

AUSTRIAN

IQOQI - INSTITUTE FOR QUANTUM OPTICS AND QUANTUM INFORMATION VIENNA

INSTITUTE

How spacetime constrains the structure of quantum theory

Caroline L. Jones, Stefan L. Ludescher, Albert Aloy, Andrew J. P. Garner, Oscar C. O. Dahlsten, Markus P. Müller **IQOQI** Vienna & Perimeter Institute

Der Wissenschaftsfonds.

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

Wanted: a complete theory of **evolution**.

Wanted: a complete theory of **evolution**.

Wanted: a complete theory of **evolution**.

confined to desert, no fossils: sparse empirical evidence.

Wanted: a complete theory of **evolution**.

confined to desert, no fossils: sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- **Option 2:** first, study how the environment constrains biological traits.

Wanted: a complete theory of **evolution**.

confined to desert, no fossils: sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how the environment constrains biological traits.
 Needs imagination of how biology could be different.

Wanted: a complete theory of **quantum gravity**.

Wanted: a complete theory of **quantum gravity**.

sparse empirical evidence.

Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- **Option 2:** first, study how spacetime constrains quantum theory.

Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.

Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.

superstrong nonlocality?

higher-order interference?

Goal: Generate certified random bits.

Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?

Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?

Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?

Device-independent randomness expansion:

Violation of Bell inequality \Rightarrow outcomes uncorrelated with rest of the world

See e.g.: A. Acín, *Randomness and quantum non-locality*, QCRYPT 2012 talk. V. Scarani, *Bell nonlocality*, Oxford Graduate Texts (2019).

$$x \in \{1, 2, 3, 4\} \xrightarrow{\mathbf{S}} \mathbf{S} \xrightarrow{\rho_x} \mathbf{M} \xrightarrow{\mathbf{S}} \mathbf{M}$$

$$x \in \{1, 2, 3, 4\} \xrightarrow{\mathbf{S}} \mathbf{S} \xrightarrow{\mathbf{M}} \mathbf{S} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}}$$

$$x \in \{1, 2, 3, 4\}$$
 \longrightarrow S \longrightarrow M \longrightarrow $a \in \{\pm 1\}$
Observed correlations $p(c|x, y)$ imply $H(A|X, Y, \Lambda) \gg 0$.
Drawback, assumption not physically well-motivated & requires QT.

Semi-device-independent (SDI): allow communication, add assumption.

$$x \in \{1, 2, 3, 4\} \longrightarrow \mathbf{S} \xrightarrow{\qquad \text{dim } \mathcal{H} = 2} \xrightarrow{\qquad \text{w} \in \{1, 2\}} \underbrace{\qquad \overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}}}}}}}}}}}}}}}}}}}}}} \\$$

Drawback: assumption not physically well-motivated & requires QT.

Observation: in many experiments, settings are spatiotemporal quantities.

Idea: reformulate in terms of spacetime symmetries, w/o assuming QT. Can quantum phenomenology / functionality be reproduced? 1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

Imagine what the **quantum bit** could be instead...

Imagine what the **quantum bit** could be instead...

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35, 29-64 (1934).

Imagine what the **quantum bit** could be instead...

the quantum bit could be instead...

n, J. von Neumann, E. Wigner, *On an algebraic generalization uantum mechanical formalism*, Annals of Mathematics **35**, 1934).

the quantum bit could be instead...

n, J. von Neumann, E. Wigner, *On an algebraic generalization uantum mechanical formalism,* Annals of Mathematics **35**, 1934).

Take care: qutrit etc. **not a ball!** Does spacetime constrain d?

"Why" *d=3* ?

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

North-pole state: particle definitely in upper branch.

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

South-pole state: particle definitely in lower branch.

State on equator *z=0*: probability 1/2 for each.

State on equator *z=0*: probability 1/2 for each. $p(up) = \frac{1}{2}(z+1)$

What transformations *T* can we perform locally in one arm... ... reversibly, i.e. without any information loss?

T must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.

T must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.

T must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

Relativity: there's a frame of reference in which T_A happens before T_B ...

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

Relativity: there's a frame of reference in which T_A happens before T_B and another frame where it's the other way around.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

Relativity: there's a frame of reference in which T_A happens before T_B and another frame where it's the other way around.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

Relativity: there's a frame of reference in which T_A happens before T_B and another frame where it's the other way around.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

So far, we assumed: $\mathcal{G}_A = \mathcal{G}_B$. Assumption of **relationality**.

So far, we assumed: $\mathcal{G}_A = \mathcal{G}_B$. Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.

So far, we assumed: $\mathcal{G}_A = \mathcal{G}_B$. Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.

So far, we assumed: $\mathcal{G}_A = \mathcal{G}_B$. Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

A1) Beam splitter can prepare any upper-branch probability *p*.
A2) Every pure state with the same *p* can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:

- d = 1 (the classical bit), with $\mathcal{G}_A = \mathcal{G}_B = \{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
- d = 2 (the quantum bit over the real numbers), with $\mathcal{G}_A = \mathcal{G}_B = \mathbb{Z}_2$,
- d = 3 (the standard quantum bit over the complex numbers), with $G_A = G_B = SO(2) = U(1)$,
- -d = 5 (the quaternionic quantum bit), with $\mathcal{G}_{AB} = SO(4)$, \mathcal{G}_A the left- and \mathcal{G}_B the right-isoclinic rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and $\mathcal{G}_A \cap \mathcal{G}_B = \{+\mathbb{I}, -\mathbb{I}\}$.

A1) Beam splitter can prepare any upper-branch probability *p*.
A2) Every pure state with the same *p* can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:

- d = 1 (the classical bit), with $\mathcal{G}_A = \mathcal{G}_B = \{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
- d = 2 (the quantum bit over the real numbers), with $\mathcal{G}_A = \mathcal{G}_B = \mathbb{Z}_2$,
- d = 3 (the standard quantum bit over the complex numbers), with $G_A = G_B = SO(2) = U(1)$,
- -d = 5 (the quaternionic quantum bit), with $\mathcal{G}_{AB} = SO(4)$, \mathcal{G}_A the left- and \mathcal{G}_B the right-isoclinic rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and $\mathcal{G}_A \cap \mathcal{G}_B = \{+\mathbb{I}, -\mathbb{I}\}$.

Relativity of simultaneity singles out the **associative division algebras**.

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

SDI assumption: "spin" of system ≤ J

No further assumptions on devices / system.

If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

SDI assumption: "spin" of system $\leq J$ No further assumptions on devices / system.

Rotation described by (projective) unitary representation of SO(2):

$$U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}, \qquad P(b|\alpha) = \operatorname{tr}(M_b U_{\alpha} \rho U_{\alpha}^{\dagger}).$$

 "Boring" deterministic correlations: outcome b independent of x

 "Boring" deterministic correlations: outcome b independent of x

 "Interesting" deterministic correlations: outcome b is a function of x

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But:

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But: $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$

 "Boring" deterministic correlations: outcome b independent of x

 "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But: $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$

Which correlations are possible?

Which correlations are possible? Theorem: exactly those: $\frac{1}{2} \left(\sqrt{1+E_1} \sqrt{1+E_2} + \sqrt{1-E_1} \sqrt{1-E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| > \frac{\pi}{2} \end{cases}$

C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

using results of

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, S. Pironio, Quantum 1, 33 (2017).

(-1,+1)

 E_2

(-1, -1)

 $\boldsymbol{\Gamma}$

Randomness generation: quantum analysis

Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

Blue curved set of correlations.

If observed correlation away from red line: certifiable private randomness.

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

Yes we can!

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

- $\{E_b\}$ some POVM, ρ some density matrix,
- $U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}$, with arbitrary multiplicities n_j .

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},$$

- $\{E_b\}$ some POVM, ρ some density matrix,
- $U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}$, with arbitrary multiplicities n_j .

Consequence: every *p* is a trigonometric polynomial of degree 2**J**

(e.g.
$$p(+|\alpha) = \frac{1}{2} + \frac{1}{2}\cos\alpha$$
 for $J = \frac{1}{2}$).

.1

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},$$

 $\{E_b\}$ some POVM, ρ some density matrix,

$$U_{lpha} = \bigoplus_{j=-J} n_j e^{ijlpha}$$
, with arbitrary multiplicities n_j .

Consequence: every *p* is a trigonometric polynomial of degree 2**J**

(e.g.
$$p(+|\alpha) = \frac{1}{2} + \frac{1}{2}\cos\alpha$$
 for $J = \frac{1}{2}$).

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\$$
$$0 \le p(+1|\alpha) \le 1 \quad \text{for all } \alpha.$$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

 $\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

 $\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $Q_J \subseteq \mathcal{R}_J$.

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $\mathcal{Q}_J \subseteq \mathcal{R}_J$.

It can be shown directly that $\mathcal{Q}_0 = \mathcal{R}_0$ and $\mathcal{Q}_{1/2} = \mathcal{R}_{1/2}$.

However, for some larger **J**, we have $Q_J \subsetneq \mathcal{R}_J$, details here:

A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $Q_J \subseteq \mathcal{R}_J$. It can be shown directly that $Q_0 = \mathcal{R}_0$ and $Q_{1/2} = \mathcal{R}_{1/2}$. However, for some larger J, we have $Q_J \subsetneq \mathcal{R}_J$, details here: A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).

 \mathcal{R}_J from rep. of SO(2) on (non-quantum) "orbitope" state spaces

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

Theorem: $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

Theorem: $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

Can derive set of quantum correlations without assuming QT.

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

Theorem: $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

Can derive set of quantum correlations without assuming QT.

Even eavesdropper with classical side information about beyond-quantum physics cannot predict the outcomes.

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

Conclusions

- Modest approach complementing direct QG approaches: study the constraints of spacetime on QT in simple scenarios.
- Relativity of simultaneity constrains the dimensionality of the qubit.
- Rotational symmetry determines the set of quantum correlations and the security of a SDI randomness generation protocol.
- Goal: theory-agnostic analysis of experiments in space and time.
- Speculation: is this (weak) evidence that QT might be modified in other regimes of space and time?

