=</latexit>

~b+ -



Rules	of	the	game

You	are	given	two	black	boxes,	for	which	the	manufacturer	promises	
that	they	implement	projecGve	Stern-Gerlach	measurements	along	some	
direcGons	a	and	b	that	you	don’t	know.	
The	devices	give	the	result	(+	or	-)	on	a	digital	display.	
You	find	“devices”	in	your	world	that	prepare	spin-(1/2)	systems	in	states.	
You	can	press	a	buqon	and	prepare	the	state,	but	don’t	know	which	one	
it	is.	The	universe	gives	a	supply	of	many	such	devices	(not	necessarily	
uniformly	distributed),	exhausGng	the	quantum	state	space.	
	
Goal:	determine	the	angle	
Note:	you	are	only	allowed	to	press	buqons	and	record	digital	outcomes.	
You	don’t	know	how	to	measure	lengths,	angles,	add	vectors…	
However,	you	know	the	type	of	system	that	a	devices	prepares.

<latexit sha1_base64="5a/tdyGjWHD03IVRwIWsEbhpJWM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfICO2VK27VnYOsEi8nFchR75W/uv2YpRFKwwTVuuO5ifEzqgxnAqelbqoxoWxEB9ixVNIItZ/Nr52SM6v0SRgrW9KQufp7IqOR1pMosJ0RNUO97M3E/7xOasJbP+MySQ1KtlgUpoKYmMxeJ32ukBkxsYQyxe2thA2poszYgEo2BG/55VXSvKh619Wrh8tKrZbHUYQTOIVz8OAGanAPdWgAgyd4hld4c2LnxXl3PhatBSefOYY/cD5/ACJojtk=</latexit>

~a
<latexit sha1_base64="nwm/cZYViRanReHeiiFxmqmB0EM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfISNArV9yqOwdZJV5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjqaQRaj+bXzslZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZm9TvpcITNiYgllittbCRtSRZmxAZVsCN7yy6ukeVH1rqtXD5eVWi2PowgncArn4MEN1OAe6tAABk/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ACPsjto=</latexit>

~b+ -



Rules	of	the	game

You	are	given	two	black	boxes,	for	which	the	manufacturer	promises	
that	they	implement	projecGve	Stern-Gerlach	measurements	along	some	
direcGons	a	and	b	that	you	don’t	know.	
The	devices	give	the	result	(+	or	-)	on	a	digital	display.	
You	find	“devices”	in	your	world	that	prepare	spin-(1/2)	systems	in	states.	
You	can	press	a	buqon	and	prepare	the	state,	but	don’t	know	which	one	
it	is.	The	universe	gives	a	supply	of	many	such	devices	(not	necessarily	
uniformly	distributed),	exhausGng	the	quantum	state	space.	
	
Goal:	determine	the	angle	
Note:	you	are	only	allowed	to	“press	buqons”	and	record	digital	outcomes.	
You	don’t	know	how	to	measure	lengths,	angles,	add	vectors…	
However,	you	know	the	type	of	system	that	a	device	prepares.

<latexit sha1_base64="aKCZUJlu/D9qmpYfLfdiy7TLhXk=">AAACAXicbVDLSsNAFJ3UV62vqhvBzWARKkhIxNey4MZlBfuAJpTJ9KYdOpmEmUmhhLrxV9y4UMStf+HOv3HaZqHVA5d7OOdeZu4JEs6Udpwvq7C0vLK6VlwvbWxube+Ud/eaKk4lhQaNeSzbAVHAmYCGZppDO5FAooBDKxjeTP3WCKRisbjX4wT8iPQFCxkl2kjd8oFHRJ8DrnojoJjg01kPTuxuueLYzgz4L3FzUkE56t3yp9eLaRqB0JQTpTquk2g/I1IzymFS8lIFCaFD0oeOoYJEoPxsdsEEHxulh8NYmhIaz9SfGxmJlBpHgZmMiB6oRW8q/ud1Uh1e+xkTSapB0PlDYcqxjvE0DtxjEqjmY0MIlcz8FdMBkYRqE1rJhOAunvyXNM9s99K+uDuv1Gp5HEV0iI5QFbnoCtXQLaqjBqLoAT2hF/RqPVrP1pv1Ph8tWPnOPvoF6+MbwYGVKA==</latexit>

\(~a,~b).

<latexit sha1_base64="5a/tdyGjWHD03IVRwIWsEbhpJWM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfICO2VK27VnYOsEi8nFchR75W/uv2YpRFKwwTVuuO5ifEzqgxnAqelbqoxoWxEB9ixVNIItZ/Nr52SM6v0SRgrW9KQufp7IqOR1pMosJ0RNUO97M3E/7xOasJbP+MySQ1KtlgUpoKYmMxeJ32ukBkxsYQyxe2thA2poszYgEo2BG/55VXSvKh619Wrh8tKrZbHUYQTOIVz8OAGanAPdWgAgyd4hld4c2LnxXl3PhatBSefOYY/cD5/ACJojtk=</latexit>

~a
<latexit sha1_base64="nwm/cZYViRanReHeiiFxmqmB0EM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfISNArV9yqOwdZJV5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjqaQRaj+bXzslZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZm9TvpcITNiYgllittbCRtSRZmxAZVsCN7yy6ukeVH1rqtXD5eVWi2PowgncArn4MEN1OAe6tAABk/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ACPsjto=</latexit>

~b+ -



Rules	of	the	game

<latexit sha1_base64="5a/tdyGjWHD03IVRwIWsEbhpJWM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfICO2VK27VnYOsEi8nFchR75W/uv2YpRFKwwTVuuO5ifEzqgxnAqelbqoxoWxEB9ixVNIItZ/Nr52SM6v0SRgrW9KQufp7IqOR1pMosJ0RNUO97M3E/7xOasJbP+MySQ1KtlgUpoKYmMxeJ32ukBkxsYQyxe2thA2poszYgEo2BG/55VXSvKh619Wrh8tKrZbHUYQTOIVz8OAGanAPdWgAgyd4hld4c2LnxXl3PhatBSefOYY/cD5/ACJojtk=</latexit>

~a
<latexit sha1_base64="nwm/cZYViRanReHeiiFxmqmB0EM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfISNArV9yqOwdZJV5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjqaQRaj+bXzslZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZm9TvpcITNiYgllittbCRtSRZmxAZVsCN7yy6ukeVH1rqtXD5eVWi2PowgncArn4MEN1OAe6tAABk/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ACPsjto=</latexit>

~b+ -

Sketch	of	soluDon:	
• Search	the	world	for	preparaGon	devices	unGl	you	find	one	such	
that,	for	the	systems	prepared	by	that	state	if	fed	into	device	A,

<latexit sha1_base64="fWFjIlA22VFO8nn2zrqj8ifU1fk=">AAAB+XicbVDLSgMxFM3UV62vUZdugkWoCMOM+FpW3LisYB/QDkMmzbShmSQkmWIZ+iduXCji1j9x59+YPhbaeuDC4Zx7ufeeWDKqje9/O4WV1bX1jeJmaWt7Z3fP3T9oaJEpTOpYMKFaMdKEUU7qhhpGWlIRlMaMNOPB3cRvDonSVPBHM5IkTFGP04RiZKwUua6Mbitnpx0kpRJPMPAit+x7/hRwmQRzUgZz1CL3q9MVOEsJN5ghrduBL02YI2UoZmRc6mSaSIQHqEfalnKUEh3m08vH8MQqXZgIZYsbOFV/T+Qo1XqUxrYzRaavF72J+J/XzkxyE+aUy8wQjmeLkoxBI+AkBtilimDDRpYgrKi9FeI+UggbG1bJhhAsvrxMGudecOVdPlyUq9V5HEVwBI5BBQTgGlTBPaiBOsBgCJ7BK3hzcufFeXc+Zq0FZz5zCP7A+fwBkUCSVA==</latexit>

pA(+) ⇡ 1.

• Feed	the	states	of	that	device	into	measurement	device	B.	Then:
<latexit sha1_base64="M/Jis9VqZcWaOG0iRr5mxW7lc+M="></latexit>

pB(+) ⇡ cos2
\(~a,~b)

2
.



Rules	of	the	game

<latexit sha1_base64="5a/tdyGjWHD03IVRwIWsEbhpJWM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfICO2VK27VnYOsEi8nFchR75W/uv2YpRFKwwTVuuO5ifEzqgxnAqelbqoxoWxEB9ixVNIItZ/Nr52SM6v0SRgrW9KQufp7IqOR1pMosJ0RNUO97M3E/7xOasJbP+MySQ1KtlgUpoKYmMxeJ32ukBkxsYQyxe2thA2poszYgEo2BG/55VXSvKh619Wrh8tKrZbHUYQTOIVz8OAGanAPdWgAgyd4hld4c2LnxXl3PhatBSefOYY/cD5/ACJojtk=</latexit>

~a
<latexit sha1_base64="nwm/cZYViRanReHeiiFxmqmB0EM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cI5gHJEmYnvcmY2dllZjYQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdsfISNArV9yqOwdZJV5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjqaQRaj+bXzslZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1IS3fsZlkhqUbLEoTAUxMZm9TvpcITNiYgllittbCRtSRZmxAZVsCN7yy6ukeVH1rqtXD5eVWi2PowgncArn4MEN1OAe6tAABk/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ACPsjto=</latexit>

~b+ -

Sketch	of	soluDon:	
• Search	the	world	for	preparaGon	devices	unGl	you	find	one	such	
that,	for	the	systems	prepared	by	that	state	if	fed	into	device	A,
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pA(+) ⇡ 1.

• Feed	the	states	of	that	device	into	measurement	device	B.	Then:
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pB(+) ⇡ cos2
\(~a,~b)

2
.

Research	quesDons:	
• What	are	the	detailed	operaGonal	assumpGons	in	this	scenario?	
• Can	we	get	rid	of	the	assumpGon	of	a	projec-ve	measurement?	
• Can	we	show	that	this	is	(suitably	generalized)	classically	impossible?
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Goal:	Generate	certified	random	bits.

Why	not	just	send	single	photons	on	a	half-silvered	mirror?

Don’t	trust	your	devices!

Device-independent	randomness	expansion:	
Violation	of	Bell	inequality								outcomes	uncorrelated	with	rest	of	the	world<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit>)
See	e.g.:	A.	Acín,	Randomness	and	quantum	non-locality,	QCRYPT	2012	talk.	
																V.	Scarani,	Bell	nonlocality,	Oxford	Graduate	Texts	(2019).
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Observed	correlations																				imply																																		
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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dimH = 2

Semi-device-independent	(SDI):	allow	communication,	add	assumption.
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H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.

MoGvaGon:	(semi-)device-independent	QIT
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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x 2 {1, 2, 3, 4}
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p(a|x, y)
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dimH = 2

Semi-device-independent	(SDI):	allow	communication,	add	assumption.
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H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.

Idea:	reformulate	in	terms	of	spacetime	symmetries,	w/o	assuming	QT.	
										Can	quantum	phenomenology	/	functionality	be	reproduced?

MoGvaGon:	(semi-)device-independent	QIT
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2

<latexit sha1_base64="fOVDUWOXAQC6E/K1ZGiJ3S7ebd0=">AAAB7nicbVC7SgNBFL0bXzG+opY2g0GwCrtB1DJoY2ERwTwgWcLd2dlkyOzsMjMrhJCPsLFQxNbvsfNvnCRbaOKBgcM55zL3niAVXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWTTFHWpIlIVCdAzQSXrGm4EayTKoZxIFg7GN3O/PYTU5on8tGMU+bHOJA84hSNldq9exsNsV+uuFV3DrJKvJxUIEejX/7qhQnNYiYNFah113NT409QGU4Fm5Z6mWYp0hEOWNdSiTHT/mS+7pScWSUkUaLsk4bM1d8TE4y1HseBTcZohnrZm4n/ed3MRNf+hMs0M0zSxUdRJohJyOx2EnLFqBFjS5AqbncldIgKqbENlWwJ3vLJq6RVq3qX1drDRaV+k9dRhBM4hXPw4ArqcAcNaAKFETzDK7w5qfPivDsfi2jByWeO4Q+czx8N749k</latexit>

⇤<latexit sha1_base64="07ISr+7SCwwdZd5RDmW4VFVO87c=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaSIuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veVa3+cFlt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPw+PhA==</latexit>

�
<latexit sha1_base64="ptkw970nXDyixd9BXtz6FuK1q48=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0SNQjiRePmAiY0IZsly1s2G6b3a0RG36JFw8a49Wf4s1/4wI9KPiSSV7em8nMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T447Kg4lYS2ScxjeR9gRTkTtK2Z5vQ+kRRHAafdYHw987sPVCoWizs9Sagf4aFgISNYG6lvlx89JrzMrdar59WGN+3bFafmzIFWiZuTCuRo9e0vbxCTNK JCE46V6rlOov0MS80Ip9OSlyqaYDLGQ9ozVOCIKj+bHz5Fp0YZoDCWpoRGc/X3RIYjpSZRYDojrEdq2ZuJ/3m9VIdXfsZEkmoqyGJRmHKkYzRLAQ2YpETziSGYSGZuRWSEJSbaZFUyIbjLL6+STr3mXtTqt41Ks5nHUYRjOIEzcOESmnADLWgDgRSe4RXerCfrxXq3PhatBSufOYI/sD5/AOM8ke8=</latexit>

x 2 {1, 2, 3, 4}

<latexit sha1_base64="lbgqN3mE87GS0M5xm9Ki4bgJAAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY8FLx4r2A9IQtlsN+3SzW7Y3Qgh9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777aytb2xubVd2qrt7+weHtaPjrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140uZv5vSeqNJPi0eQpDRM8EixmBBsr+XnARFB4l81gOqjV3YY7B1olXknqUKI9qH0FQ0myhApDONba99zUhAVWhhFOp9Ug0zTFZIJH1LdU4ITqsJifPEXnVhmiWCpbwqC5+nuiwInWeRLZzgSbsV72ZuJ/np+Z+DYsmEgzQwVZLIozjoxEs//RkClKDM8twUQxeysiY6wwMTalqg3BW355lXSbDe+60Xy4qrdaZRwVOIUzuAAPbqAF99CGDhCQ8Ayv8OYY58V5dz4WrWtOOXMCf+B8/gCot5DY</latexit>

y 2 {1, 2}
<latexit sha1_base64="aNorDOmAidKoouklcefdsIAKqCc=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqswUUTdC0U2XFewDOkPJZDJtaJIZkoxSxn6KGxeKuPVL3Pk3ZtpZaOuBwOGce7knJ0gYVdpxvq3S2vrG5lZ5u7Kzu7d/YFcPuypOJSYdHLNY9gOkCKOCdDTVjPQTSRAPGOkFk9vc7z0QqWgs7vU0IT5HI0EjipE20tCueiHlHkd6jBHLWrPrxtCuOXVnDrhK3ILUQIH20P7ywhinnAiNGVJq4DqJ9jMkNcWMzCpeqkiC8ASNyMBQgThRfjaPPoOnRglhFEvzhIZz9fdGhrhSUx6YyTykWvZy8T9vkOroys+oSFJNBF4cilIGdQzzHmBIJcGaTQ1BWFKTFeIxkghr01bFlOAuf3mVdBt196LeuDuvNW+KOsrgGJyAM+CCS9AELdAGHYDBI3gGr+DNerJerHfrYzFasoqdI/AH1ucPAweT1w==</latexit>

dimH = 2

Recall:
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Theory-independent randomness generation with spacetime symmetries
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

If	input	is	x=1:	do	nothing	to	preparaGon	device;	
														if	x=2:	rotate	it	(relaGve	to	measurement	device)	by	angle	α.

<latexit sha1_base64="JKPDdUa3JQN+uJViuwKYlrJ6YlM=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHBC9k1vo5ELx4xkUcCGzI7zMLI7MxmZtZIVv7BiweN8er/ePNvHGAPClbSSaWqO91dQcyZNq777eSWlldW1/LrhY3Nre2d4u5eQ8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMYXk/85gNVmklxZ0Yx9SPcFyxkBBsrNWrl4OnxuFssuRV3CrRIvIyUIEOtW/zq9CRJIioM4VjrtufGxk+xMoxwOi50Ek1jTIa4T9uWChxR7afTa8foyCo9FEplSxg0VX9PpDjSehQFtjPCZqDnvYn4n9dOTHjpp0zEiaGCzBaFCUdGosnrqMcUJYaPLMFEMXsrIgOsMDE2oIINwZt/eZE0TireeeXs9rRUvcriyMMBHEIZPLiAKtxADepA4B6e4RXeHOm8OO/Ox6w152Qz+/AHzucP63COtw==</latexit>

P (b|x)

Randomness	generaGon:	quantum	analysis

<latexit sha1_base64="3MUkKiCoiAzY5Y40sOOBicuGr2A=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEnons8mY2Z1lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9oapkqyhpUCqnaAWomeMwahhvB2oliGAWCtYLR7dRvPTGluYwfzDhhfoSDmIecorFSs4siGWKvXHGr7gxkmXg5qUCOeq/81e1LmkYsNlSg1h3PTYyfoTKcCjYpdVPNEqQjHLCOpTFGTPvZ7NoJObFKn4RS2YoNmam/JzKMtB5Hge2M0Az1ojcV//M6qQmv/YzHSWpYTOeLwlQQI8n0ddLnilEjxpYgVdzeSugQFVJjAyrZELzFl5dJ86zqXVYv7s8rtZs8jiIcwTGcggdXUIM7qEMDKDzCM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AY7BjyI=</latexit>↵fixed



Theory-independent randomness generation with spacetime symmetries

Caroline L. Jones,1, 2, ⇤ Stefan L. Ludescher,1, 2, † Albert Aloy,1, 2 and Markus P. Müller1, 2, 3

1Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

2Vienna Center for Quantum Science and Technology (VCQ),
Faculty of Physics, University of Vienna, Vienna, Austria

3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
(Dated: October 25, 2022)

We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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														if	x=2:	rotate	it	(relaGve	to	measurement	device)	by	angle	α.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

If	input	is	x=1:	do	nothing	to	preparaGon	device;	
														if	x=2:	rotate	it	(relaGve	to	measurement	device)	by	angle	α.
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RotaGon	described	by	(projecGve)	unitary	representaGon	of	SO(2):

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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†
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

• “InteresGng”	determinisGc	correlaGons:	
outcome	b	is	a	funcGon	of	x

Suppose																			observed.	Looks	random.	
But:	
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
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j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
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Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
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assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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⇣p
1 + E1
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1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
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by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

3

maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Angle	
no	cerGfiable	randomness.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Randomness	generaGon:	quantum	analysis

Which	correlaGons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.
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After the rotation, the physical system is prepared and
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outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.
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below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
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tion to the measurement device, namely, on its possible
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scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
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j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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2
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Blue	curved	set	of	correlaGons.	
If	observed	correlaGon	away	from	red	line:	
cerDfiable	private	randomness.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡
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0 if |J↵| � ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpGon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerGfy	random	numbers	without	QT?	

Quantum	theory	is	actually	not	needed



Theory-independent randomness generation with spacetime symmetries

Caroline L. Jones,1, 2, ⇤ Stefan L. Ludescher,1, 2, † Albert Aloy,1, 2 and Markus P. Müller1, 2, 3

1Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

2Vienna Center for Quantum Science and Technology (VCQ),
Faculty of Physics, University of Vienna, Vienna, Austria

3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
(Dated: October 25, 2022)

We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpGon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerGfy	random	numbers	without	QT?	
• Can	we	understand	the	curved	boundary	of	correlaGons	from	spaGal	
symmetry	alone,	without	assuming	QT?
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Quantum	theory	is	actually	not	needed
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpGon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerGfy	random	numbers	without	QT?	
• Can	we	understand	the	curved	boundary	of	correlaGons	from	spaGal	
symmetry	alone,	without	assuming	QT?
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Yes	we	can:

Quantum	theory	is	actually	not	needed
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,
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Consequence:	every	p	is	a	trigonometric	polynomial	of	degree	2J
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1
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1
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⇣p
1 + E1

p
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p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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It	can	be	shown	directly	that																							and
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					from	rep.	of	SO(2)	on	(non-quantum)	“orbitope”	state	spaces
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with an affine space. It can be represented as the set of points x ∈ Rn such that

(1.1) A0 + x1A1 + · · ·+ xnAn " 0 ,

where A0, A1, . . . , An are symmetric matrices and " 0 denotes positive semidefiniteness.
From a spectrahedral description many geometric properties, both convex and algebraic, are
within reach. Furthermore, if an orbitope admits a representation (1.1) then it is easy to
maximize or minimize a linear function over that orbitope. Here is a simple illustration.

Example 1.1. Consider the action of the group G = SO(2) on the space Sym4(R
2) # R5 of

binary quartics and take the convex hull of the orbit of v = x4. The four-dimensional convex
body conv(G · v) is a Carathéodory orbitope. This orbitope is a spectrahedron: it coincides
with the set of all binary quartics λ0x4 + 4λ1x3y + 6λ2x2y2 + 4λ3xy3 + λ4y4 such that

(1.2)




λ0 λ1 λ2

λ1 λ2 λ3

λ2 λ3 λ4



 " 0 and λ0 + 2λ2 + λ4 = 1.

This representation (1.2) will be derived in Section 5, where we will also see that it is
equivalent to classical results from the theory of positive polynomials [32]. The Hankel
matrix shows that the boundary of conv(G · v) is an irreducible cubic hypersurface in R4,
defined by the vanishing of the Hankel determinant. It also reveals that this four-dimensional
Carathéodory orbitope is 2-neighborly: the extreme points are the rank one matrices, and
any two of them are connected by an edge. The typical intersection of conv(G·v) with a three-
dimensional affine plane looks like an inflated tetrahedron. This three-dimensional convex
body is bounded by Cayley’s cubic surface, shown in Figure 1. Alternative pictures of this
convex body can be found in [27, Fig. 3] and [35, Fig. 4]. The four vertices of the tetrahedron
lie on the curve G · v, and its six edges are inclusion-maximal faces of conv(G · v). !

Figure 1. Cross-section of a four-dimensional Carathéodory orbitope.

This article is organized as follows. We begin by deriving the basic definitions and a
few general results about orbitopes, and we formulate ten key questions which will guide
our subsequent investigations. These are organized along the themes of convex geometry
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2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
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semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
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and takes an input x 2 {1, 2}. The experimenter either
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the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM
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nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
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unitary representations of SO(2) arise from unitary rep-
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Z and can appear with some multiplicity, and � 2 R.
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where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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direct role in their analysis. Here, instead, we propose
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which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
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Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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Z and can appear with some multiplicity, and � 2 R.
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,
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cos(J↵) if |J↵| < ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.
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terms of quantum theory, which we will later generalise
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U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
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maximum spin J bound:

CJ,↵ := {E =
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(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
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<latexit sha1_base64="TmBV7vB5zzc6u6Sz+Vm9KL53COw=">AAAB/3icdVDLSgMxFM3UV62vquBGkNAiuJBhpmMf7gpuxFULthXaUu6kaRuaeZBkhDJ2IX6Jblwo4tbfcOenuDNtFVT0QOBwzr3ck+OGnEllWW9GYm5+YXEpuZxaWV1b30hvbtVlEAlCayTggbhwQVLOfFpTTHF6EQoKnstpwx2eTPzGJRWSBf65GoW07UHfZz1GQGmpk95peaAGBHhcHXfis8MW8HAA4046a5mOY5dyNrbMvO0cWQVNik4xf1zCtmlNkS1nbm/e97pBpZN+bXUDEnnUV4SDlE3bClU7BqEY4XScakWShkCG0KdNTX3wqGzH0/xjvK+VLu4FQj9f4an6fSMGT8qR5+rJSVr525uIf3nNSPVK7Zj5YaSoT2aHehHHKsCTMnCXCUoUH2kCRDCdFZMBCCBKV5bSJXz9FP9P6jnTLpj5qp0tl9EMSbSLMugA2aiIyugUVVANEXSF7tADejSujXvjyXiejSaMz51t9APGywdD9pn2</latexit>

QJ,↵ quantum	correlaGons	(for	2	angles)
<latexit sha1_base64="tKIekzTz3a7S8mWd4XphCo7+7KI=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcCElEV+4KrgRV1XsA5oQbqbTduhkEmYmQgnZ+CtuXCji1s9w5984abPQ1gMXDufcy733BDGjUtn2t1FaWFxaXimvVtbWNza3zO2dlowSgUkTRywSnQAkYZSTpqKKkU4sCIQBI+1gdJ377UciJI34gxrHxAthwGmfYlBa8s09NwQ1xMDS+8xPb49dYPEQsivfrNo1ewJrnjgFqaICDd/8cnsRTkLCFWYgZdexY+WlIBTFjGQVN5EkBjyCAelqyiEk0ksnD2TWoVZ6Vj8SuriyJurviRRCKcdhoDvzc+Wsl4v/ed1E9S+9lPI4UYTj6aJ+wiwVWXkaVo8KghUbawJYUH2rhYcgACudWUWH4My+PE9aJzXnvHZ2d1qt14s4ymgfHaAj5KALVEc3qIGaCKMMPaNX9GY8GS/Gu/ExbS0Zxcwu+gPj8we/P5aC</latexit>

RJ,↵ : rotaGon	box	correlaGons	(for	2	angles)

Clearly
<latexit sha1_base64="UDpjX4vGJODRc7uhLT4dQDcTM+0=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiB4kDAjajwGvIinRMwCmRBqOpWkSc9id48QhnyKF3/FiwdF9KZfY2dBYuKDgsd7VVTV8yLBlbbtLyu1tLyyupZez2xsbm3vZHf3qiqMJcMKC0Uo6x4oFDzAiuZaYD2SCL4nsOb1r0Z+7QGl4mFwpwcRNn3oBrzDGWgjtbIF1wfdYyCS8rCV3Jy4IKIeDF0Vewo13tNf/3bWz7eyOTtvj0EXiTMlOTJFqZX9dNshi30MNBOgVMOxI91MQGrOBA4zbqwwAtaHLjYMDcBH1UzGDw7pkVHatBNKU4GmY3V2IgFfqYHvmc7RuWreG4n/eY1Ydy6bCQ+iWGPAJos6saA6pKO0aJtLZFoMDAEmubmVsh5IYNpkmjEhOPMvL5Lqad65yJ+Xz3LF4jSONDkgh+SYOKRAiuSalEiFMPJInskrebOerBfr3fqYtKas6cw++QPr+wdR/6RM</latexit>

QJ,↵ ✓ RJ,↵.

Theorem:	
<latexit sha1_base64="YLe7nzt4guX6qAF6IUjAsP+qRL0=">AAACF3icbZDLSsNAFIYn9VbrLepSkNAiuJCQCF42QsGNuGrF1kIbwslk0g6dXJiZCCV05Su4celruHGhiFvd+SjunF6Q2vrDwM93zmHO+b2EUSEt60vLzc0vLC7llwsrq2vrG/rmVl3EKcekhmMW84YHgjAakZqkkpFGwgmEHiM3Xvd8UL+5JVzQOLqWvYQ4IbQjGlAMUiFXN1shyA4GllX7bnZ50AKWdKB/9ouvJrHp6iXLtIYyZo09NqVy8fHue9ePK67+2fJjnIYkkpiBEE3bSqSTAZcUM9IvtFJBEsBdaJOmshGERDjZ8K6+saeIbwQxVy+SxpBOTmQQCtELPdU5WFdM1wbwv1ozlcGpk9EoSSWJ8OijIGWGjI1BSIZPOcGS9ZQBzKna1cAd4IClirKgQrCnT5419UPTPjaPqnapXEYj5dEOKqJ9ZKMTVEYXqIJqCKN79IRe0Kv2oD1rb9r7qDWnjWe20R9pHz9baaO0</latexit>

QJ,↵ = RJ,↵. C.	L.	Jones,	S.	L.	Ludescher,	A.	Aloy,	MM,	arXiv:2210.14811

Can	derive	set	of	quantum	correlaGons	without	assuming	QT.

Even	eavesdropper	with	classical	side	informaGon	about	
beyond-quantum	physics	cannot	predict	the	outcomes.


