How spacetime constrains the structure of quantum theory

Caroline L. Jones, Stefan L. Ludescher, Albert Aloy, Andrew J. P. Garner, Oscar C. O. Dahlsten, Markus P. Müller IQOQI Vienna \& Perimeter Institute

Der Wissenschaftsfonds.

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Quantum gravity: an analogy

Quantum gravity: an analogy

Wanted: a complete theory of evolution.

Quantum gravity: an analogy

Wanted: a complete theory of evolution.

biological traits \longleftrightarrow environment

Quantum gravity: an analogy

Wanted: a complete theory of evolution.

biological traits \longleftrightarrow environment

confined to desert, no fossils: sparse empirical evidence.

Quantum gravity: an analogy

Wanted: a complete theory of evolution.

biological traits \longleftrightarrow environment

confined to desert, no fossils: sparse empirical evidence.

- Option 1: try to develop a full-blown theory directly.
- Option 2: first, study how the environment constrains biological traits.

Quantum gravity: an analogy

Wanted: a complete theory of evolution.

biological traits \longleftrightarrow environment

confined to desert, no fossils: sparse empirical evidence.

- Option 1: try to develop a full-blown theory directly.
- Option 2: first, study how the environment constrains biological traits. Needs imagination of how biology could be different.

Quantum gravity: an analogy

Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity.

Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity. sparse empirical evidence.

Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity. sparse empirical evidence.

- Option 1: try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory.

Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity. sparse empirical evidence.

- Option 1: try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.

Quantum gravity: an analogy

Wanted: a complete theory of quantum gravity. sparse empirical evidence.

- Option 1: try to develop a full-blown theory directly.

- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.

superstrong nonlocality?

higher-order interference?

Further motivation: (semi-)device-independent QIT

Goal: Generate certified random bits.

Further motivation: (semi-)device-independent QIT

Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?

Further motivation: (semi-)device-independent QIT

Goal: Generate certified random bits.
Why not just send single photons on a half-silvered mirror?

Further motivation: (semi-)device-independent QIT

Goal: Generate certified random bits.
Why not just send single photons on a half-silvered mirror?

Device-independent randomness expansion:
Violation of Bell inequality \Rightarrow outcomes uncorrelated with rest of the world
See e.g.: A. Acín, Randomness and quantum non-locality, QCRYPT 2012 talk. V. Scarani, Bell nonlocality, Oxford Graduate Texts (2019).

Semi-device-independent (SDI): allow communication, add assumption.

Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

Observed correlations $p(a \mid x, y)$ imply $H(A \mid X, Y, \Lambda) \gg 0$.

Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

Observed correlations $p(r \cdot \mid x, y)$ imply $H(A \mid X, Y, \Lambda) \gg 0$.

Drawback assumption not physically well-motivated \& requires QT.

Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

Observation: in many experiments, settings are spatiotemporal quantities.

Further motivation: (semi-)device-independent QIT

Semi-device-independent (SDI): allow communication, add assumption.

Observed correlations $p(a \mid x, y)$ imply $H(A \mid X, Y, \Lambda) \gg 0$.

Drawback: assumption not physically well-motivated \& requires QT.
Observation: in many experiments, settings are spatiotemporal quantities.
Idea: reformulate in terms of spacetime symmetries, w/o assuming QT. Can quantum phenomenology / functionality be reproduced?

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Imagine what the quantum bit could be instead...

Imagine what the quantum bit could be instead...

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35, 29-64 (1934).

Imagine what the quantum bit could be instead...

Imagine what the quantum bit could be instead...

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35, 29-64 (1934).

Imagine what the quantum bit could be instead...

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35, 29-64 (1934).

bit
\mathbb{R}-qubit

Take care:
qutrit etc.
not a ball!

Does spacetime constrain d?
"Why" d=3 ?

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

North-pole state: particle definitely in upper branch.

Constraints from relativity

```
A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).
```


South-pole state: particle definitely in lower branch.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

State on equator $z=0$: probability $1 / 2$ for each.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

State on equator $z=0$: probability $1 / 2$ for each.
$p(u p)=\frac{1}{2}(z+1)$

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

What transformations T can we perform locally in one arm...
... reversibly, i.e. without any information loss?

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

Constraints from relativity

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)
$$

Constraints from relativity

Relativity: there's a frame of reference in which T_{A} happens before $T_{B} \ldots$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)
$$

Constraints from relativity

$$
\Rightarrow T_{A} T_{B}=T_{B} T_{A} \text { for all } T_{A}, T_{B} \in \mathrm{SO}(d-1)
$$

d-dim. "Bloch sphere"

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

Constraints from relativity

$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \mathrm{SO}(d-1)$.
$\Rightarrow d \leq 3$.

d-dim. "Bloch sphere"

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality.

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality. Whatever happens in one arm can be undone in the other arm.

Constraints from relativity

Let's relax this assumption to $\mathcal{G}_{A} \simeq \mathcal{G}_{B}$.
$\Rightarrow d=5$. Quaternionic QM survives.

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality.
Whatever happens in one arm can be undone in the other arm.

Classification of possibilities

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Classification of possibilities

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:
$-d=1$ (the classical bit), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
$-d=2$ (the quantum bit over the real numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathbb{Z}_{2}$,
$-d=3$ (the standard quantum bit over the complex numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathrm{SO}(2)=\mathrm{U}(1)$,
$-d=5$ (the quaternionic quantum bit), with $\mathcal{G}_{\mathrm{AB}}=\mathrm{SO}(4), \mathcal{G}_{\mathrm{A}}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa) which are both isomorphic to $\mathrm{SU}(2)$, and $\mathcal{G}_{\mathrm{A}} \cap \mathcal{G}_{\mathrm{B}}=\{+\mathbb{I},-\mathbb{I}\}$.

Classification of possibilities

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:
$-d=1$ (the classical bit), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
$-d=2$ (the quantum bit over the real numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathbb{Z}_{2}$,
$-d=3$ (the standard quantum bit over the complex numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathrm{SO}(2)=\mathrm{U}(1)$,
$-d=5$ (the quaternionic quantum bit), with $\mathcal{G}_{\mathrm{AB}}=\mathrm{SO}(4), \mathcal{G}_{\mathrm{A}}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa) which are both isomorphic to $\mathrm{SU}(2)$, and $\mathcal{G}_{\mathrm{A}} \cap \mathcal{G}_{\mathrm{B}}=\{+\mathbb{I},-\mathbb{I}\}$.

Relativity of simultaneity singles out the associative division algebras.

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Randomness generation: quantum analysis

Randomness generation: quantum analysis

Randomness generation: quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle α.

Randomness generation: quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle α.

SDI assumption: "spin" of system $\leq \mathbf{J}$
No further assumptions on devices / system.

Randomness generation: quantum analysis

If input is $x=1$: do nothing to preparation device; if $x=2$: rotate it (relative to measurement device) by angle α.

SDI assumption: "spin" of system $\leq \mathbf{J}$
No further assumptions on devices / system.
Rotation described by (projective) unitary representation of SO(2):

$$
U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}, \quad P(b \mid \alpha)=\operatorname{tr}\left(M_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)
$$

Randomness generation: quantum analysis

Randomness generation: quantum analysis

fixed α

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

Randomness generation: quantum analysis

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

fixed α

$$
b \in\{ \pm 1\} \downarrow
$$

- "Boring" deterministic correlations: outcome b independent of x

Randomness generation: quantum analysis

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Randomness generation: quantum analysis

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_{1}, E_{2}) observed. Looks random. But:

Randomness generation: quantum analysis

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_{1}, E_{2}) observed. Looks random. But:

$$
\left(E_{1}, E_{2}\right)=\sum_{\lambda} p(\lambda)\left(E_{1}^{(\lambda)}, E_{2}^{(\lambda)}\right)_{\operatorname{det}}
$$

Randomness generation: quantum analysis

$$
E_{x}=P(+1 \mid x)-P(-1 \mid x)
$$

fixed α

Can predict outcome!

- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_{1}, E_{2}) observed. Looks random. But:

$$
\left(E_{1}, E_{2}\right)=\sum_{\lambda} p(\lambda)\left(E_{1}^{(\lambda)}, E_{2}^{(\lambda)}\right)_{\operatorname{det}}
$$

Randomness generation: quantum analysis

Which correlations are possible?

Randomness generation: quantum analysis

Which correlations are possible? Theorem: exactly those:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 & \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$
C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811 using results of
T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, S. Pironio, Quantum 1, 33 (2017).

Randomness generation: quantum analysis

Which correlations are possible? Theorem: exactly those:

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

Angle $\alpha \geq \pi /(2 J)$:
no certifiable randomness.

Randomness generation: quantum analysis

Which correlations are possible? Theorem: exactly those:
$\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{c}\cos (J \alpha) \\ \text { if }|J \alpha|<\frac{\pi}{2} \\ 0 \\ \text { if }|J \alpha| \geq \frac{\pi}{2}\end{array}\right.$

Blue curved set of correlations.
If observed correlation away from red line: certifiable private randomness.

Quantum theory is actually not needed

Quantum theory is actually not needed

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?

Quantum theory is actually not needed

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

Quantum theory is actually not needed

- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

Yes we can!

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes: $\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$, $\left\{E_{b}\right\}$ some POVM, ρ some density matrix, $U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:
$\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$,
$\left\{E_{b}\right\}$ some POVM, ρ some density matrix,
$U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.
Consequence: every p is a trigonometric polynomial of degree $\mathbf{2 J}$

$$
\text { (e.g. } p(+\mid \alpha)=\frac{1}{2}+\frac{1}{2} \cos \alpha \quad \text { for } J=\frac{1}{2} \text {). }
$$

- Definition of quantum spin-J boxes:
$\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\}$, $\left\{E_{b}\right\}$ some POVM, ρ some density matrix,
$U_{\alpha}=\bigoplus_{j=-J}^{J} n_{j} e^{i j \alpha}$, with arbitrary multiplicities n_{j}.
Consequence: every p is a trigonometric polynomial of degree $2 \mathbf{J}$

$$
\text { (e.g. } p(+\mid \alpha)=\frac{1}{2}+\frac{1}{2} \cos \alpha \quad \text { for } J=\frac{1}{2} \text {). }
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

$$
0 \leq p(+1 \mid \alpha) \leq 1 \quad \text { for all } \alpha
$$

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Clearly $\mathcal{Q}_{J} \subseteq \mathcal{R}_{J}$.

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Clearly $\mathcal{Q}_{J} \subseteq \mathcal{R}_{J}$.
It can be shown directly that $\mathcal{Q}_{0}=\mathcal{R}_{0}$ and $\mathcal{Q}_{1 / 2}=\mathcal{R}_{1 / 2}$. However, for some larger J, we have $\mathcal{Q}_{J} \subsetneq \mathcal{R}_{J}$, details here:
A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).

Rotation boxes beyond quantum theory

- Definition of quantum spin-J boxes:

$$
\mathcal{Q}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha) \mid p(b \mid \alpha)=\operatorname{tr}\left(E_{b} U_{\alpha} \rho U_{\alpha}^{\dagger}\right)\right\},
$$

- Definition of (general) spin-J rotation boxes:

$$
\mathcal{R}_{J}:=\left\{\alpha \mapsto p(+1 \mid \alpha)=c_{0}+\sum_{j=1}^{2 J} c_{j} \cos (j \alpha)+s_{j} \sin (j \alpha)\right\}
$$

Clearly $\mathcal{Q}_{J} \subseteq \mathcal{R}_{J}$.
It can be shown directly that $\mathcal{Q}_{0}=\mathcal{R}_{0}$ and $\mathcal{Q}_{1 / 2}=\mathcal{R}_{1 / 2}$. However, for some larger J, we have $\mathcal{Q}_{J} \subsetneq \mathcal{R}_{J}$, details here:
A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).
\mathcal{R}_{J} from rep. of $\mathrm{SO}(2)$ on (non-quantum) "orbitope" state spaces

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cc}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

$\mathcal{Q}_{J, \alpha}$ quantum correlations (for $\mathbf{2}$ angles)

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

$\mathcal{Q}_{J, \alpha}$ quantum correlations (for $\mathbf{2}$ angles)
$\mathcal{R}_{J, \alpha}$: rotation box correlations (for $\mathbf{2}$ angles)

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cl}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cc}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

Theorem: $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cc}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

Theorem: $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811
Can derive set of quantum correlations without assuming QT.

Boxes for only two input angles

$$
\frac{1}{2}\left(\sqrt{1+E_{1}} \sqrt{1+E_{2}}+\sqrt{1-E_{1}} \sqrt{1-E_{2}}\right) \geq\left\{\begin{array}{cc}
\cos (J \alpha) & \text { if }|J \alpha|<\frac{\pi}{2} \\
0 & \text { if }|J \alpha| \geq \frac{\pi}{2}
\end{array}\right.
$$

$\mathcal{Q}_{J, \alpha}$ quantum correlations (for $\mathbf{2}$ angles)
$\mathcal{R}_{J, \alpha}$: rotation box correlations (for $\mathbf{2}$ angles)

Clearly $\quad \mathcal{Q}_{J, \alpha} \subseteq \mathcal{R}_{J, \alpha}$.

Theorem: $\mathcal{Q}_{J, \alpha}=\mathcal{R}_{J, \alpha}$. C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811
Can derive set of quantum correlations without assuming QT.
Even eavesdropper with classical side information about beyond-quantum physics cannot predict the outcomes.

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

Overview

1. Motivations: QG and device-independent QIT
2. Relativity of simultaneity and the qubit
3. Randomness generation via rotational symmetry
4. Conclusions

- Modest approach complementing direct QG approaches: study the constraints of spacetime on QT in simple scenarios.
- Relativity of simultaneity constrains the dimensionality of the qubit.
- Rotational symmetry determines the set of quantum correlations and the security of a SDI randomness generation protocol.
- Goal: theory-agnostic analysis of experiments in space and time.
- Speculation: is this (weak) evidence that QT might be modified in other regimes of space and time?

qubit: arXiv:1412.7112
randomness: arXiv:2210.14811

