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Device-independent	randomness	expansion:	
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See	e.g.:	A.	Acín,	Randomness	and	quantum	non-locality,	QCRYPT	2012	talk.	
																V.	Scarani,	Bell	nonlocality,	Oxford	Graduate	Texts	(2019).
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Semi-device-independent	(SDI):	allow	communication,	add	assumption.
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Drawback:	assumption	not	physically	well-motivated	&	requires	QT.
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Semi-device-independent	(SDI):	allow	communication,	add	assumption.
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H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.



Further	moUvaUon:	(semi-)device-independent	QIT
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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p(a|x, y)
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dimH = 2

Semi-device-independent	(SDI):	allow	communication,	add	assumption.
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H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.

Idea:	reformulate	in	terms	of	spacetime	symmetries,	w/o	assuming	QT.	
										Can	quantum	phenomenology	/	functionality	be	reproduced?
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d = 5
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
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cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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Randomness	generaUon:	quantum	analysis

S Mx 2 {1, 2} a 2 {±1}
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
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of phenomena and their interaction in a unified way.
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proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
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output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.
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nario sketched in Fig. 1, which can be used to generate
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with additional classical information [9, 12–16]. We de-
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

If	input	is	x=1:	do	nothing	to	preparaUon	device;	
														if	x=2:	rotate	it	(relaUve	to	measurement	device)	by	angle	α.
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with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
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by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
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This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
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as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
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foundations of quantum theory [10, 11], here we suggest
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with additional classical information [9, 12–16]. We de-
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preparation device P , which is rotated by an angle ↵x 2 {0,↵}
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generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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RotaUon	described	by	(projecUve)	unitary	representaUon	of	SO(2):
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

<latexit sha1_base64="105jNC9v7/6yk90JjwEzNjOz//w=">AAACInicbVDLSgMxFM34rPVVdekmWIR2M8yIz4VQcONGqGAf0BmHO2nahmYeJBmhjP0WN/6KGxeKuhL8GNN2EG09cOHknHvJvcePOZPKsj6NufmFxaXl3Ep+dW19Y7OwtV2XUSIIrZGIR6Lpg6SchbSmmOK0GQsKgc9pw+9fjPzGHRWSReGNGsTUDaAbsg4joLTkFc6qJf/eAR73oHyeOiLASgxLV56Pa95Exo7oRT+vW6cN3S4VZdMrFC3TGgPPEjsjRZSh6hXenXZEkoCGinCQsmVbsXJTEIoRTod5J5E0BtKHLm1pGkJApZuOTxzifa20cScSukKFx+rviRQCKQeBrzsDUD057Y3E/7xWojqnbsrCOFE0JJOPOgnHKsKjvHCbCUoUH2gCRDC9KyY9EECUTjWvQ7CnT54l9QPTPjaPrg+LlUoWRw7toj1UQjY6QRV0iaqohgh6QE/oBb0aj8az8WZ8TFrnjGxmB/2B8fUNrDejJg==</latexit>

P (b|↵) = tr(MbU↵⇢U
†
↵).
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

• “InteresUng”	determinisUc	correlaUons:	
outcome	b	is	a	funcUon	of	x

Suppose																			observed.	Looks	random.	
But:	
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

spin	≤	
<latexit sha1_base64="ZmEdtmhTLKxFowqKbU/dLrjV5GQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjbiqYB/YlpJJM21oJjMkd4Qy9C/cuFDErX/jzr8x085CqwcCh3PuJeceP5bCoOt+OYWl5ZXVteJ6aWNza3unvLvXNFGiGW+wSEa67VPDpVC8gQIlb8ea09CXvOWPrzO/9ci1EZG6x0nMeyEdKhEIRtFKD92Q4sgP0ttpv1xxq+4M5C/xclKBHPV++bM7iFgScoVMUmM6nhtjL6UaBZN8WuomhseUjemQdyxVNOSml84ST8mRVQYkiLR9CslM/bmR0tCYSejbySyhWfQy8T+vk2Bw2UuFihPkis0/ChJJMCLZ+WQgNGcoJ5ZQpoXNStiIasrQllSyJXiLJ/8lzZOqd149uzut1K7yOopwAIdwDB5cQA1uoA4NYKDgCV7g1THOs/PmvM9HC06+sw+/4Hx8A7qTkPg=</latexit>

J
<latexit sha1_base64="3MUkKiCoiAzY5Y40sOOBicuGr2A=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEnons8mY2Z1lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9oapkqyhpUCqnaAWomeMwahhvB2oliGAWCtYLR7dRvPTGluYwfzDhhfoSDmIecorFSs4siGWKvXHGr7gxkmXg5qUCOeq/81e1LmkYsNlSg1h3PTYyfoTKcCjYpdVPNEqQjHLCOpTFGTPvZ7NoJObFKn4RS2YoNmam/JzKMtB5Hge2M0Az1ojcV//M6qQmv/YzHSWpYTOeLwlQQI8n0ddLnilEjxpYgVdzeSugQFVJjAyrZELzFl5dJ86zqXVYv7s8rtZs8jiIcwTGcggdXUIM7qEMDKDzCM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AY7BjyI=</latexit>↵

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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1� E1
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⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
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Hilbert space attached to the system of the highest J .
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assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
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state ⇢1 = |�1ih�1|, then
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(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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1 + E2 +
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1� E1
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1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Angle	
no	cerUfiable	randomness.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
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p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

3

maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Blue	curved	set	of	correlaUons.	
If	observed	correlaUon	away	from	red	line:	
cer;fiable	private	randomness.
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Theory-independent randomness generation with spacetime symmetries
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpUon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerUfy	random	numbers	without	QT?	

Quantum	theory	is	actually	not	needed
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpUon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerUfy	random	numbers	without	QT?	
• Can	we	understand	the	curved	boundary	of	correlaUons	from	spaUal	
symmetry	alone,	without	assuming	QT?
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Quantum	theory	is	actually	not	needed
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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• Can	we	formulate	our	SDI	assumpUon	without	quantum	terminology?	
• Can	we	use	the	protocol	to	cerUfy	random	numbers	without	QT?	
• Can	we	understand	the	curved	boundary	of	correlaUons	from	spaUal	
symmetry	alone,	without	assuming	QT?
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Yes	we	can!

Quantum	theory	is	actually	not	needed



RotaUon	boxes	beyond	quantum	theory

• DefiniUon	of	quantum	spin-J	boxes:



RotaUon	boxes	beyond	quantum	theory

• DefiniUon	of	quantum	spin-J	boxes:
<latexit sha1_base64="TUY1lnVlH6KpCQzWKn6/zJn4qQk="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(EbU↵⇢U

†
↵)
 
,

<latexit sha1_base64="AyjaGhKSiQ5CwjHGROBD0SHB02M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2NBBI8VrC00oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAqujet+O6WV1bX1jfJmZWt7Z3evun/wqJNMMWyxRCSqE1KNgktsGW4EdlKFNA4FtsPRzdRvP6HSPJEPZpxiENOB5BFn1Fip7ee3vdCf9Ko1t+7OQJaJV5AaFGj2ql9+P2FZjNIwQbXuem5qgpwqw5nAScXPNKaUjegAu5ZKGqMO8tm5E3JilT6JEmVLGjJTf0/kNNZ6HIe2M6ZmqBe9qfif181MdB3kXKaZQcnmi6JMEJOQ6e+kzxUyI8aWUKa4vZWwIVWUGZtQxYbgLb68TB7P6t5l/eL+vNZoFHGU4QiO4RQ8uIIG3EETWsBgBM/wCm9O6rw4787HvLXkFDOH8AfO5w80eI9+</latexit>

{Eb} some	POVM, <latexit sha1_base64="Fv91vqSE9dl8OXDFB8ckix+OenA=">AAAB63icbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx48RjBLJAMoafTk2nSy9DdI4SQX/DiQRGv/pA3/8aeZA6a+KDg8V4VVfWilDNjff/bK62tb2xulbcrO7t7+wfVw6O2UZkmtEUUV7obYUM5k7RlmeW0m2qKRcRpJxrf5X7niWrDlHy0k5SGAo8kixnBNpf6OlGDas2v+3OgVRIUpAYFmoPqV3+oSCaotIRjY3qBn9pwirVlhNNZpZ8ZmmIyxiPac1RiQU04nd86Q2dOGaJYaVfSorn6e2KKhTETEblOgW1ilr1c/M/rZTa+DadMppmlkiwWxRlHVqH8cTRkmhLLJ45gopm7FZEEa0ysi6fiQgiWX14l7Yt6cF2/erisNRpFHGU4gVM4hwBuoAH30IQWEEjgGV7hzRPei/fufSxaS14xcwx/4H3+ACJSjk8=</latexit>⇢ some	density	matrix,

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1
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⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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It	can	be	shown	directly	that																							and
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Q0 = R0
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Q1/2 = R1/2.

However,	for	some	larger	J,	we	have																									details	here:
<latexit sha1_base64="tTIufmNZ7QQ/CSjqjW0Ega1VTq8=">AAACD3icbZDLSsNAFIYnXmu9VV26GSyKCymJeFsW3IirVuwFmhAm09N26GQSZyZCCX0DN76KGxeKuHXrzrdx2gbR1h8Gfr5zDnPOH8ScKW3bX9bc/MLi0nJuJb+6tr6xWdjarqsokRRqNOKRbAZEAWcCapppDs1YAgkDDo2gfzmqN+5BKhaJWz2IwQtJV7AOo0Qb5BcO3JDoHiU8rQ79a1clgQIt4A7/8BvDj/xC0S7ZY+FZ42SmiDJV/MKn245oEoLQlBOlWo4day8lUjPKYZh3EwUxoX3ShZaxgoSgvHR8zxDvG9LGnUiaJzQe098TKQmVGoSB6RxtqaZrI/hfrZXozoWXMhEnGgSdfNRJONYRHoWD20wC1XxgDKGSmV0x7RFJqDYR5k0IzvTJs6Z+XHLOSqfVk2K5nMWRQ7toDx0iB52jMrpCFVRDFD2gJ/SCXq1H69l6s94nrXNWNrOD/sj6+AaZvZ0C</latexit>
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					from	rep.	of	SO(2)	on	(non-quantum)	“orbitope”	state	spaces

2 RAMAN SANYAL, FRANK SOTTILE, AND BERND STURMFELS

with an affine space. It can be represented as the set of points x ∈ Rn such that

(1.1) A0 + x1A1 + · · ·+ xnAn " 0 ,

where A0, A1, . . . , An are symmetric matrices and " 0 denotes positive semidefiniteness.
From a spectrahedral description many geometric properties, both convex and algebraic, are
within reach. Furthermore, if an orbitope admits a representation (1.1) then it is easy to
maximize or minimize a linear function over that orbitope. Here is a simple illustration.

Example 1.1. Consider the action of the group G = SO(2) on the space Sym4(R
2) # R5 of

binary quartics and take the convex hull of the orbit of v = x4. The four-dimensional convex
body conv(G · v) is a Carathéodory orbitope. This orbitope is a spectrahedron: it coincides
with the set of all binary quartics λ0x4 + 4λ1x3y + 6λ2x2y2 + 4λ3xy3 + λ4y4 such that

(1.2)




λ0 λ1 λ2

λ1 λ2 λ3

λ2 λ3 λ4



 " 0 and λ0 + 2λ2 + λ4 = 1.

This representation (1.2) will be derived in Section 5, where we will also see that it is
equivalent to classical results from the theory of positive polynomials [32]. The Hankel
matrix shows that the boundary of conv(G · v) is an irreducible cubic hypersurface in R4,
defined by the vanishing of the Hankel determinant. It also reveals that this four-dimensional
Carathéodory orbitope is 2-neighborly: the extreme points are the rank one matrices, and
any two of them are connected by an edge. The typical intersection of conv(G·v) with a three-
dimensional affine plane looks like an inflated tetrahedron. This three-dimensional convex
body is bounded by Cayley’s cubic surface, shown in Figure 1. Alternative pictures of this
convex body can be found in [27, Fig. 3] and [35, Fig. 4]. The four vertices of the tetrahedron
lie on the curve G · v, and its six edges are inclusion-maximal faces of conv(G · v). !

Figure 1. Cross-section of a four-dimensional Carathéodory orbitope.

This article is organized as follows. We begin by deriving the basic definitions and a
few general results about orbitopes, and we formulate ten key questions which will guide
our subsequent investigations. These are organized along the themes of convex geometry

<latexit sha1_base64="oZWGRfVTxGgoKabXO6CDw7CIGRI=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjbiqYh/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgorq2vrG8XN0tb2zu5eef+gqWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMbjK/NaZKMykezSSmfoQHgoWMYGMlvxthMySYpw/T3l2vXHGr7gxomXg5qUCOeq/81e1LkkRUGMKx1h 3PjY2fYmUY4XRa6iaaxpiM8IB2LBU4otpPZ6Gn6MQqfRRKZZ8waKb+3khxpPUkCuxkFlIvepn4n9dJTHjtp0zEiaGCzA+FCUdGoqwB1GeKEsMnlmCimM2KyBArTIztqWRL8Ba/vEyaZ1Xvsnpxf16p1fI6inAEx3AKHlxBDW6hDg0g8ATP8Apvzth5cd6dj/lowcl3DuEPnM8f4E2SLQ==</latexit>
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2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

3

maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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1 + E1
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1 + E2 +
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1� E1
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1� E2

⌘
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
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k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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2
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
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or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.
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that fundamental symmetries, such as the rotations R↵,
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any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:
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where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by
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coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.
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(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set
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FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
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⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

<latexit sha1_base64="TmBV7vB5zzc6u6Sz+Vm9KL53COw="></latexit>

QJ,↵ quantum	correlaUons	(for	2	angles)
<latexit sha1_base64="tKIekzTz3a7S8mWd4XphCo7+7KI=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcCElEV+4KrgRV1XsA5oQbqbTduhkEmYmQgnZ+CtuXCji1s9w5984abPQ1gMXDufcy733BDGjUtn2t1FaWFxaXimvVtbWNza3zO2dlowSgUkTRywSnQAkYZSTpqKKkU4sCIQBI+1gdJ377UciJI34gxrHxAthwGmfYlBa8s09NwQ1xMDS+8xPb49dYPEQsivfrNo1ewJrnjgFqaICDd/8cnsRTkLCFWYgZdexY+WlIBTFjGQVN5EkBjyCAelqyiEk0ksnD2TWoVZ6Vj8SuriyJurviRRCKcdhoDvzc+Wsl4v/ed1E9S+9lPI4UYTj6aJ+wiwVWXkaVo8KghUbawJYUH2rhYcgACudWUWH4My+PE9aJzXnvHZ2d1qt14s4ymgfHaAj5KALVEc3qIGaCKMMPaNX9GY8GS/Gu/ExbS0Zxcwu+gPj8we/P5aC</latexit>

RJ,↵ : rotaUon	box	correlaUons	(for	2	angles)

Clearly
<latexit sha1_base64="UDpjX4vGJODRc7uhLT4dQDcTM+0=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiB4kDAjajwGvIinRMwCmRBqOpWkSc9id48QhnyKF3/FiwdF9KZfY2dBYuKDgsd7VVTV8yLBlbbtLyu1tLyyupZez2xsbm3vZHf3qiqMJcMKC0Uo6x4oFDzAiuZaYD2SCL4nsOb1r0Z+7QGl4mFwpwcRNn3oBrzDGWgjtbIF1wfdYyCS8rCV3Jy4IKIeDF0Vewo13tNf/3bWz7eyOTtvj0EXiTMlOTJFqZX9dNshi30MNBOgVMOxI91MQGrOBA4zbqwwAtaHLjYMDcBH1UzGDw7pkVHatBNKU4GmY3V2IgFfqYHvmc7RuWreG4n/eY1Ydy6bCQ+iWGPAJos6saA6pKO0aJtLZFoMDAEmubmVsh5IYNpkmjEhOPMvL5Lqad65yJ+Xz3LF4jSONDkgh+SYOKRAiuSalEiFMPJInskrebOerBfr3fqYtKas6cw++QPr+wdR/6RM</latexit>

QJ,↵ ✓ RJ,↵.

Theorem:	
<latexit sha1_base64="YLe7nzt4guX6qAF6IUjAsP+qRL0=">AAACF3icbZDLSsNAFIYn9VbrLepSkNAiuJCQCF42QsGNuGrF1kIbwslk0g6dXJiZCCV05Su4celruHGhiFvd+SjunF6Q2vrDwM93zmHO+b2EUSEt60vLzc0vLC7llwsrq2vrG/rmVl3EKcekhmMW84YHgjAakZqkkpFGwgmEHiM3Xvd8UL+5JVzQOLqWvYQ4IbQjGlAMUiFXN1shyA4GllX7bnZ50AKWdKB/9ouvJrHp6iXLtIYyZo09NqVy8fHue9ePK67+2fJjnIYkkpiBEE3bSqSTAZcUM9IvtFJBEsBdaJOmshGERDjZ8K6+saeIbwQxVy+SxpBOTmQQCtELPdU5WFdM1wbwv1ozlcGpk9EoSSWJ8OijIGWGjI1BSIZPOcGS9ZQBzKna1cAd4IClirKgQrCnT5419UPTPjaPqnapXEYj5dEOKqJ9ZKMTVEYXqIJqCKN79IRe0Kv2oD1rb9r7qDWnjWe20R9pHz9baaO0</latexit>

QJ,↵ = RJ,↵. C.	L.	Jones,	S.	L.	Ludescher,	A.	Aloy,	MM,	arXiv:2210.14811

Can	derive	set	of	quantum	correlaUons	without	assuming	QT.

Even	eavesdropper	with	classical	side	informaUon	about	
beyond-quantum	physics	cannot	predict	the	outcomes.
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Conclusions

• Modest	approach	complemenUng	direct	QG	approaches:	
study	the	constraints	of	space;me	on	QT	in	simple	scenarios.

• Goal:	theory-agnosUc	analysis	of	experiments	in	space	and	Ume.

arXiv:2210.14811

• RelaUvity	of	simultaneity	constrains	the	dimensionality	of	the	qubit.

• RotaUonal	symmetry	determines	the	set	of	quantum	correlaUons	and	
the	security	of	a	SDI	randomness	generaUon	protocol.

• SpeculaUon:	is	this	(weak)	evidence	that	QT	might	be	modified	in	other	
regimes	of	space	and	Ume?	

qubit:	

randomness:
arXiv:1412.7112


