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Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity.

sparse empirical evidence.

e Option 1: try to develop a full-blown theory directly.

e Option 2: first, study how spacetime constrains quantum theory.
Needs (mathematical) imagination of how the universe’s probabilistic
theory could be different.

b
x,y € {0,1}

Alice’s

Box

a,b € {green, red}
a b

atbsr=y=1

superstrong nonlocality? higher-order interference?
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Further motivation: (semi-)device-independent QIT

Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?

50%

. Detector 1
a5 - T : : ‘-
- K- v -9 T V "' Y= . - -
SEEETT T 50%

p: o & 2
Half-Silvered Mirror :. Detector 2

Don’t trust your devices!
I One-photon
light source

Device-independent randomness expansion:
Violation of Bell inequality = outcomes uncorrelated with rest of the world

See e.g.: A. Acin, Randomness and quantum non-locality, QCRYPT 2012 talk.
V. Scarani, Bell nonlocality, Oxford Graduate Texts (2019).
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Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

re{l,2,3,4}_,

y € 11,2}
!
dimH = 2
L > M ace-
P

Observed correlations p(a|z,y) imply H(A|X,Y,A) > 0.

Drawback: assumption not physically well-motivated & requires QT.

Observation: in many experiments, settings are spatiotemporal quantities.

Idea: reformulate in terms of spacetime symmetries, w/o assuming QT.
Can quantum phenomenology / functionality be reproduced?
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Imagine what the quantum bit could be instead...

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization
of the quantum mechanical formalism, Annals of Mathematics 35,
29-64 (1934).

d — 1 d — 9 d — 3 d = H cee
bit R—qubit C—qubit H— qubit

LD Take care: Does spacetime constrain d?

qgutrit etc.
o ” — ?
not a ball! Why” d=3 :
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Constraints from relativity

= T\Tgy =TT, tor all T'A, 1T € SO(d — 1)
= d < 3.
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Constraints from relativity

Let’s relax this assumptionto G4 ~ Gg.

» N

= d = 5. Quaternionic QM survives.

/ Up.—@ / >— Q |°

e (@

So far, we assumed: Ga = 0UpR. Assumption of relationality.

,‘
| 1

Whatever happens in one arm can be undone in the other arm.
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Theorem 6.2. Under the assumptions Al, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d =1 (the classical bit), with Ga = G = {1} (i.e. without any non-trivial local transformations),
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Al) Beam splitter can prepare any upper-branch probability p.

A2) Every pure state with the same p can be prepared by
reversible operations applied locally on the two arms.

A3) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions Al, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d =1 (the classical bit), with Ga = G = {1} (i.e. without any non-trivial local transformations),

— d =2 (the quantum bit over the real numbers), with Gp = Gp = Zo,

— d = 3 (the standard quantum bit over the complex numbers), with G = Gg = SO(2) = U(1),
— d =5 (the quaternionic quantum bit), with Gag = SO(4), Ga the left- and Gp the right-isoclinic
rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and G N Gg = {+1, —I}.

Relativity of simultaneity singles out the associative division algebras.
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Randomness generation: quantum analysis

fixed «

If input is x=1: do nothing to preparation device;
if x=2: rotate it (relative to measurement device) by angle a.

SDI assumption: “spin” of system < J
No further assumptions on devices / system.

Rotation described by (projective) unitary representation of SO(2):
J

Uy = @ nje, P(bla) = tr(MpUypUl).

j==J
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Randomness generation: quantum analysis

= P(+1|z) — P(—1|x)
)
A

Can predict
outcome!

e “Boring” deterministic correlations:

-1,+1
outcome b independent of x |

e “Interesting” deterministic correlations:

outcome b is a function of x

Suppose (FE1, E5) observed. Looks random.

But: (-1,-1
E17E2 Zp E§>\)7E§>\))det
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Which correlations are possible? Theorem: exactly those:

1 — — cos(Ja) if |Ja| < T
; (\/1+E1\/1+E2+\/1 Ei+/1 E2) Z{ N it o Z%

C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811
using results of
T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. Garcia-Patron, S. Pironio, Quantum 1, 33 (2017).
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Randomness generation: quantum analysis

Which correlations are possible? Theorem: exactly those:

%(\/1—|—E1\/1+E2—|—\/1—E1\/1—E2) z{

+1,+1)

0 if |Jo| >3

Blue curved set of correlations.
If observed correlation away from red line:
certifiable private randomness.
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e Can we formulate our SDI assumption without quantum terminology?
e Can we use the protocol to certify random numbers without QT?
e Can we understand the curved boundary of correlations from spatial

symmetry alone, without assuming QT? (+1,41)

Yes we can!
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Rotation boxes beyond quantum theory

e Definition of quantum spin-J boxes:

Q; = {ar~ p(+1]a) | p(bla) = tr(EyUpU)},

e Definition of (general) spin-J rotation boxes:

2J
Ry =< a—p(H+lla) =cy+ ch cos(ja) + s;sin(ja) o,
j=1

Clearly Q5 CRj.
t can be shown directly that Qo = Ro and Q12 = Rq/2.

However, for some larger J, we have Qj; C R, details here:

A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023). | /

Ry from rep. of SO(2) on (non-quantum) “orbitope” state spaces
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Boxes for only two input angles

%(\/1+E1\/1+E2+\/1—E1\/1—E2) > {COS(JO‘) if |Jaf <

0 if |Ja| >

NSIETNIE

(-1,+1)————--= (+1,+1)

@ 7o quantum correlations (for 2 angles)

R j.« :rotation box correlations (for 2 angles)

”mr _—da 4 Clearly Qja € Rja-

Theorem: Qj,a = RJ,Q. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811
Can derive set of quantum correlations without assuming QT.

Even eavesdropper with classical side information about
beyond-quantum physics cannot predict the outcomes.




Overview

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions




Overview

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions




Conclusions

e Modest approach complementing direct QG approaches:
study the constraints of spacetime on QT in simple scenarios.

e Relativity of simultaneity constrains the dimensionality of the qubit.

e Rotational symmetry determines the set of quantum correlations and
the security of a SDI randomness generation protocol.

e Goal: theory-agnostic analysis of experiments in space and time.

e Speculation: is this (weak) evidence that QT might be modified in other

regimes of space and time?
oSllismarXiv:1412.7112
RN rXiv:2210.14811




