

AUSTRIAN

IQOQI - INSTITUTE FOR QUANTUM OPTICS AND QUANTUM INFORMATION VIENNA



INSTITUTE

# How spacetime constrains the structure of quantum theory

# Caroline L. Jones, Stefan L. Ludescher, Albert Aloy, Andrew J. P. Garner, Oscar C. O. Dahlsten, Markus P. Müller **IQOQI** Vienna & Perimeter Institute



Der Wissenschaftsfonds.

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

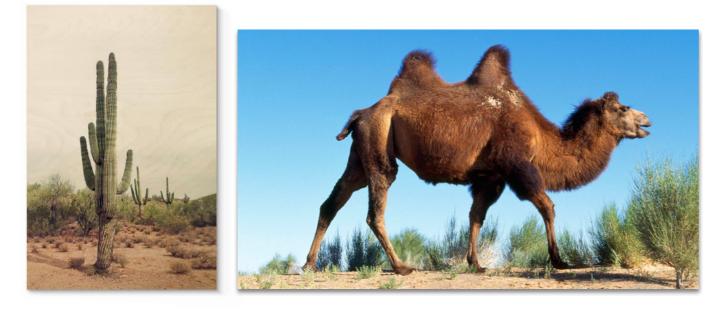
3. Randomness generation via rotational symmetry

4. Conclusions

Wanted: a complete theory of **evolution**.

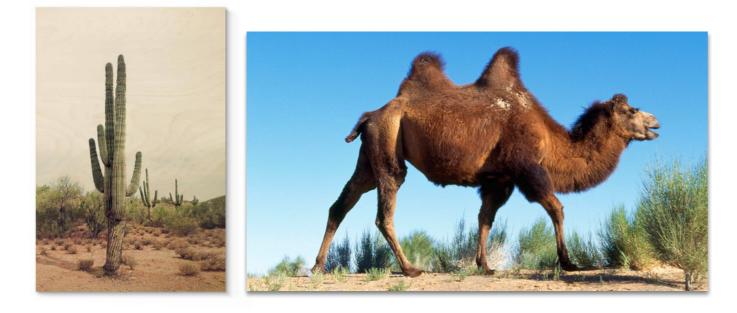
Wanted: a complete theory of **evolution**.

Wanted: a complete theory of **evolution**.



confined to desert, no fossils: sparse empirical evidence.

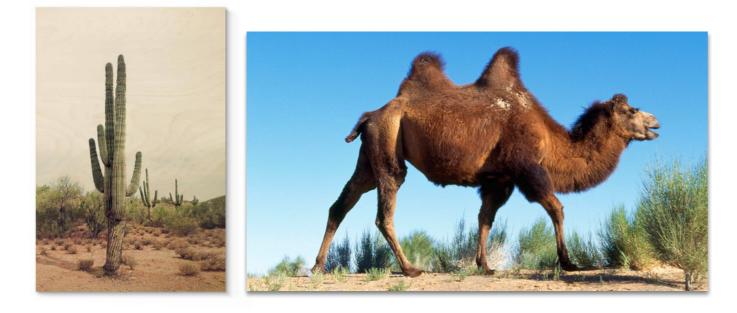
Wanted: a complete theory of **evolution**.



confined to desert, no fossils: sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- **Option 2:** first, study how the environment constrains biological traits.

Wanted: a complete theory of **evolution**.



confined to desert, no fossils: sparse empirical evidence.

- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how the environment constrains biological traits.
   Needs imagination of how biology could be different.

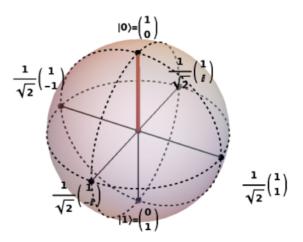


Wanted: a complete theory of **quantum gravity**.

Wanted: a complete theory of **quantum gravity**.

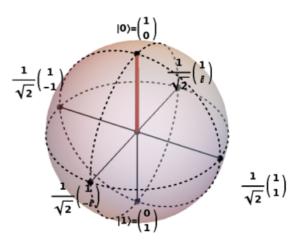
sparse empirical evidence.

Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.



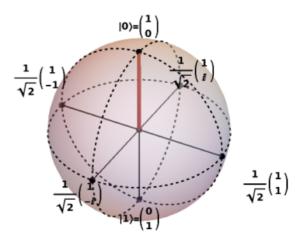
- **Option 1:** try to develop a full-blown theory directly.
- **Option 2:** first, study how spacetime constrains quantum theory.

Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.

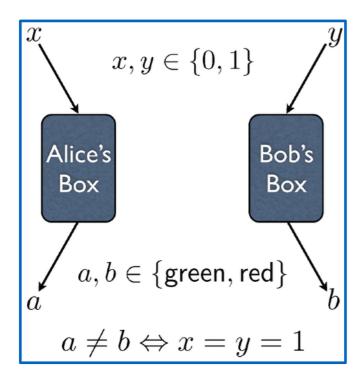


- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.

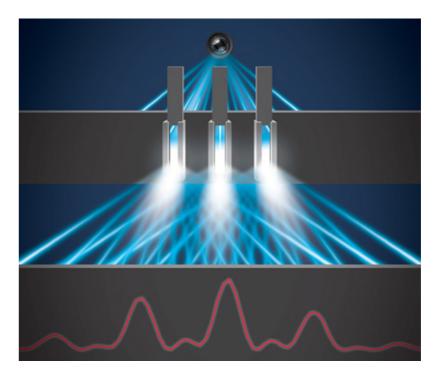
Wanted: a complete theory of **quantum gravity**. sparse empirical evidence.



- **Option 1:** try to develop a full-blown theory directly.
- Option 2: first, study how spacetime constrains quantum theory. Needs (mathematical) imagination of how the universe's probabilistic theory could be different.



superstrong nonlocality?

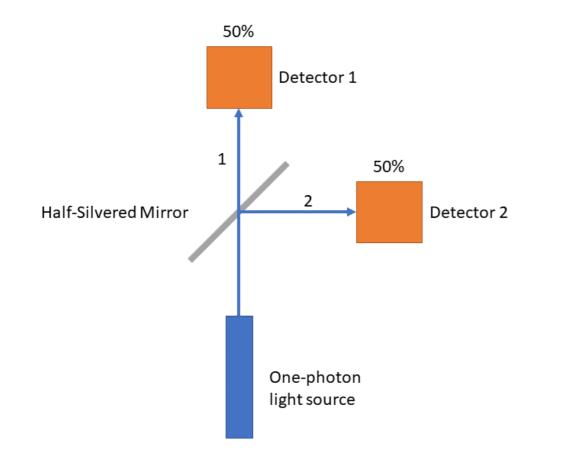


higher-order interference?

**Goal:** Generate certified random bits.

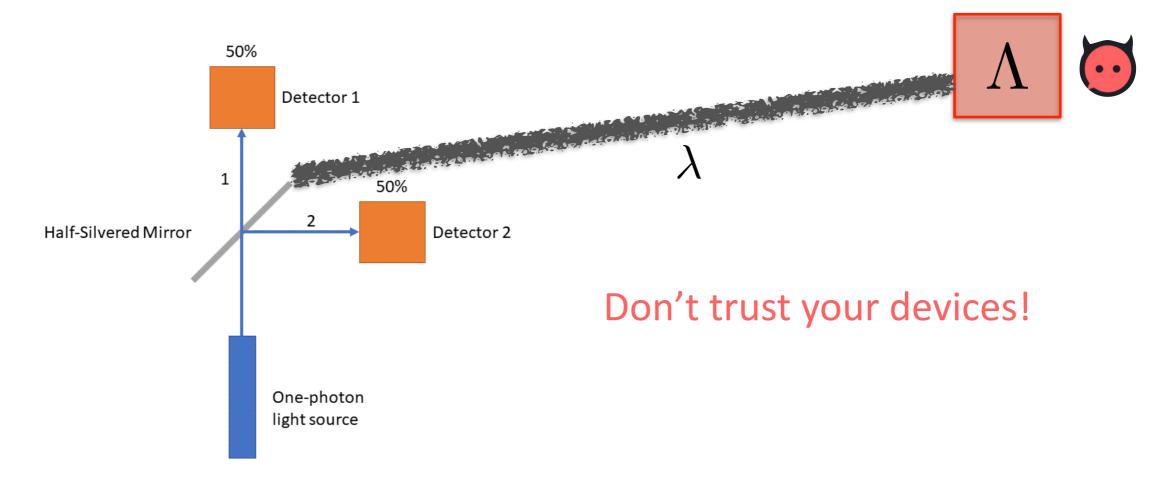
**Goal:** Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



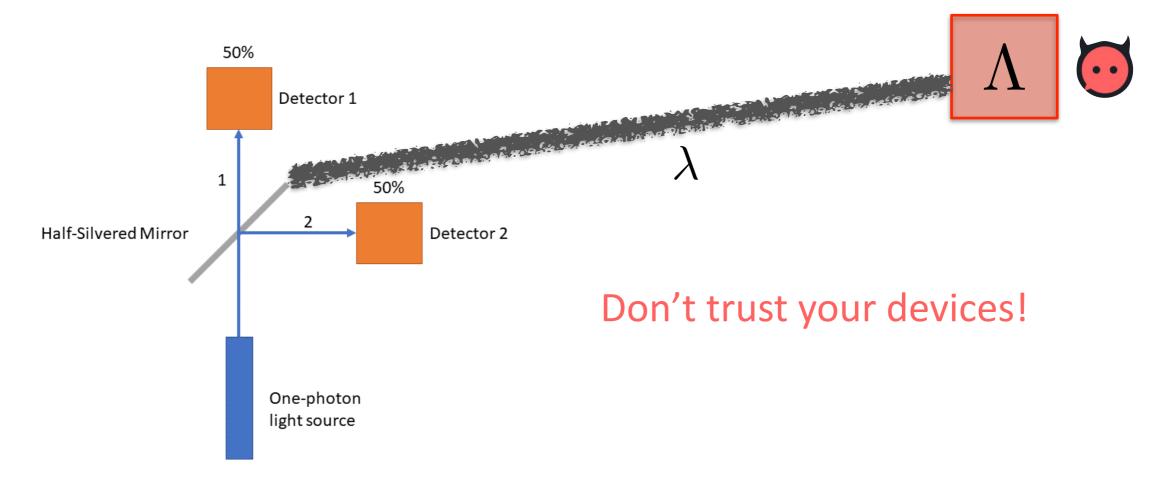
**Goal:** Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



**Goal:** Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



## **Device-independent** randomness expansion:

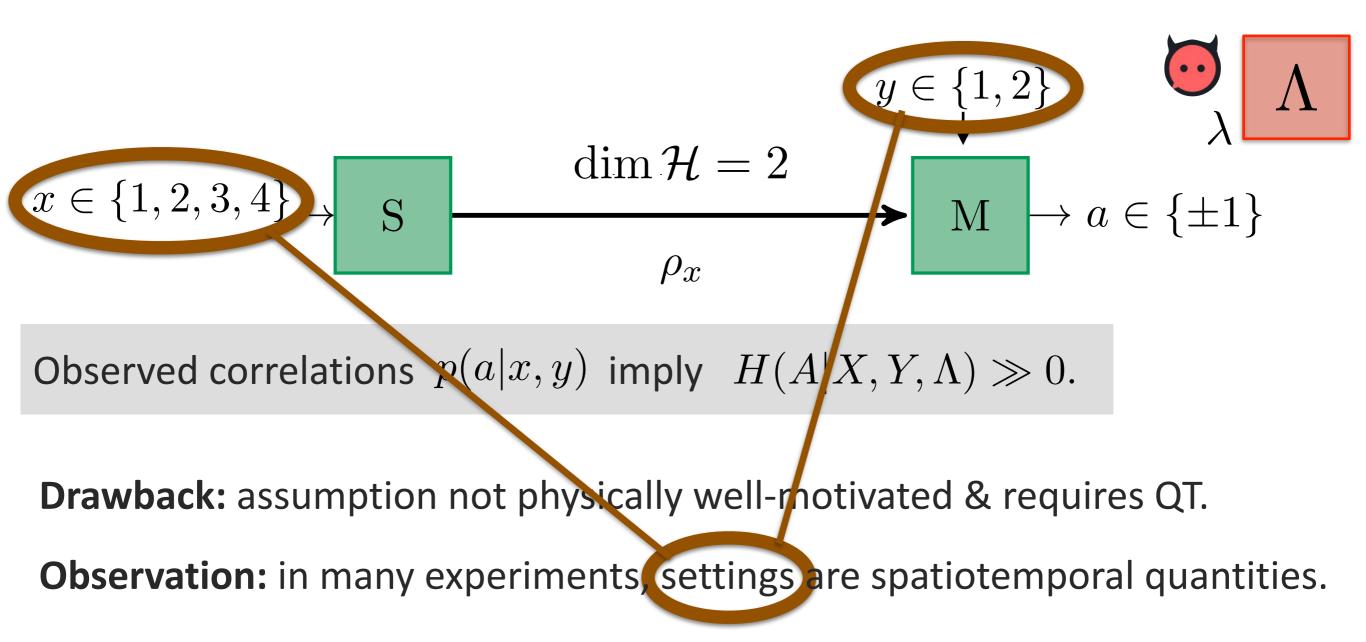
Violation of Bell inequality  $\Rightarrow$  outcomes uncorrelated with rest of the world

See e.g.: A. Acín, *Randomness and quantum non-locality*, QCRYPT 2012 talk. V. Scarani, *Bell nonlocality*, Oxford Graduate Texts (2019).

$$x \in \{1, 2, 3, 4\} \xrightarrow{\mathbf{S}} \mathbf{S} \xrightarrow{\rho_x} \mathbf{M} \xrightarrow{\mathbf{S}} \mathbf{M}$$

$$x \in \{1, 2, 3, 4\} \xrightarrow{\mathbf{S}} \mathbf{S} \xrightarrow{\mathbf{M}} \mathbf{S} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \mathbf{A} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}}$$

$$x \in \{1, 2, 3, 4\}$$
  $\longrightarrow$   $S$   $\longrightarrow$   $M$   $\longrightarrow$   $a \in \{\pm 1\}$   
Observed correlations  $p(c|x, y)$  imply  $H(A|X, Y, \Lambda) \gg 0$ .  
Drawback, assumption not physically well-motivated & requires QT.



Semi-device-independent (SDI): allow communication, add assumption.

$$x \in \{1, 2, 3, 4\} \longrightarrow \mathbf{S} \xrightarrow{\qquad \text{dim } \mathcal{H} = 2} \xrightarrow{\qquad \text{w} \in \{1, 2\}} \underbrace{\qquad \overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}{\overset{\mathbf{\mathcal{M}}}}}}}}}}}}}}}}}}}}}}}}} \\$$

**Drawback:** assumption not physically well-motivated & requires QT.

**Observation:** in many experiments, settings are spatiotemporal quantities.

Idea: reformulate in terms of spacetime symmetries, w/o assuming QT. Can quantum phenomenology / functionality be reproduced? 1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

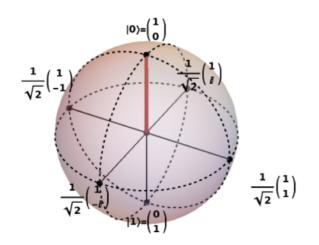
1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

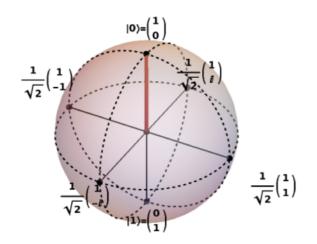
3. Randomness generation via rotational symmetry

4. Conclusions

# Imagine what the **quantum bit** could be instead...

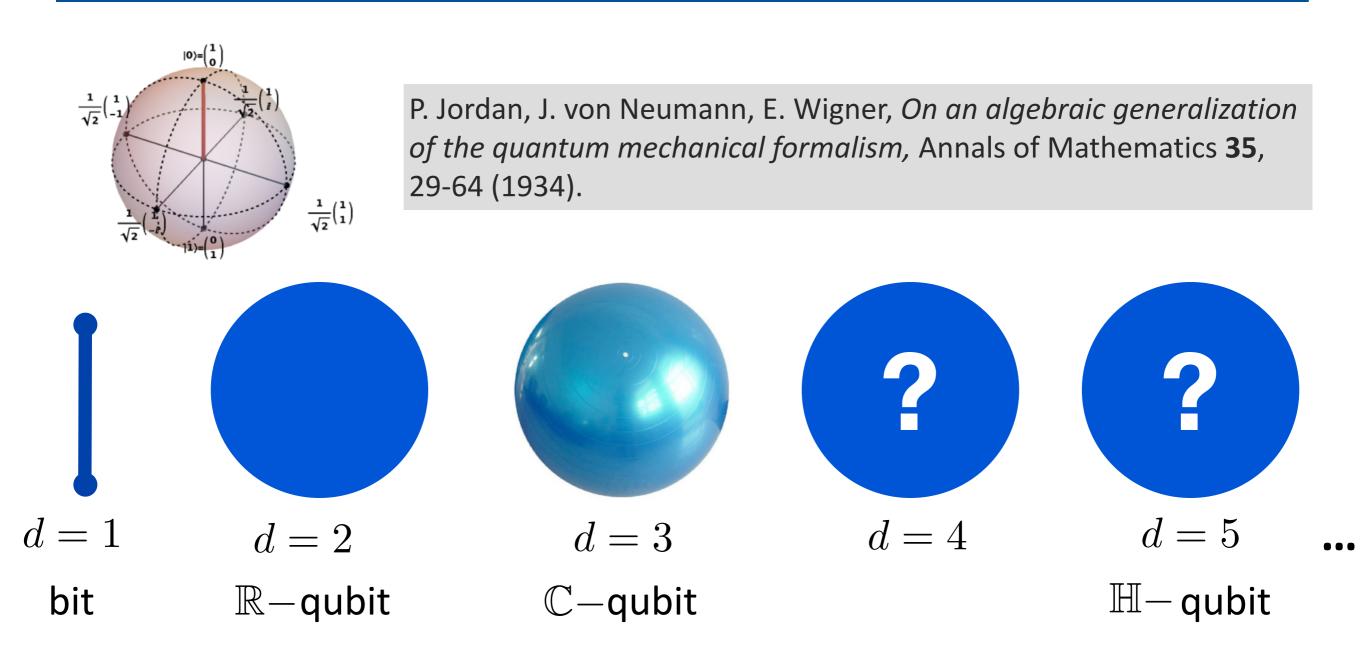


## Imagine what the **quantum bit** could be instead...



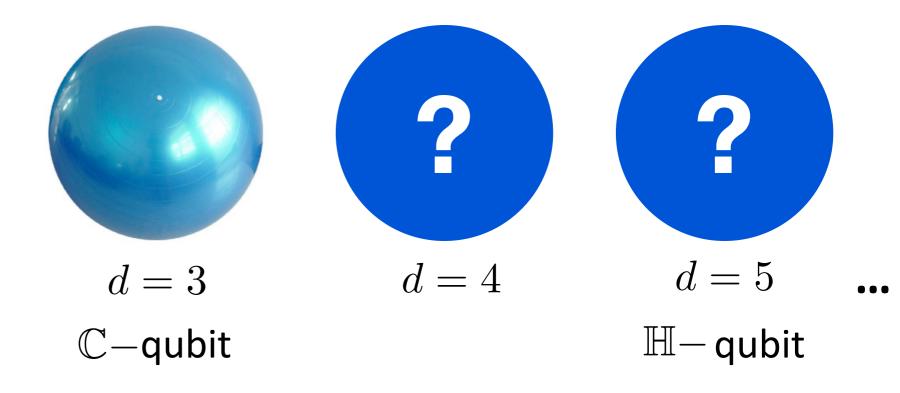
P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35, 29-64 (1934).

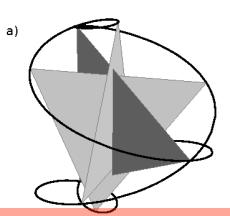
#### Imagine what the **quantum bit** could be instead...



#### the quantum bit could be instead...

n, J. von Neumann, E. Wigner, *On an algebraic generalization uantum mechanical formalism*, Annals of Mathematics **35**, 1934).

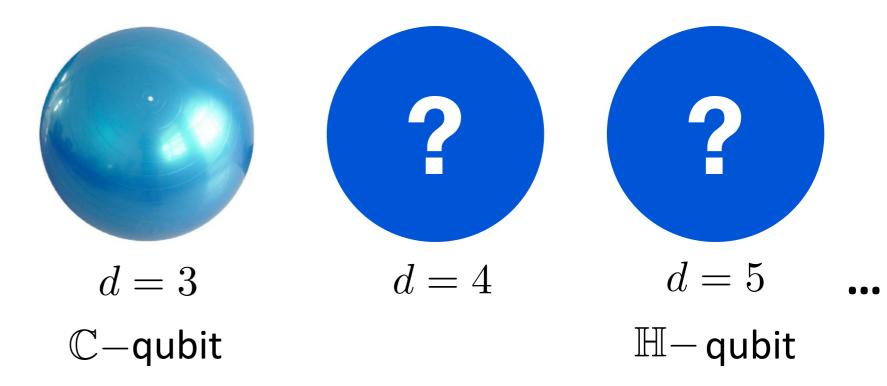


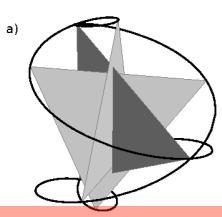


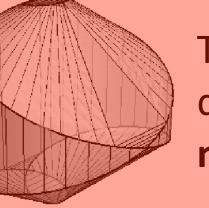


#### the quantum bit could be instead...

n, J. von Neumann, E. Wigner, *On an algebraic generalization uantum mechanical formalism,* Annals of Mathematics **35**, 1934).





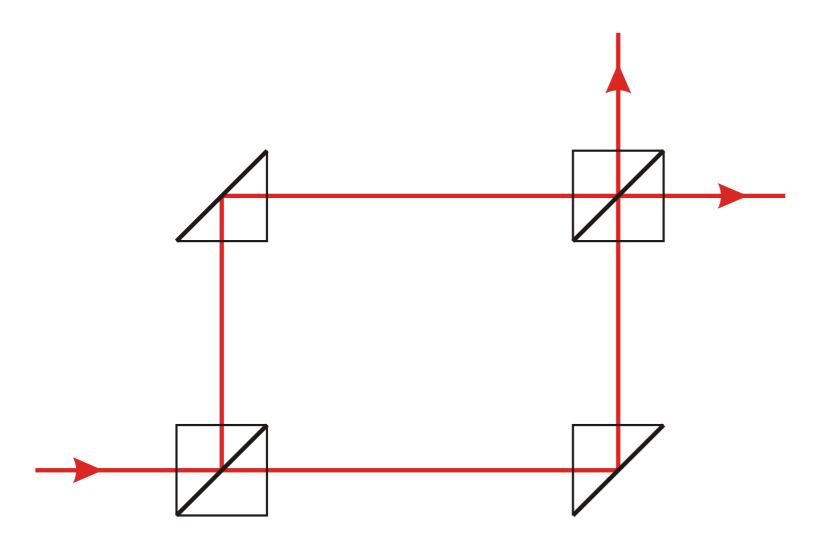


Take care: qutrit etc. **not a ball!**  Does spacetime constrain d?

"Why" *d=3* ?

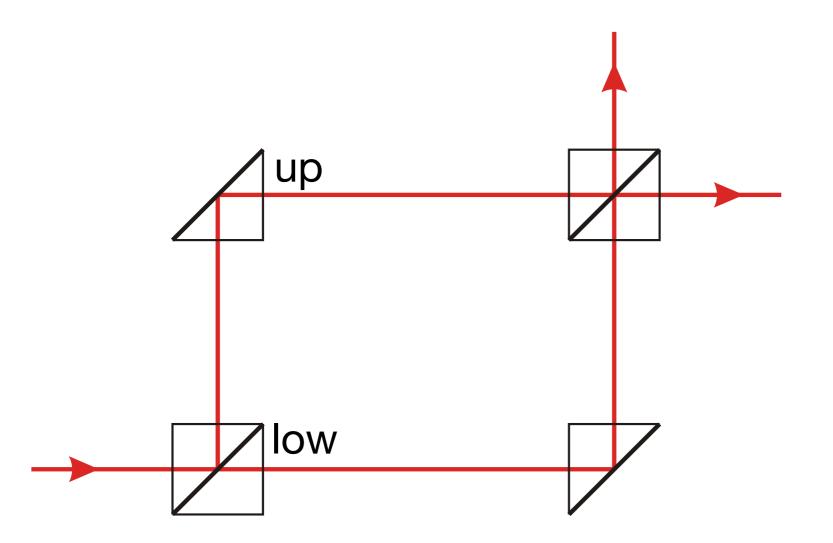
## Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).



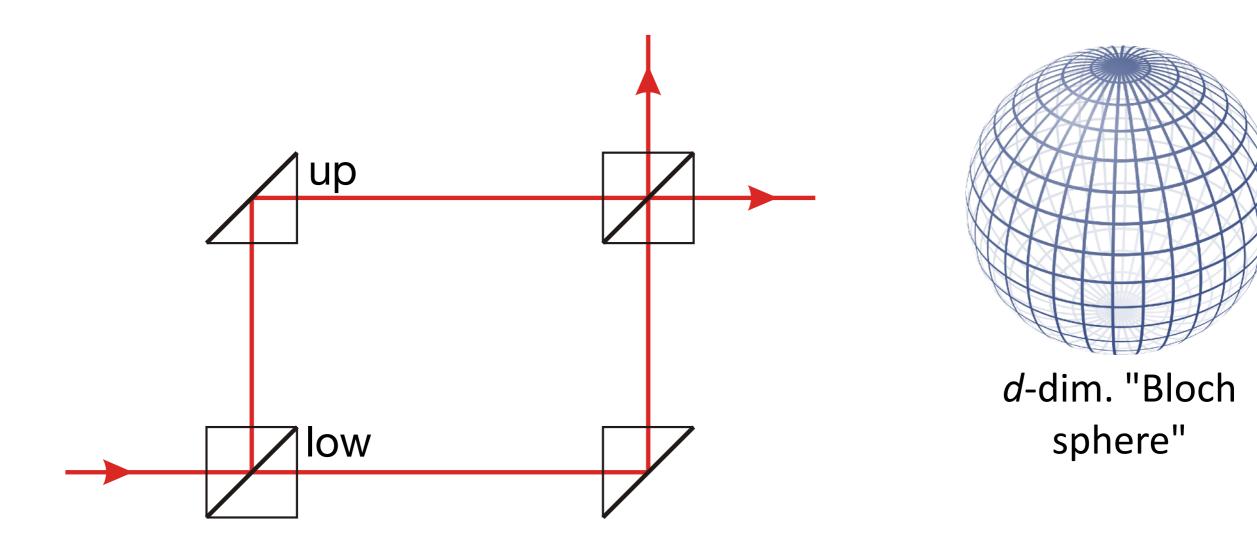
### Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

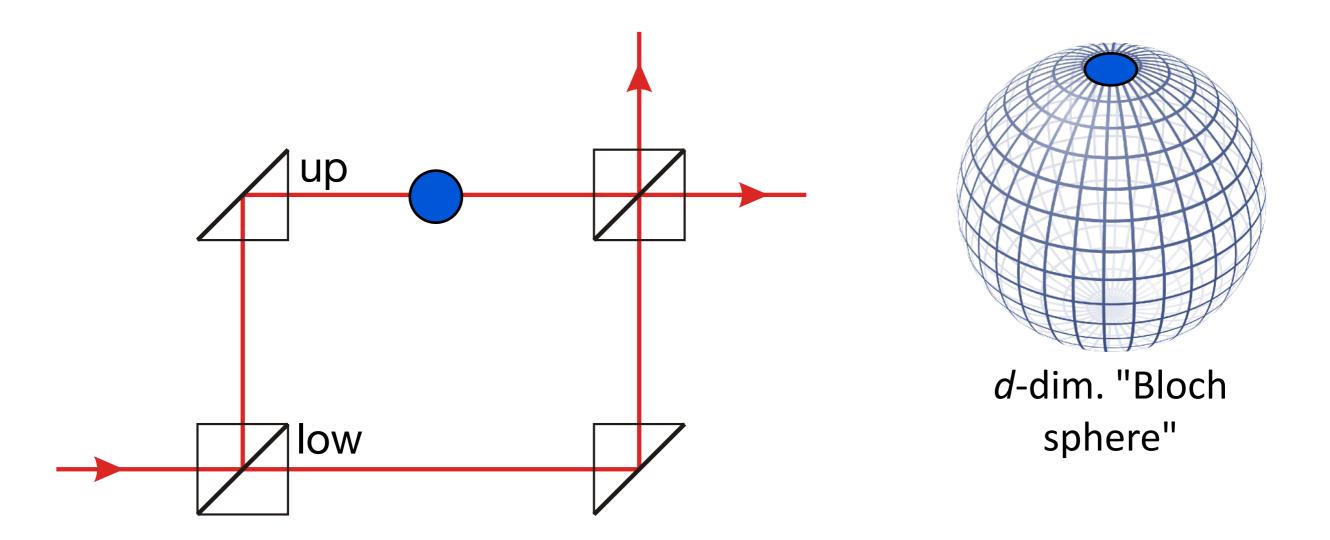


#### Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

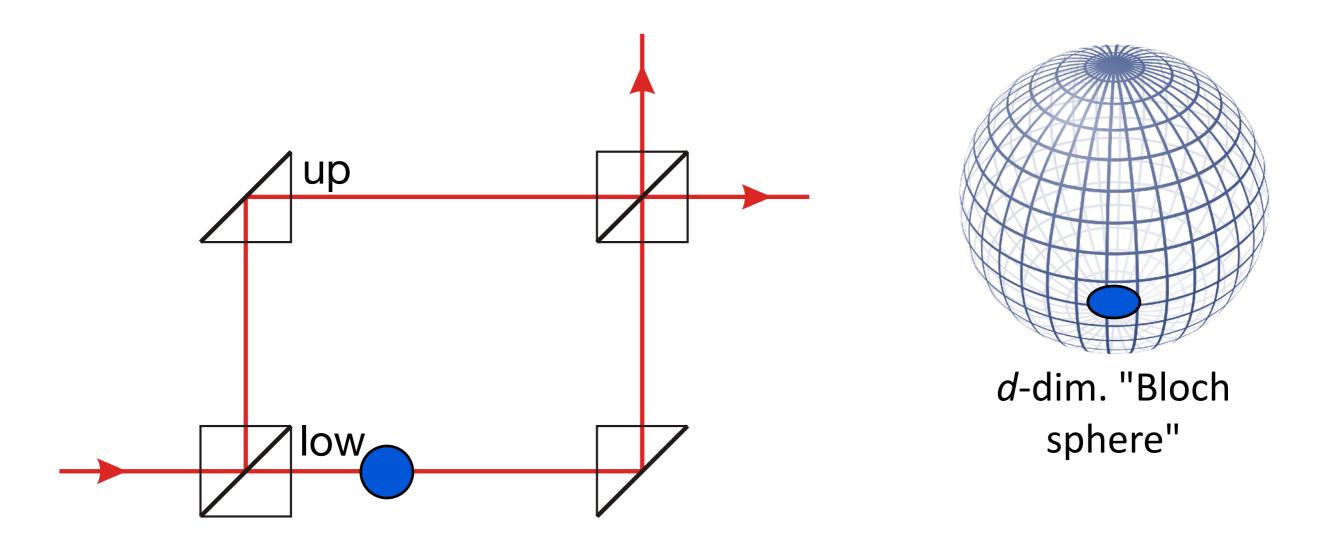


A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).



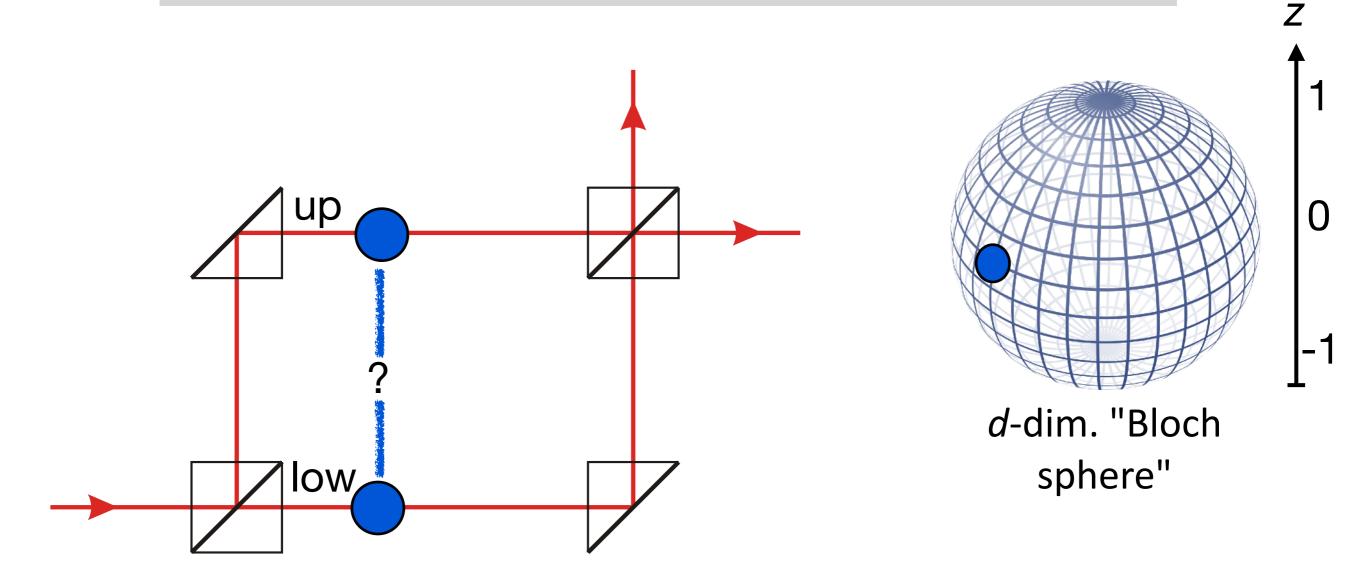
North-pole state: particle definitely in upper branch.

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

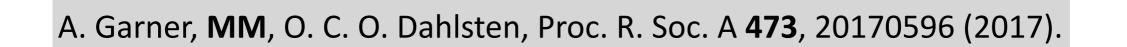


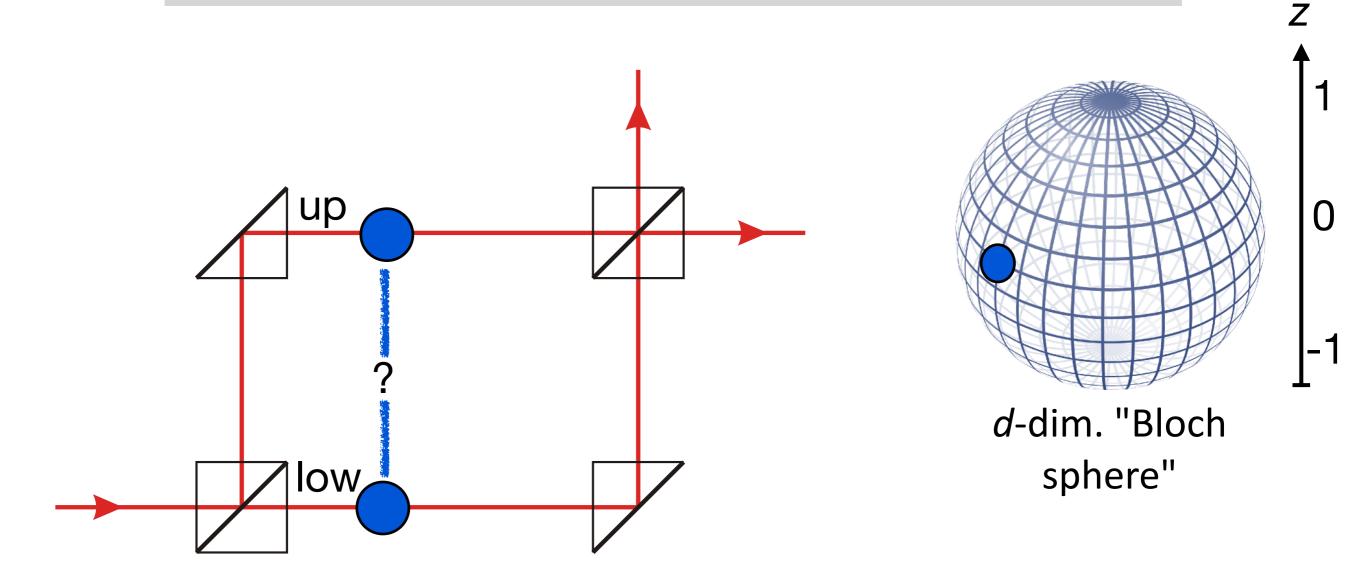
South-pole state: particle definitely in lower branch.



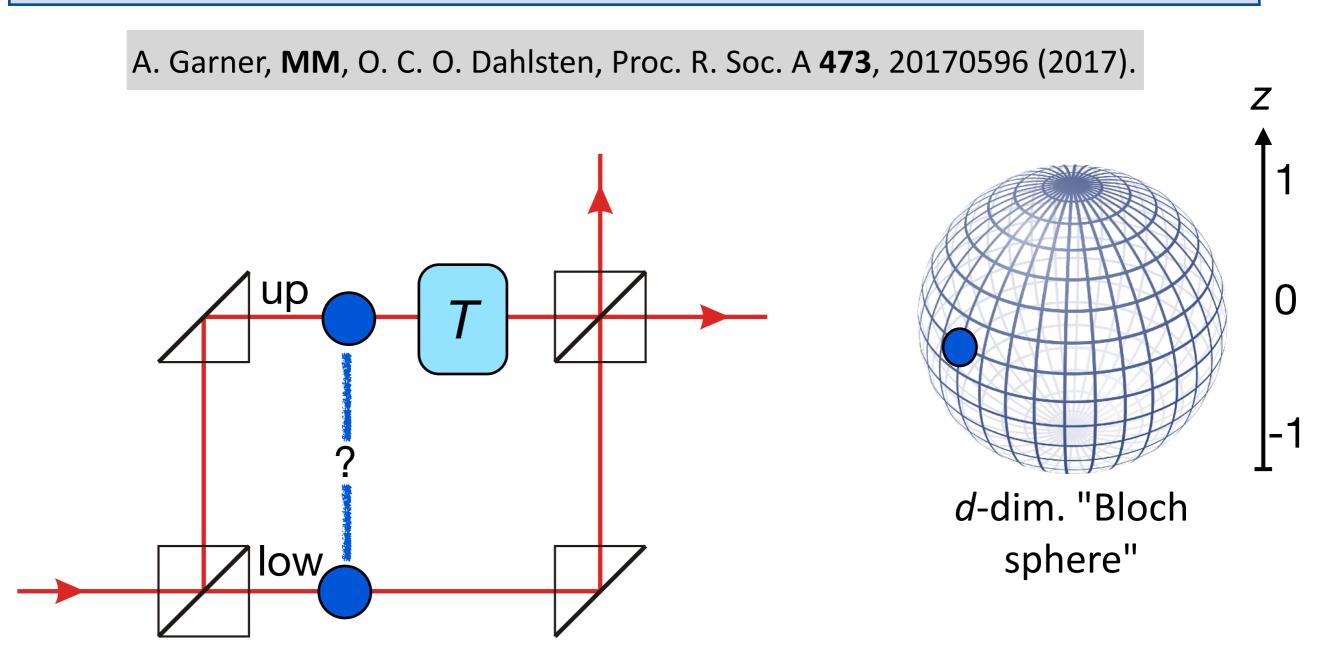


State on equator *z=0*: probability 1/2 for each.

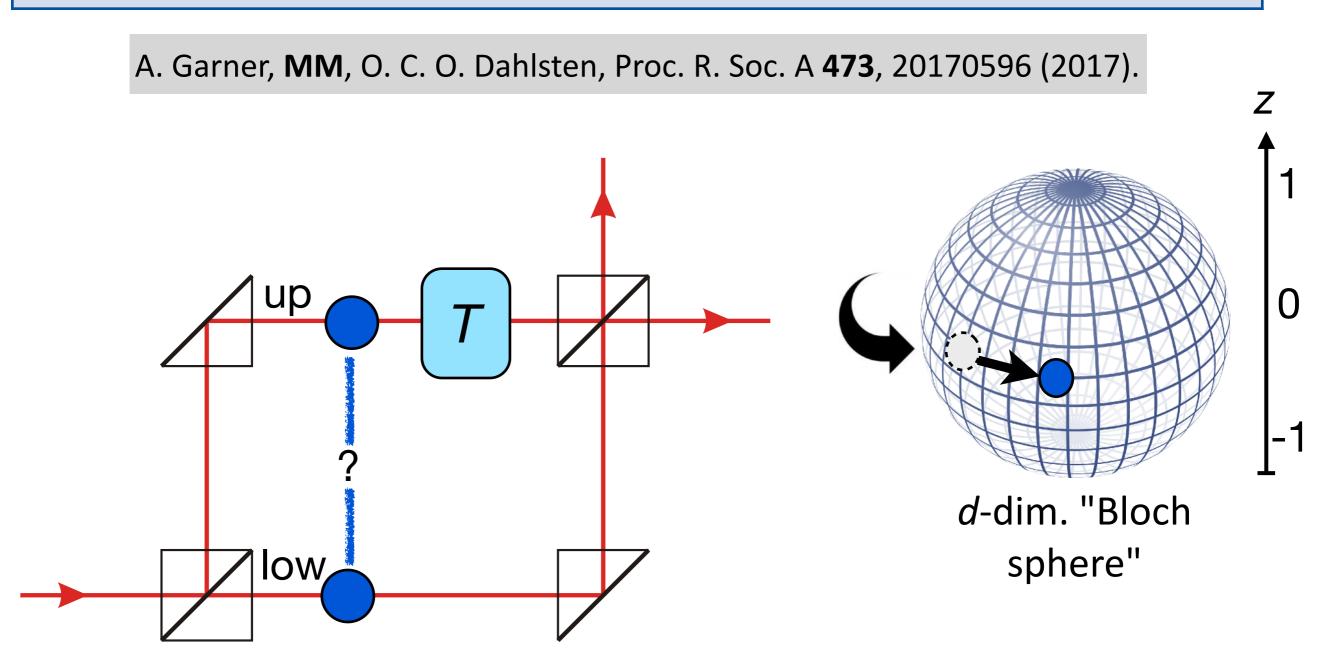




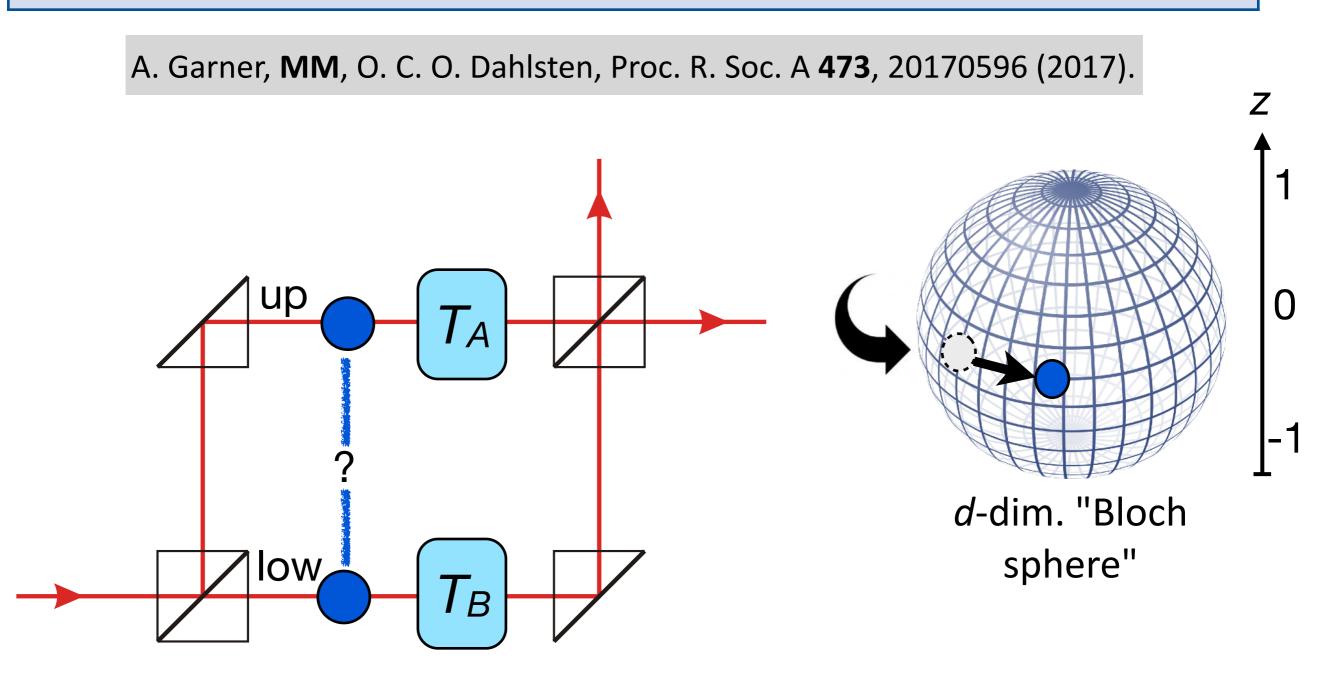
State on equator *z=0*: probability 1/2 for each.  $p(up) = \frac{1}{2}(z+1)$ 



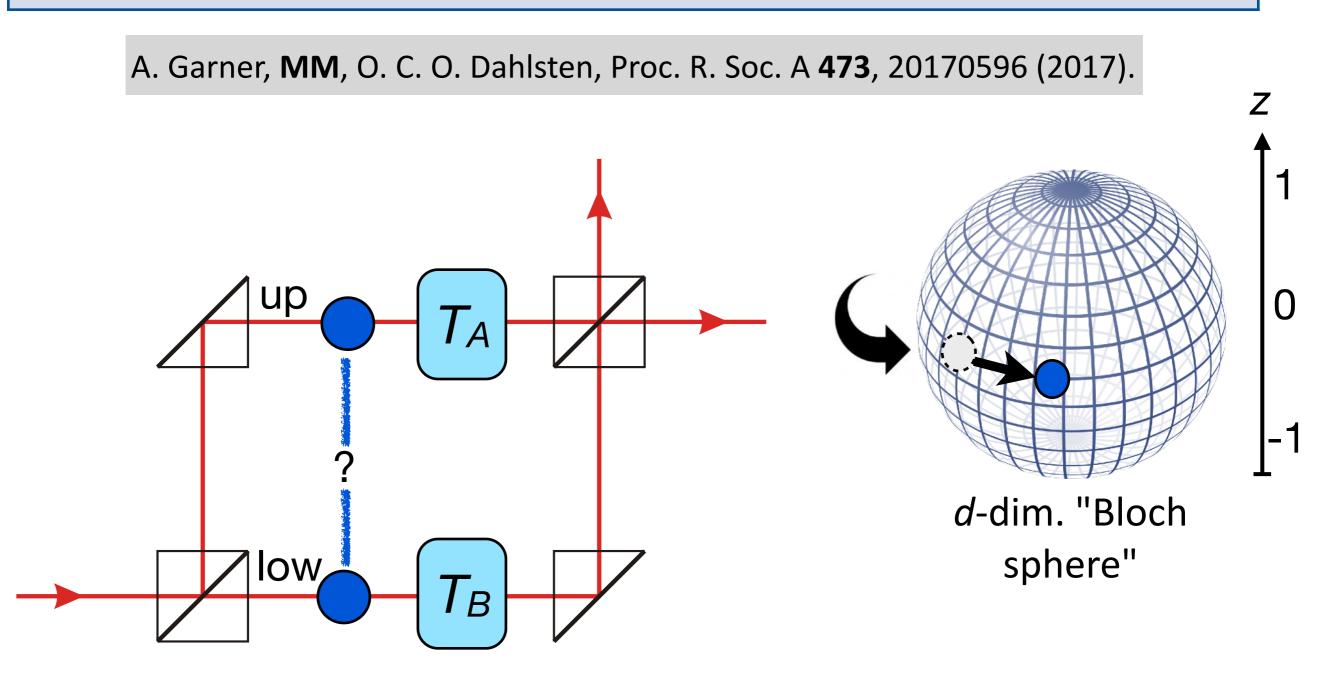
What transformations *T* can we perform locally in one arm... ... reversibly, i.e. without any information loss?



*T* must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.

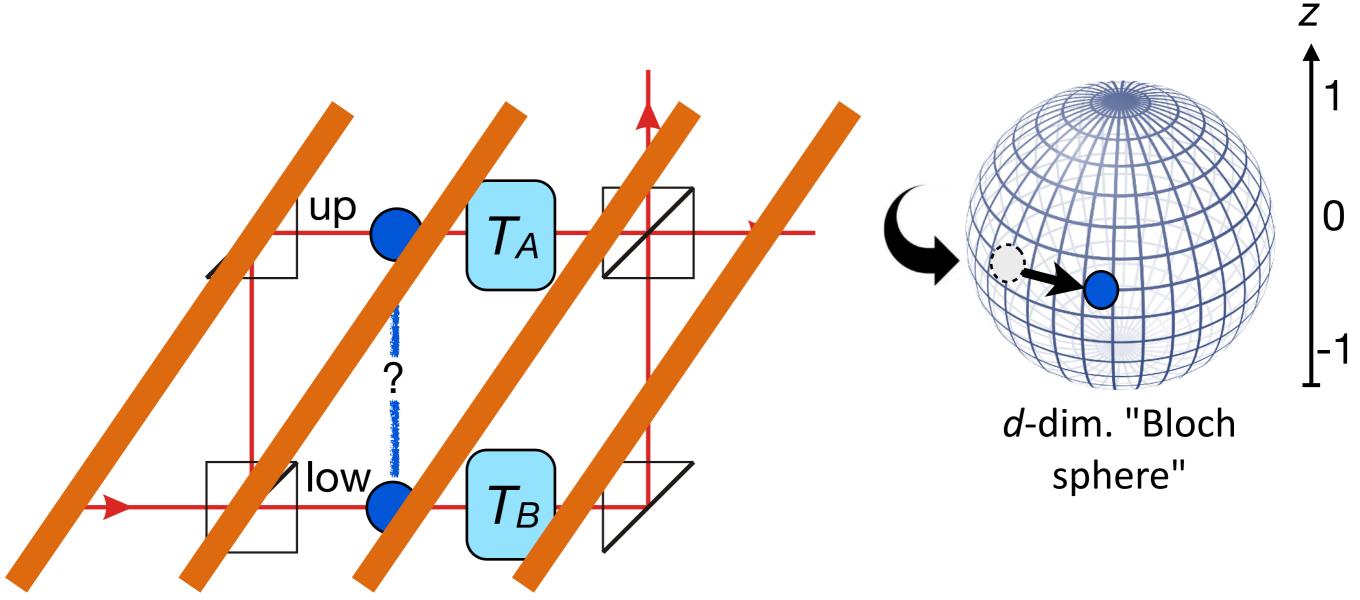


*T* must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.



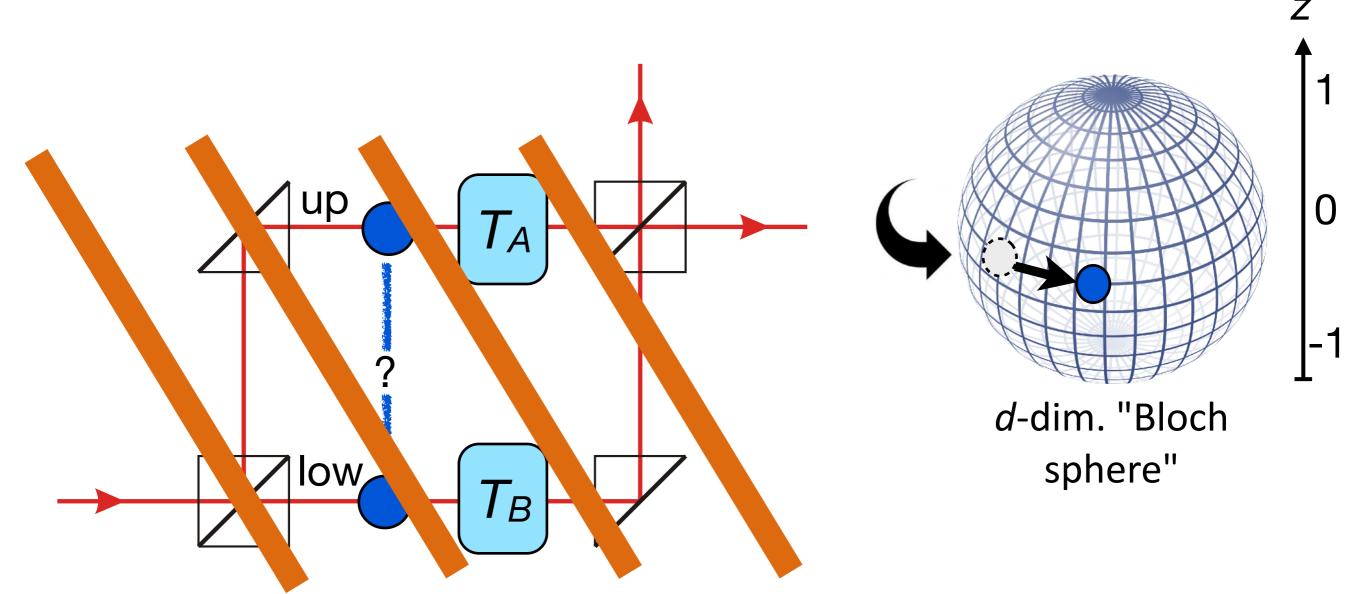
*T* must be a rotation of the Bloch ball (reversible+linear)... ... and must preserve *p*(up), i.e. preserve the *z*-axis.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$



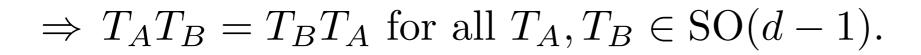
Relativity: there's a frame of reference in which  $T_A$  happens before  $T_B$ ...

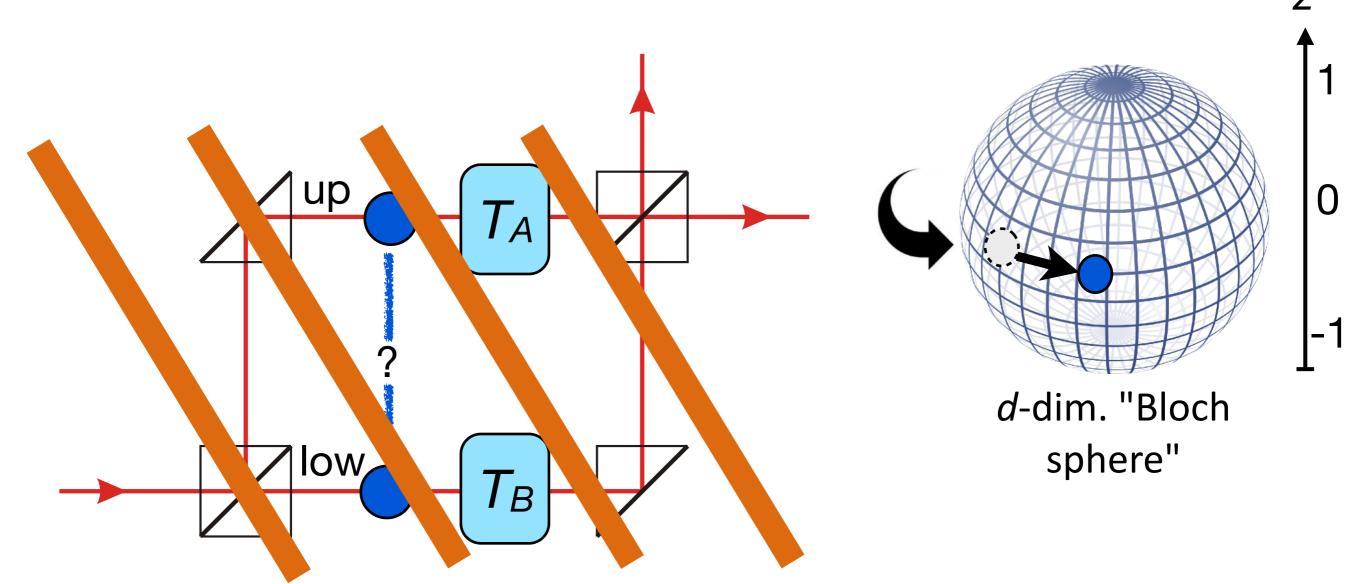
$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$



Relativity: there's a frame of reference in which  $T_A$  happens before  $T_B$ ... ... and another frame where it's the other way around.

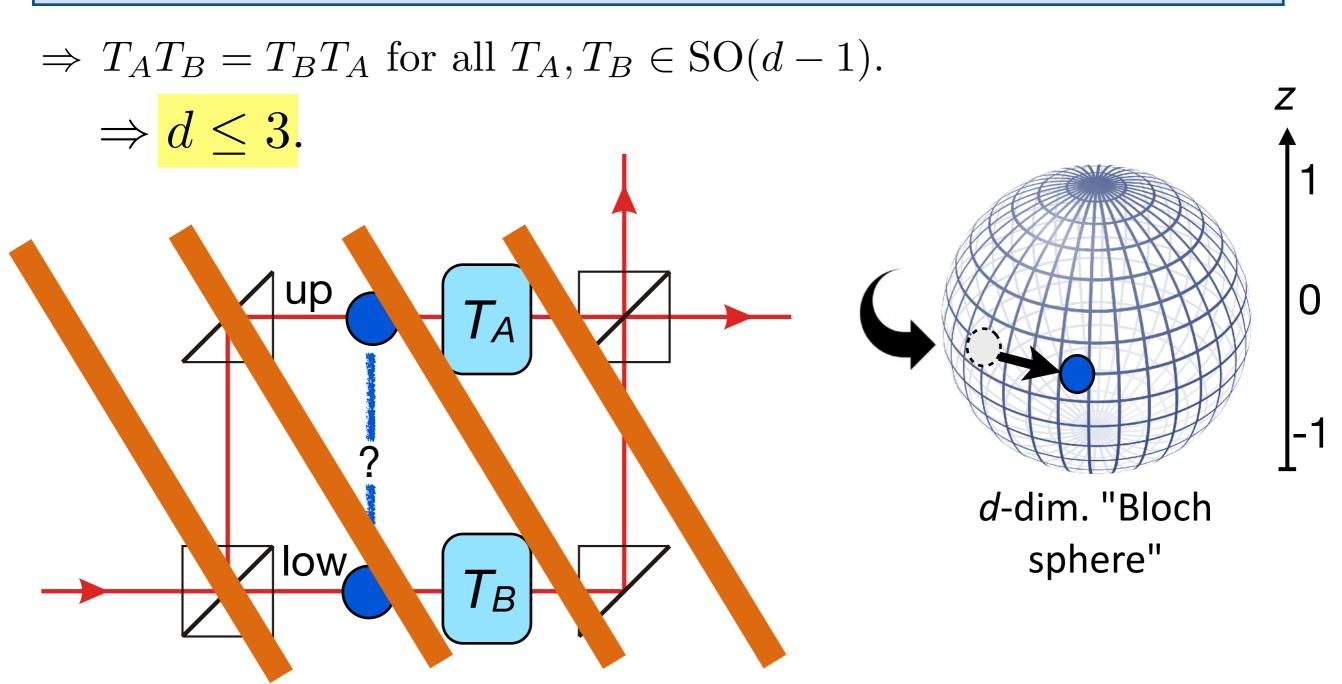
$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$





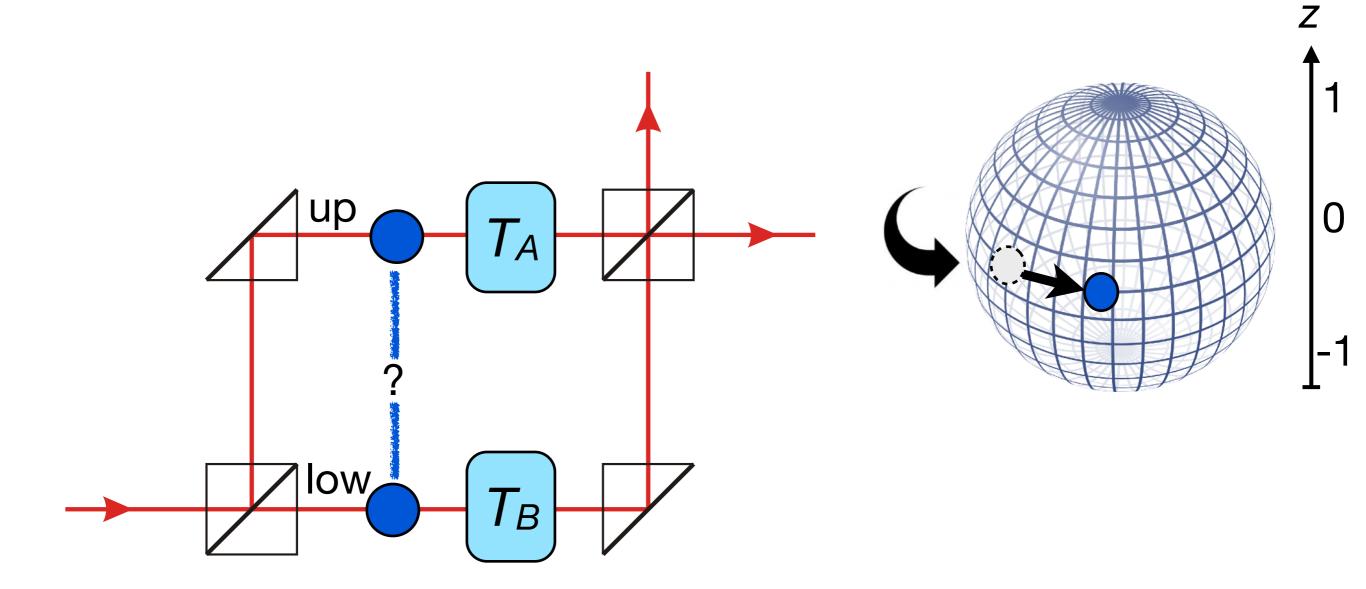
Relativity: there's a frame of reference in which  $T_A$  happens before  $T_B$ ... ... and another frame where it's the other way around.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

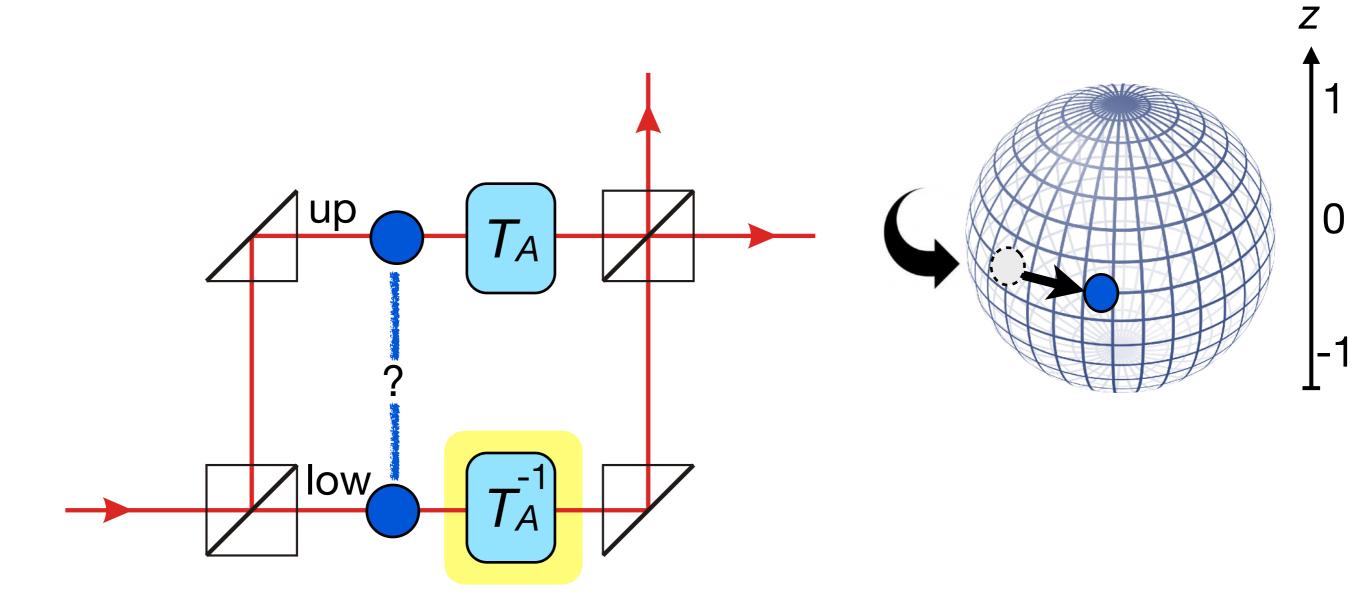


Relativity: there's a frame of reference in which  $T_A$  happens before  $T_B$ ... ... and another frame where it's the other way around.

$$\mathcal{G}_A = \mathcal{G}_B \simeq \mathrm{SO}(d-1).$$

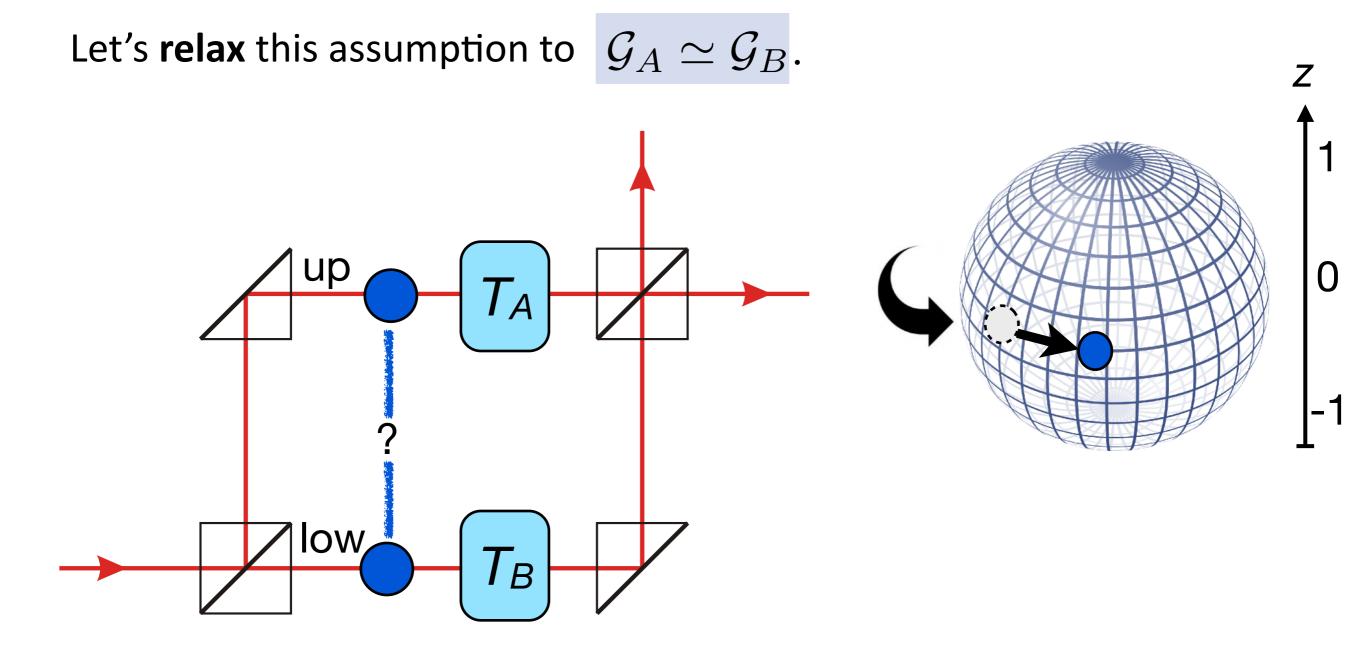


So far, we assumed:  $\mathcal{G}_A = \mathcal{G}_B$ . Assumption of **relationality**.



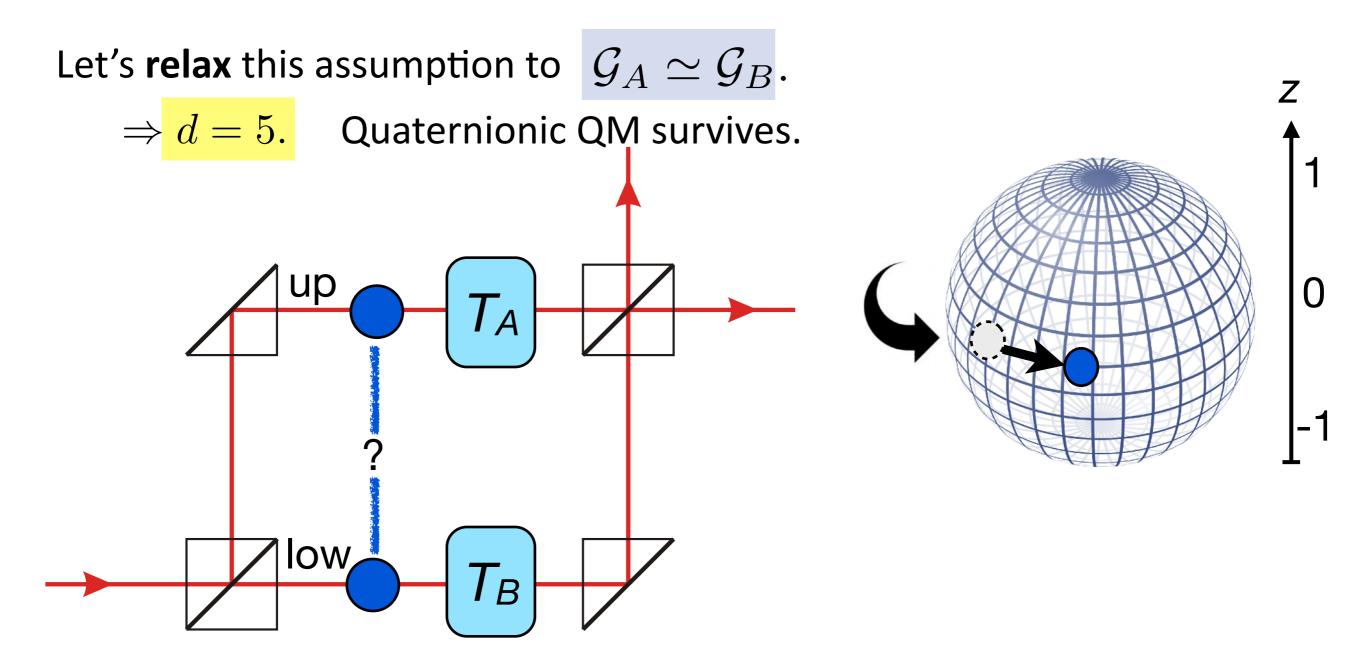
So far, we assumed:  $\mathcal{G}_A = \mathcal{G}_B$ . Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.



So far, we assumed:  $\mathcal{G}_A = \mathcal{G}_B$ . Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.



So far, we assumed:  $\mathcal{G}_A = \mathcal{G}_B$ . Assumption of **relationality**.

Whatever happens in one arm can be **undone** in the other arm.

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

A1) Beam splitter can prepare any upper-branch probability *p*.
A2) Every pure state with the same *p* can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

**Theorem 6.2.** Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:

- d = 1 (the classical bit), with  $\mathcal{G}_A = \mathcal{G}_B = \{\mathbf{1}\}$  (i.e. without any non-trivial local transformations),
- d = 2 (the quantum bit over the real numbers), with  $\mathcal{G}_A = \mathcal{G}_B = \mathbb{Z}_2$ ,
- d = 3 (the standard quantum bit over the complex numbers), with  $G_A = G_B = SO(2) = U(1)$ ,
- -d = 5 (the quaternionic quantum bit), with  $\mathcal{G}_{AB} = SO(4)$ ,  $\mathcal{G}_A$  the left- and  $\mathcal{G}_B$  the right-isoclinic rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and  $\mathcal{G}_A \cap \mathcal{G}_B = \{+\mathbb{I}, -\mathbb{I}\}$ .

A1) Beam splitter can prepare any upper-branch probability *p*.
A2) Every pure state with the same *p* can be prepared by reversible operations applied locally on the two arms.
A3) The groups of operations of A and B are isomorphic.

**Theorem 6.2.** Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:

- d = 1 (the classical bit), with  $\mathcal{G}_A = \mathcal{G}_B = \{\mathbf{1}\}$  (i.e. without any non-trivial local transformations),
- d = 2 (the quantum bit over the real numbers), with  $\mathcal{G}_A = \mathcal{G}_B = \mathbb{Z}_2$ ,
- d = 3 (the standard quantum bit over the complex numbers), with  $G_A = G_B = SO(2) = U(1)$ ,
- -d = 5 (the quaternionic quantum bit), with  $\mathcal{G}_{AB} = SO(4)$ ,  $\mathcal{G}_A$  the left- and  $\mathcal{G}_B$  the right-isoclinic rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and  $\mathcal{G}_A \cap \mathcal{G}_B = \{+\mathbb{I}, -\mathbb{I}\}$ .

#### Relativity of simultaneity singles out the **associative division algebras**.

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

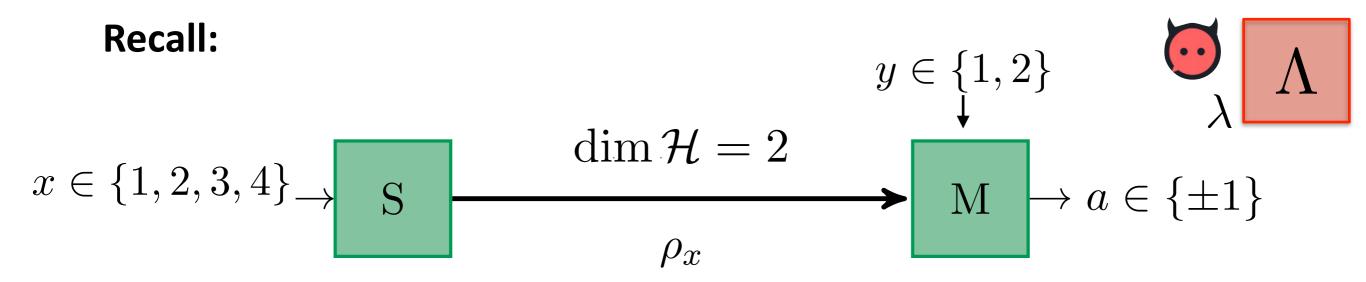
4. Conclusions

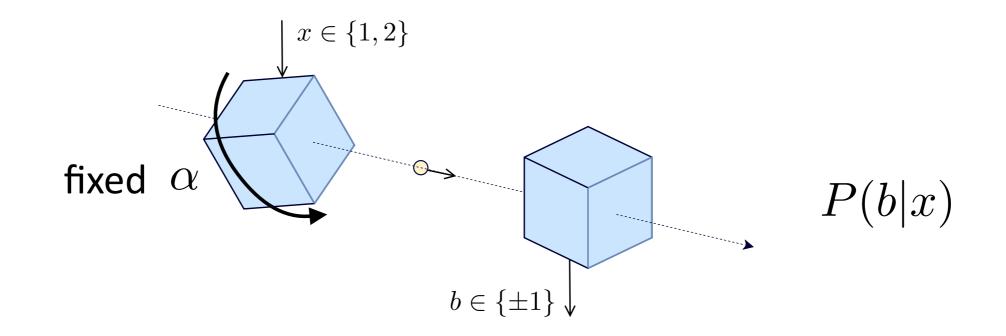
1. Motivations: QG and device-independent QIT

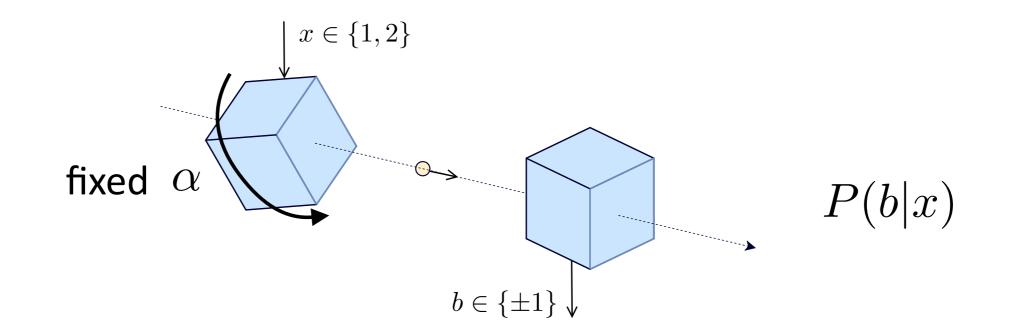
2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

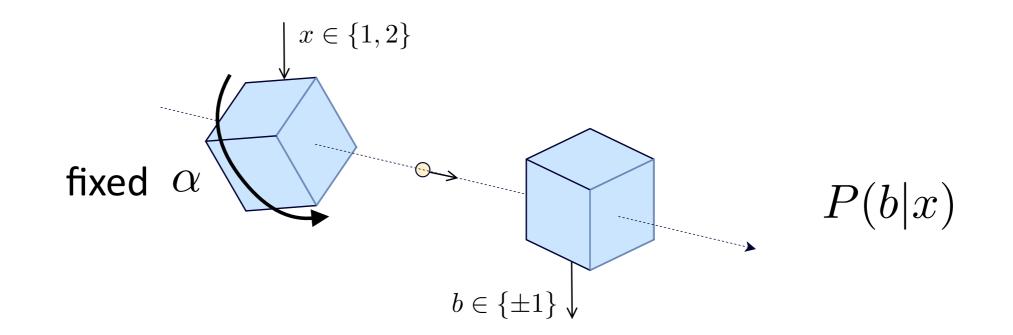
4. Conclusions







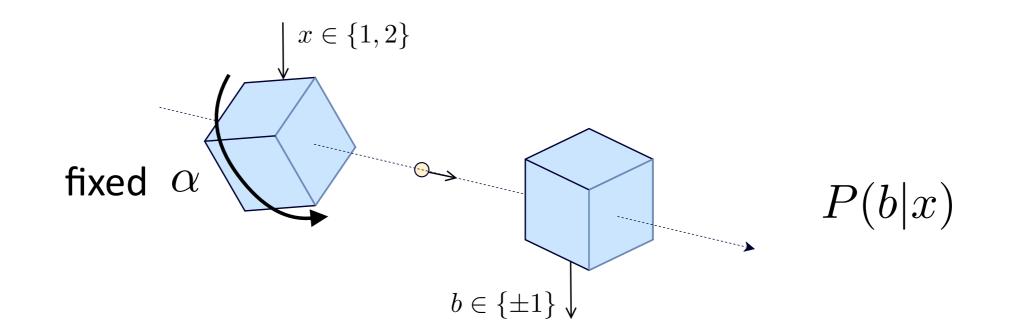
If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.



If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

SDI assumption: "spin" of system ≤ J

No further assumptions on devices / system.

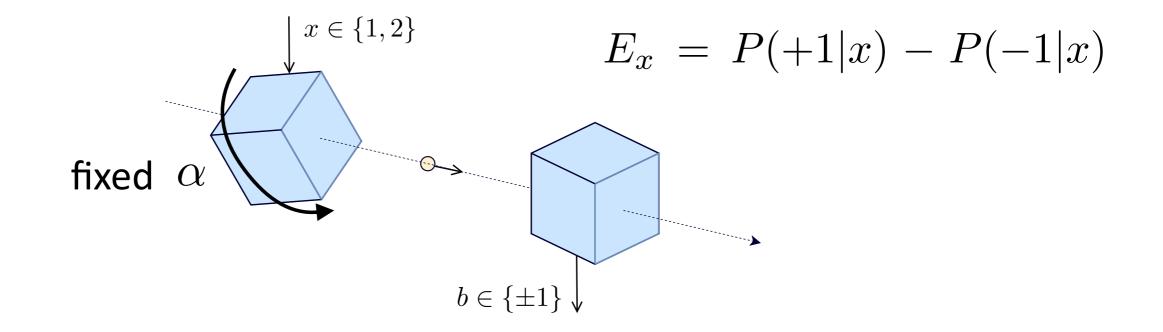


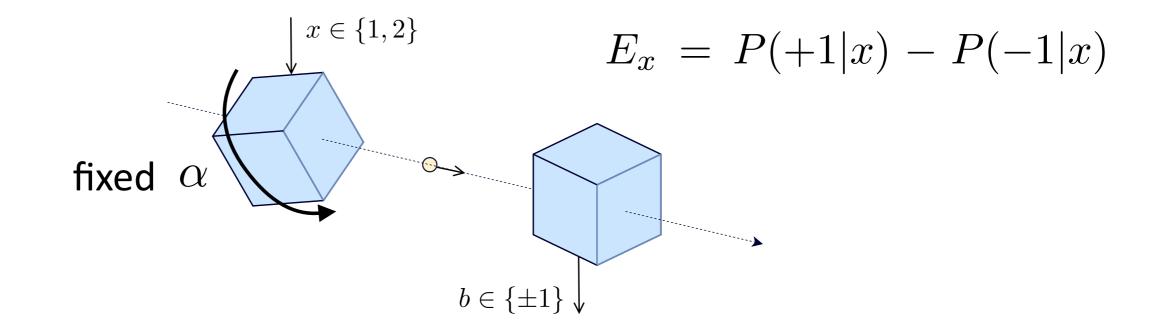
If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

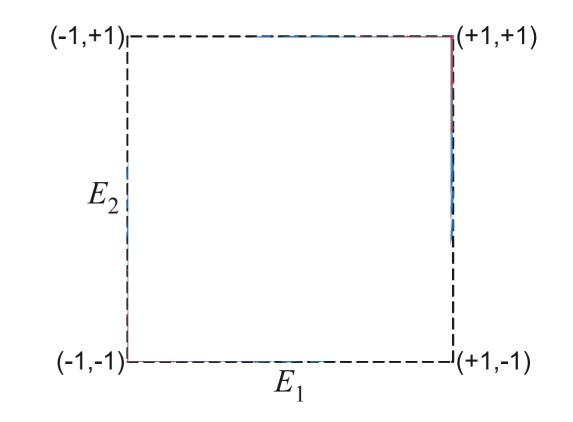
SDI assumption: "spin" of system  $\leq J$ No further assumptions on devices / system.

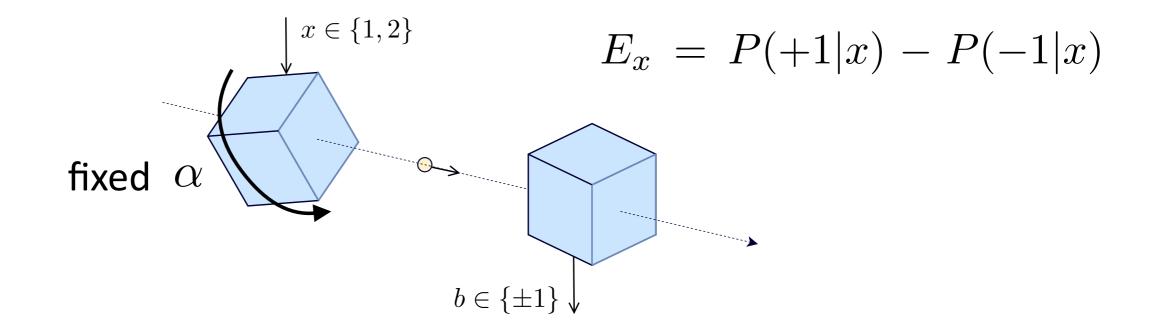
Rotation described by (projective) unitary representation of SO(2):

$$U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}, \qquad P(b|\alpha) = \operatorname{tr}(M_b U_{\alpha} \rho U_{\alpha}^{\dagger}).$$

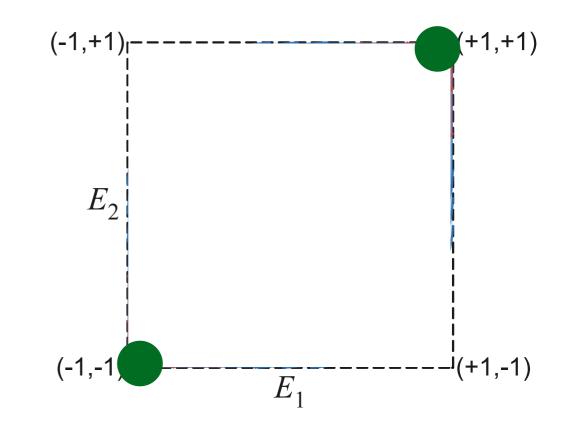


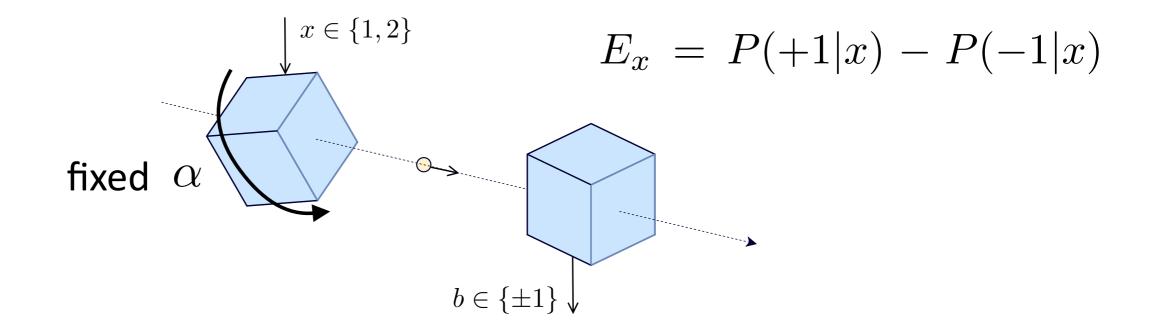






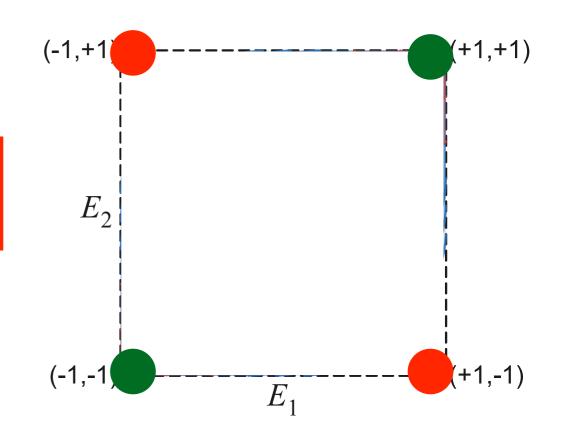
 "Boring" deterministic correlations: outcome b independent of x

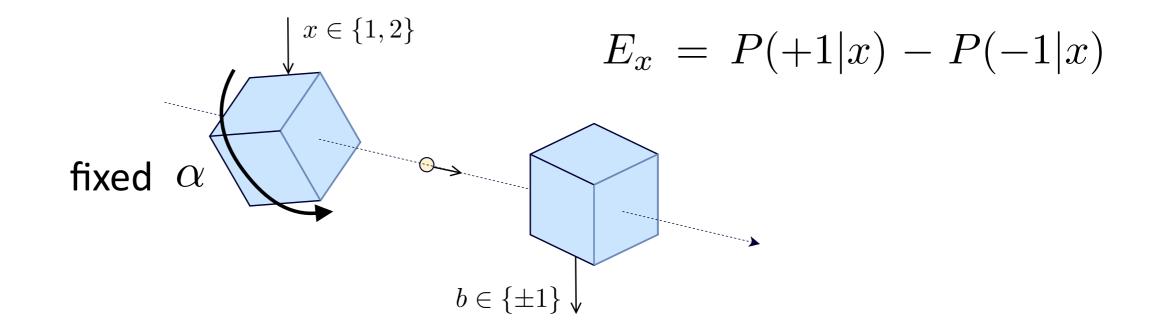




 "Boring" deterministic correlations: outcome b independent of x

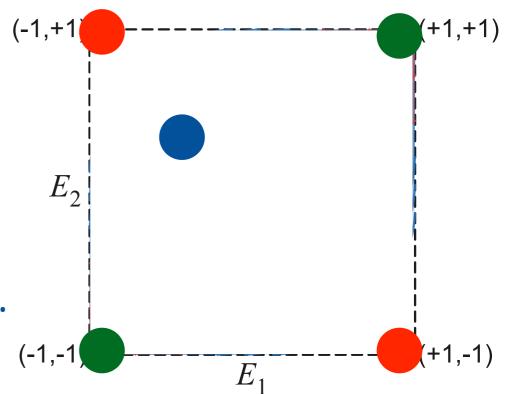
 "Interesting" deterministic correlations: outcome b is a function of x

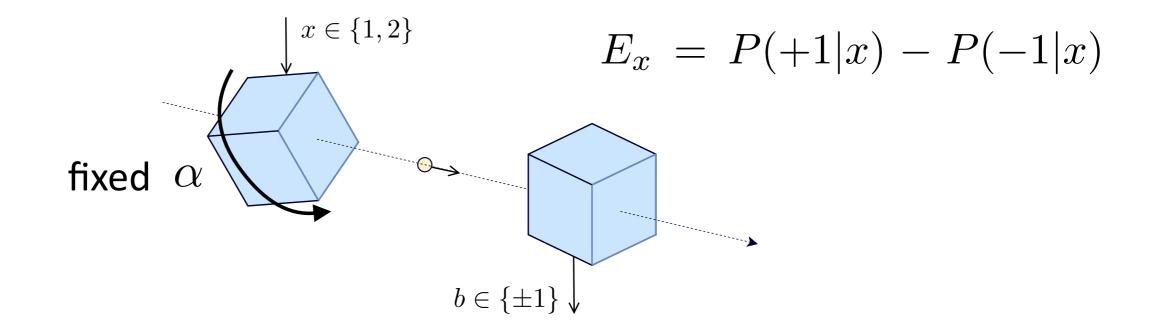




- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

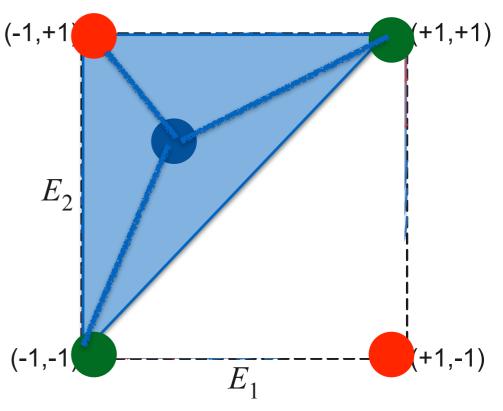
Suppose  $(E_1, E_2)$  observed. Looks random. But:

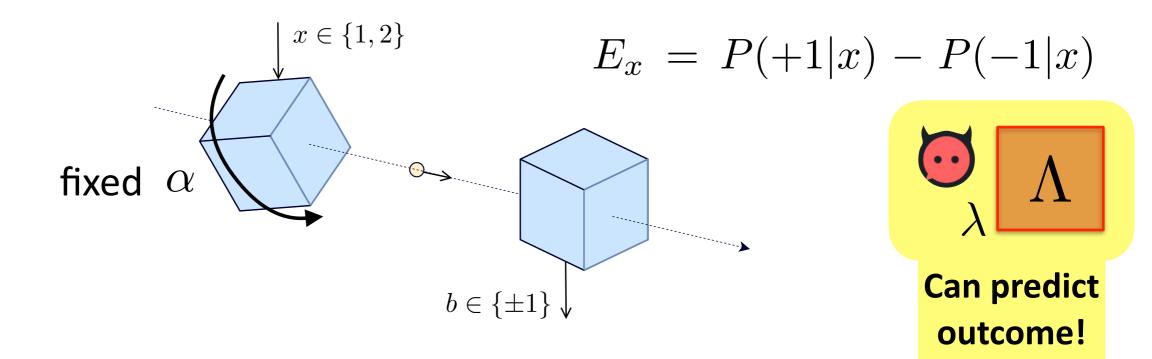




- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose  $(E_1, E_2)$  observed. Looks random. But:  $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$ 

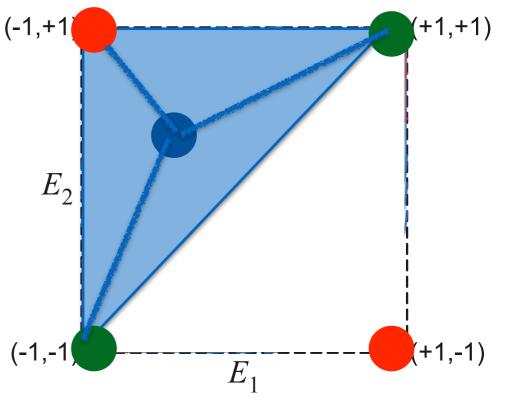


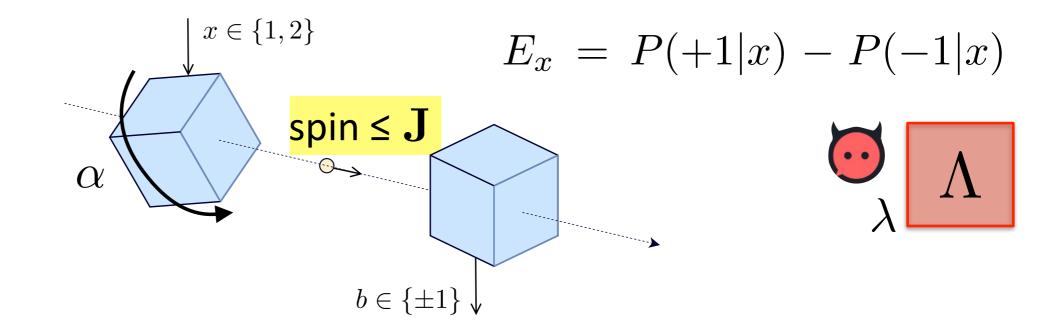


 "Boring" deterministic correlations: outcome b independent of x

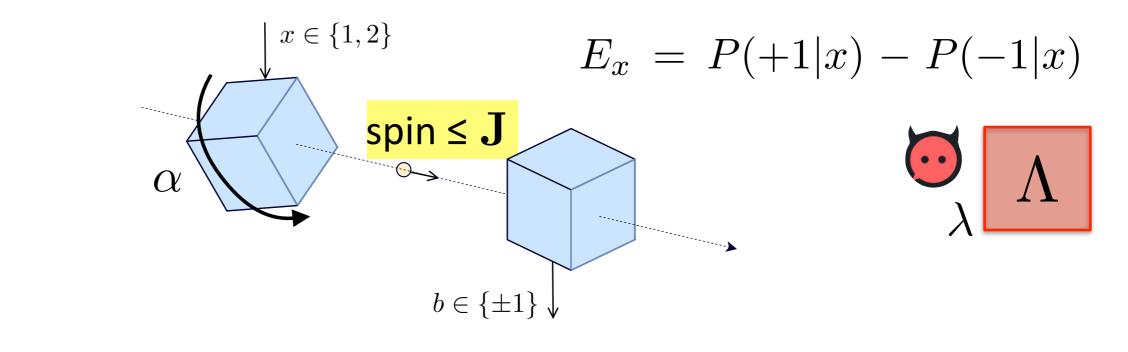
 "Interesting" deterministic correlations: outcome b is a function of x

Suppose  $(E_1, E_2)$  observed. Looks random. But:  $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$ 





Which correlations are possible?



Which correlations are possible? Theorem: exactly those:  $\frac{1}{2} \left( \sqrt{1+E_1} \sqrt{1+E_2} + \sqrt{1-E_1} \sqrt{1-E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| > \frac{\pi}{2} \end{cases}$ 

C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

using results of

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, S. Pironio, Quantum 1, 33 (2017).



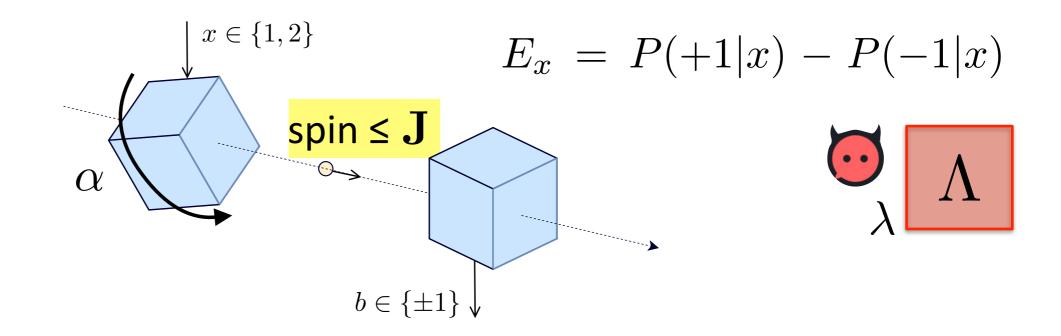
(-1,+1)

 $E_2$ 

(-1, -1)

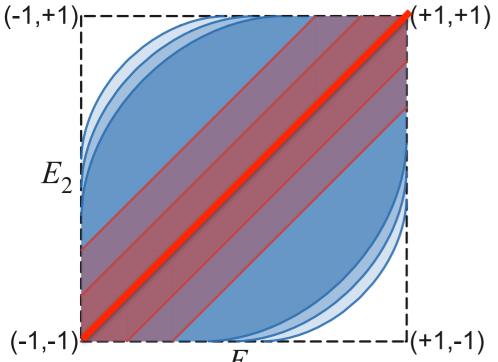
 $\boldsymbol{\Gamma}$ 

#### Randomness generation: quantum analysis



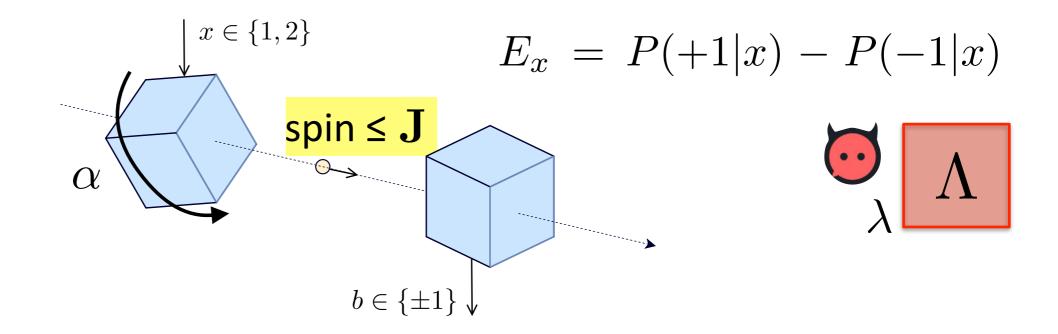
Which correlations are possible? **Theorem:** exactly those:

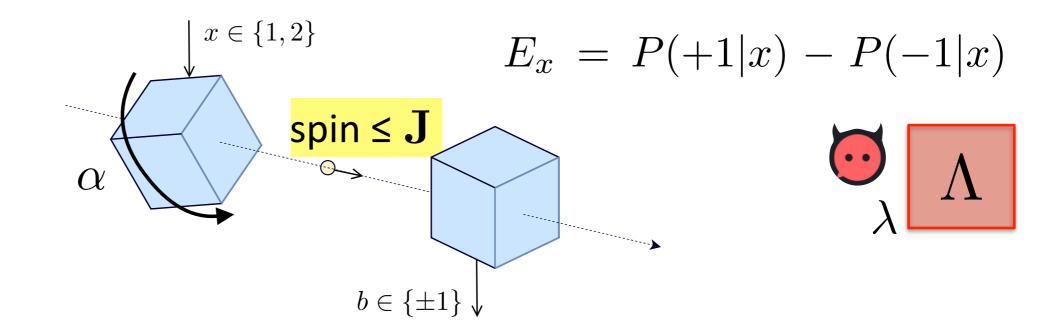
$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



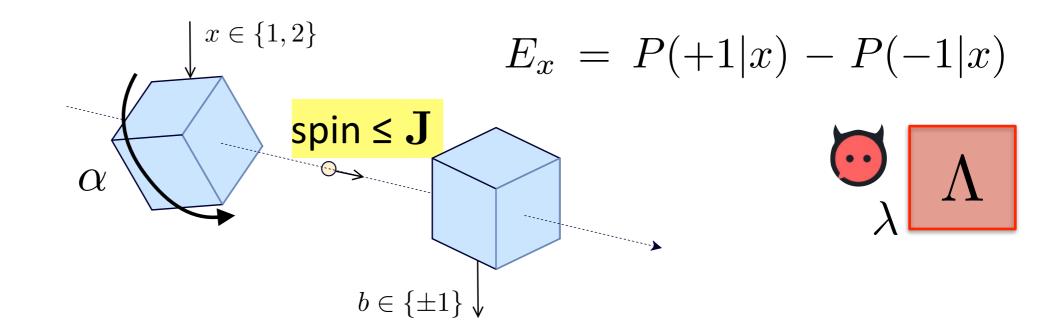
#### Blue curved set of correlations.

If observed correlation away from red line: certifiable private randomness.

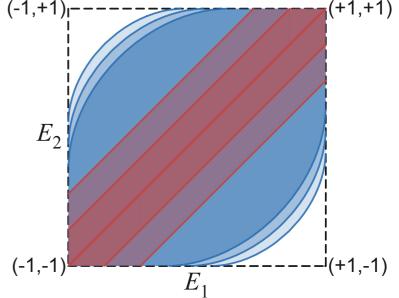




- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?



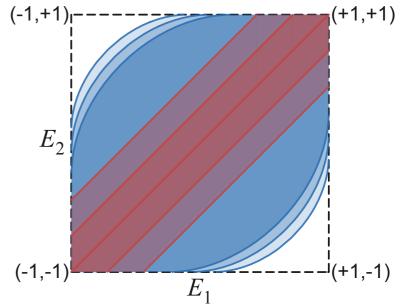
- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?





- Can we formulate our SDI assumption without quantum terminology?
- Can we use the protocol to certify random numbers without QT?
- Can we understand the curved boundary of correlations from spatial symmetry alone, without assuming QT?

Yes we can!



$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

- $\{E_b\}$  some POVM,  $\rho$  some density matrix,
- $U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}$ , with arbitrary multiplicities  $n_j$ .

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},$$

- $\{E_b\}$  some POVM,  $\rho$  some density matrix,
- $U_{\alpha} = \bigoplus_{j=-J}^{J} n_j e^{ij\alpha}$ , with arbitrary multiplicities  $n_j$ .

**Consequence:** every *p* is a trigonometric polynomial of degree 2**J** 

(e.g. 
$$p(+|\alpha) = \frac{1}{2} + \frac{1}{2}\cos\alpha$$
 for  $J = \frac{1}{2}$ ).

.1

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},$$

 $\{E_b\}$  some POVM,  $\rho$  some density matrix,

$$U_{lpha} = \bigoplus_{j=-J} n_j e^{ijlpha}$$
, with arbitrary multiplicities  $n_j$ .

**Consequence:** every *p* is a trigonometric polynomial of degree 2**J** 

(e.g. 
$$p(+|\alpha) = \frac{1}{2} + \frac{1}{2}\cos\alpha$$
 for  $J = \frac{1}{2}$ ).

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\$$
$$0 \le p(+1|\alpha) \le 1 \quad \text{for all } \alpha.$$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

 $\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$ 

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

 $\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$ 

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly  $Q_J \subseteq \mathcal{R}_J$ .

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly  $\mathcal{Q}_J \subseteq \mathcal{R}_J$ .

It can be shown directly that  $\mathcal{Q}_0 = \mathcal{R}_0$  and  $\mathcal{Q}_{1/2} = \mathcal{R}_{1/2}$ .

However, for some larger **J**, we have  $Q_J \subsetneq \mathcal{R}_J$ , details here:

A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(E_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

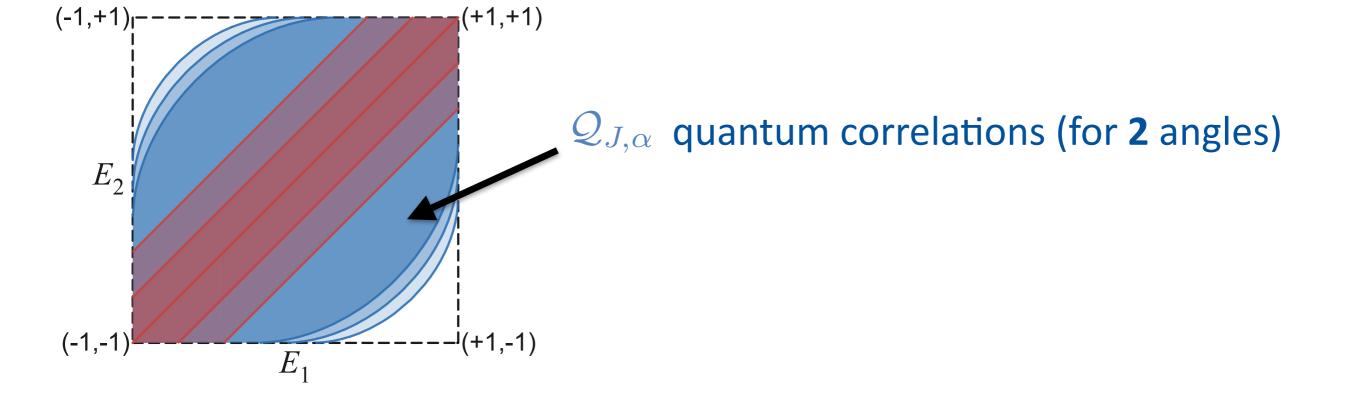
• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

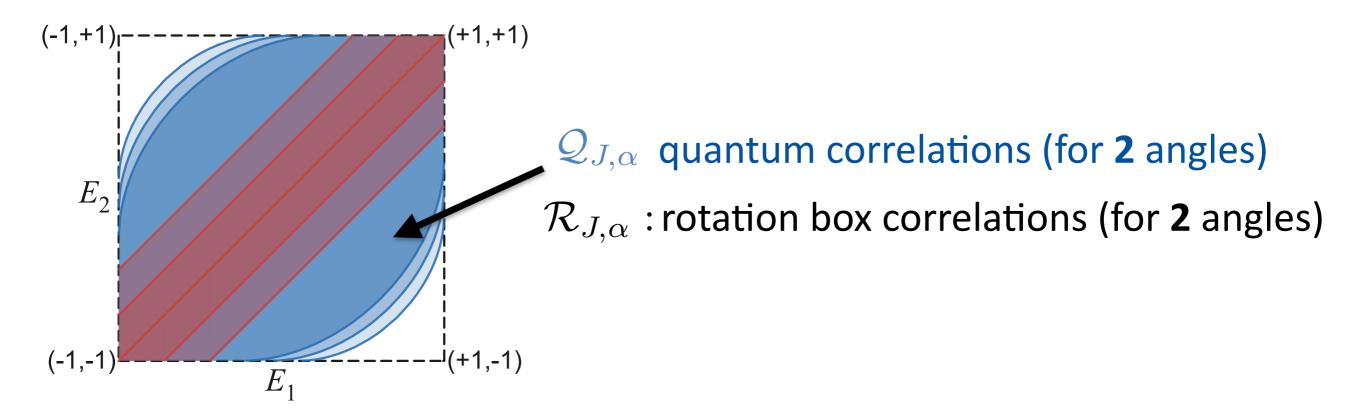
Clearly  $Q_J \subseteq \mathcal{R}_J$ . It can be shown directly that  $Q_0 = \mathcal{R}_0$  and  $Q_{1/2} = \mathcal{R}_{1/2}$ . However, for some larger J, we have  $Q_J \subsetneq \mathcal{R}_J$ , details here: A. Aloy, T. Galley, C. L. Jones, S. L. Ludescher, MM, upcoming (2023).

 $\mathcal{R}_J$  from rep. of SO(2) on (non-quantum) "orbitope" state spaces

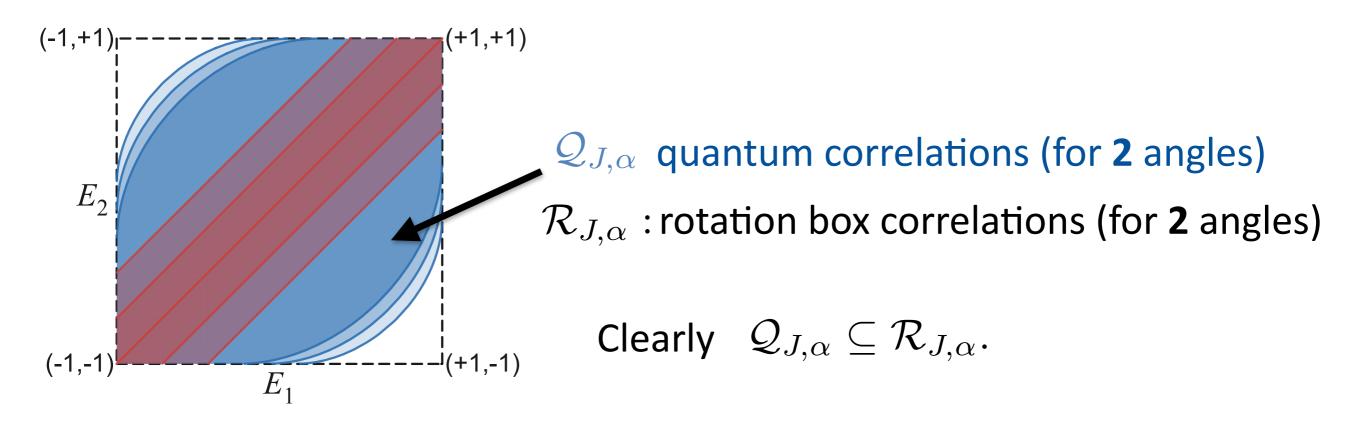
$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



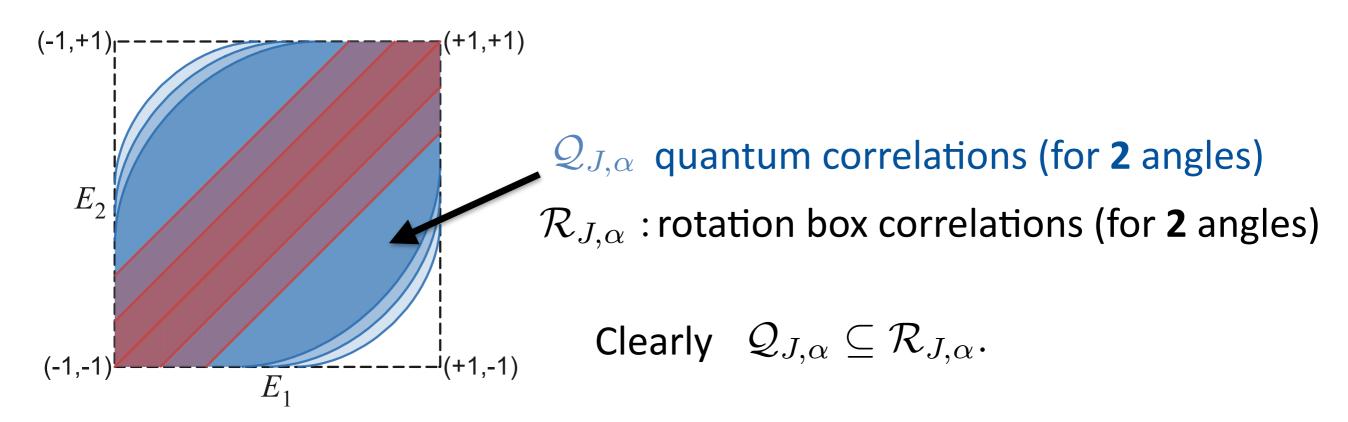
$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

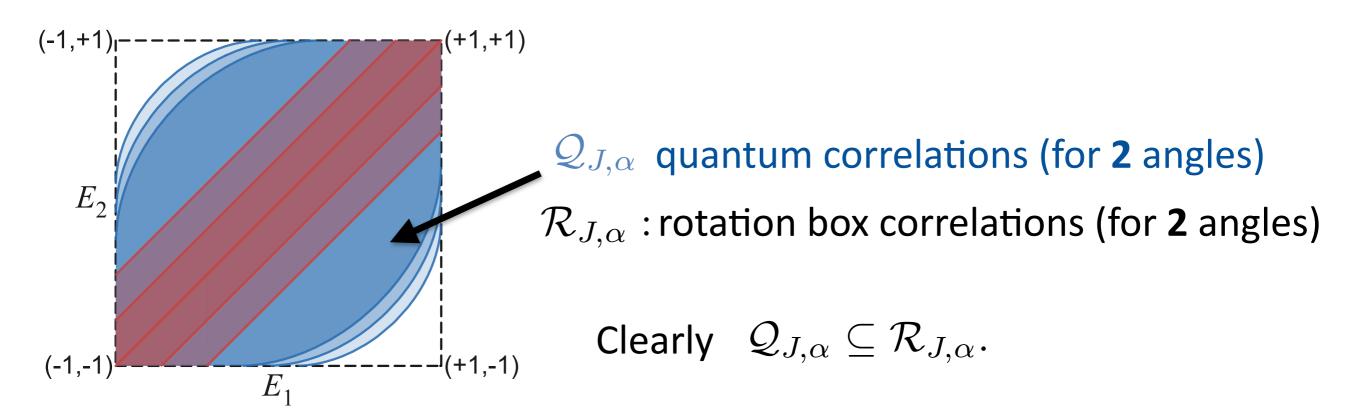


$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



**Theorem:**  $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$ . C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

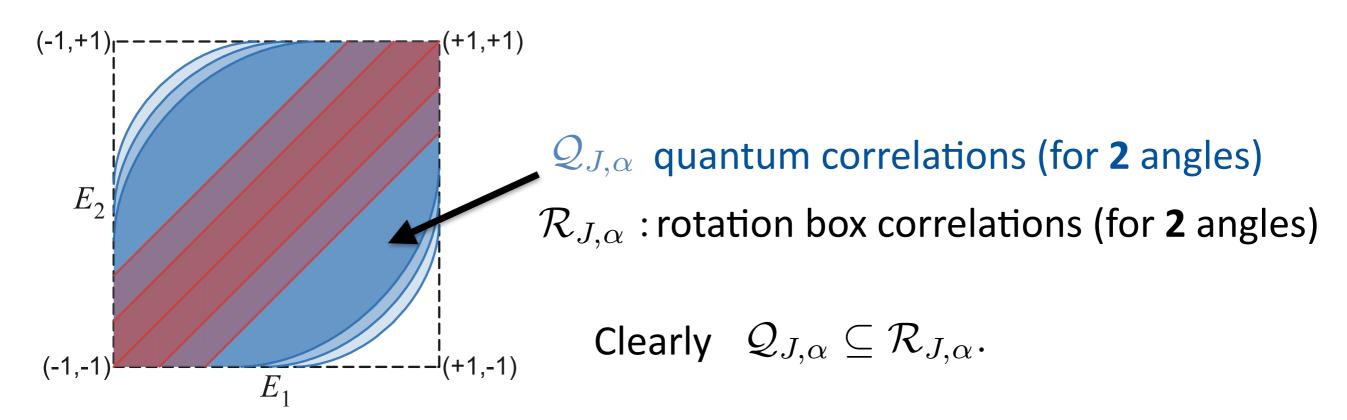
$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



**Theorem:**  $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$ . C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

Can derive set of quantum correlations without assuming QT.

$$\frac{1}{2} \left( \sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



**Theorem:**  $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$ . C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

Can derive set of quantum correlations without assuming QT.

Even eavesdropper with classical side information about beyond-quantum physics cannot predict the outcomes.



1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

1. Motivations: QG and device-independent QIT

2. Relativity of simultaneity and the qubit

3. Randomness generation via rotational symmetry

4. Conclusions

## Conclusions

- Modest approach complementing direct QG approaches: study the constraints of spacetime on QT in simple scenarios.
- Relativity of simultaneity constrains the dimensionality of the qubit.
- Rotational symmetry determines the set of quantum correlations and the security of a SDI randomness generation protocol.
- Goal: theory-agnostic analysis of experiments in space and time.
- Speculation: is this (weak) evidence that QT might be modified in other regimes of space and time?





