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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).

Suppose	we	prepare	and	measure	a	physical	system	
in	all	ways	accessible	to	us.

Could	the	resulting	data	falsify	QT?	
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”) such

that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
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tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
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As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.
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A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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<latexit sha1_base64="R/SnrJUwZ9K68BZbLlbFNR7nEiE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosePEiVLAf0Iay2U7apZtN2N0IJfRHePGgiFd/jzf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH80kQT+iQ8lDzqixUhv72fjiftovV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukdVn1rqq1h1qlXs/jKMIJnMI5eHANdbiDBjSBwRie4RXenMR5cd6dj0VrwclnjuEPnM8fEvmPZw==</latexit>ek,M

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

1.	Theory-agnosDc	tomography

TesDng	quantum	theory	with	generalized	noncontextuality																																																																																																																arXiv:2112.09719

1.	TesDng	QT	via	theory-agnosDc	tomography



General	probabilisDc	theories

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

1.	Theory-agnosDc	tomography

TesDng	quantum	theory	with	generalized	noncontextuality																																																																																																																arXiv:2112.09719



General	probabilisDc	theories

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

1.	Theory-agnosDc	tomography

TesDng	quantum	theory	with	generalized	noncontextuality																																																																																																																arXiv:2112.09719



General	probabilisDc	theories

<latexit sha1_base64="e8XoBAmajGVeJ+rOuHEjBGPQMk4=">AAACGnicbVDLSgNBEJyN7/iKevQyGASFEHZF1IsQ8OJFWMFoIBuW2UknGTKPZWZWCGu+w4u/4sWDIt7Ei3/jJOag0YKGoqqb7q4k5cxY3//0CjOzc/MLi0vF5ZXVtfXSxua1UZmmUKeKK91IiAHOJNQtsxwaqQYiEg43Sf9s5N/cgjZMySs7SKElSFeyDqPEOikuBXmkBQ61SoZ7/buwcrF/GnEiuxxwpAR0SRxWIM77lYthpMd6XCr7VX8M/JcEE1JGE4Rx6T1qK5oJkJZyYkwz8FPbyom2jHIYFqPMQEpon3Sh6agkAkwrH782xLtOaeOO0q6kxWP150ROhDEDkbhOQWzPTHsj8T+vmdnOSStnMs0sSPq9qJNxbBUe5YTbTAO1fOAIoZq5WzHtEU2odWkWXQjB9Mt/yfVBNTiqHl4elmu1SRyLaBvtoD0UoGNUQ+coRHVE0T16RM/oxXvwnrxX7+27teBNZrbQL3gfXzvgoGQ=</latexit>

Prob(k|P,M) = h!P , ek,M i
<latexit sha1_base64="S1W6Fw5lM5v4WtykrdMAHbNHWys=">AAACCXicbVDLSgMxFM3UV62vqks3wSJUKWVGirqsuHEjVLAP6NQhk962oZnMkGSEMnTrxl9x40IRt/6BO//GdNqFth64cHLOveTe40ecKW3b31ZmaXlldS27ntvY3Nreye/uNVQYSwp1GvJQtnyigDMBdc00h1YkgQQ+h6Y/vJr4zQeQioXiTo8i6ASkL1iPUaKN5OVxEbxkWLoZu0zgyxJ2wwD6xKulz/uT47KXL9hlOwVeJM6MFNAMNS//5XZDGgcgNOVEqbZjR7qTEKkZ5TDOubGCiNAh6UPbUEECUJ0kvWSMj4zSxb1QmhIap+rviYQESo0C33QGRA/UvDcR//Pase5ddBImoliDoNOPejHHOsSTWHCXSaCajwwhVDKzK6YDIgnVJrycCcGZP3mRNE7Lzlm5clspVKuzOLLoAB2iInLQOaqia1RDdUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fPU+YIQ==</latexit>

(ek,M 2 A,!P 2 A⇤).

GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

Quantum	theory	(QT):
<latexit sha1_base64="b8s/weoTKPPHHIh2brgCJWmcZJA=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkoiRd0IlW66rGAf0IYwmU7aoZNJmJkIJQTc+CtuXCji1p9w5984aSNo64GBM+fcy733eBGjUlnWl1FYWV1b3yhulra2d3b3zP2DjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS9SSPzu/dESBryOzWNiBOgEac+xUhpyTWPbq4HAVJjz0uaqcsrP59GeuaaZatqzQCXiZ2TMsjRcs3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yuyGFp1oZQj8U+nEFZ+rvjgQFUk4DT1dmK8pFLxP/8/qx8q+chPIoVoTj+SA/ZlCFMAsEDqkgWLGpJggLqneFeIwEwkrHVtIh2IsnL5POedW+qNZua+V6PY+jCI7BCagAG1yCOmiCFmgDDB7AE3gBr8aj8Wy8Ge/z0oKR9xyCPzA+vgFo2pdh</latexit>

A = Hn(C) (complex	Hermitian															matrices)<latexit sha1_base64="51AzmmokUqi3oa4eDULcLhKVjFY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzEOSJcxOZpMhM7PLTK8QQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcJzyUNGBFrFgFJ30qLsoFLdE98oVv+rPQVZJkJMK5Kj3yl/dfsIyxTUySa3tBH6K4YQaFEzyaambWZ5SNqID3nFUU7cmnMwPnpIzp/RJnBhXGslc/T0xocrasYpcp6I4tMveTPzP62QY34QTodMMuWaLRXEmCSZk9j3pC8MZyrEjlBnhbiVsSA1l6DIquRCC5ZdXSfOiGlxVL+8vK7VaHkcRTuAUziGAa6jBHdShAQwUPMMrvHnGe/HevY9Fa8HLZ47hD7zPH63pkFU=</latexit>n⇥ n
<latexit sha1_base64="+eL5ypC9SiwdazXKmK/g4Z4mDfI=">AAACE3icbVDLSsNAFJ34rPUVdelmsAgipSRS1I1QkYLLCvYBTQiT6aQdOnk4MxFKzD+48VfcuFDErRt3/o2TNAttPTAzh3PuZe49bsSokIbxrS0sLi2vrJbWyusbm1vb+s5uR4Qxx6SNQxbynosEYTQgbUklI72IE+S7jHTd8VXmd+8JFzQMbuUkIraPhgH1KEZSSY5+3HQuL6ykaVWt6kN2QcNi5A42Yf5YPpIj10vM1EodvWLUjBxwnpgFqYACLUf/sgYhjn0SSMyQEH3TiKSdIC4pZiQtW7EgEcJjNCR9RQPkE2En+U4pPFTKAHohVyeQMFd/dyTIF2Liu6oym1HMepn4n9ePpXduJzSIYkkCPP3IixmUIcwCggPKCZZsogjCnKpZIR4hjrBUMZZVCObsyvOkc1IzT2v1m3ql0SjiKIF9cACOgAnOQANcgxZoAwwewTN4BW/ak/aivWsf09IFrejZA3+gff4AqFycMQ==</latexit>

EA = {E | 0  E  1} (POVM	elements)
<latexit sha1_base64="9kMoCwqCqurGojEWxROO3P947gM=">AAACHnicbVDLSgMxFM3UV62vqks3wSJUKGVG6mNTqLhxZwXbCp1SMultG5rMjElGKGO/xI2/4saFIoIr/RszbRfaeiDh5Jx7ubnHCzlT2ra/rdTC4tLySno1s7a+sbmV3d6pqyCSFGo04IG89YgCznyoaaY53IYSiPA4NLzBReI37kEqFvg3ehhCS5Cez7qMEm2kdvbYvRLQI+3zshu7sh+4BbfwkFzjRw/usF0whsBajvKJdlh23FE7m7OL9hh4njhTkkNTVNvZT7cT0EiAryknSjUdO9StmEjNKIdRxo0UhIQOSA+ahvpEgGrF4/VG+MAoHdwNpDm+xmP1d0dMhFJD4ZlKQXRfzXqJ+J/XjHT3rBUzP4w0+HQyqBtxrAOcZIU7TALVfGgIoZKZv2LaJ5JQbRLNmBCc2ZXnSf2o6JwUS9elXKUyjSON9tA+yiMHnaIKukRVVEMUPaJn9IrerCfrxXq3PialKWvas4v+wPr6AQamoS4=</latexit>

⌦A = {⇢ | ⇢ � 0, tr(⇢) = 1} (density	matrices)
<latexit sha1_base64="jst+XdfOyv5Ojtf67Qssb2XDcxU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh5bvHisYD9gu5ZsOtuGZpM1yQpl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLS1TRaFJJZeqExINnAloGmY4dBIFJA45tMPRzdRvP4HSTIp7M04giMlAsIhRYqzk1x/Ou5rF8IjrvVLZrbgz4GXi5aSMcjR6pa9uX9I0BmEoJ1r7npuYICPKMMphUuymGhJCR2QAvqWCxKCDbHbyBJ9apY8jqWwJg2fq74mMxFqP49B2xsQM9aI3Ff/z/NRE10HGRJIaEHS+KEo5NhJP/8d9poAaPraEUMXsrZgOiSLU2JSKNgRv8eVl0rqoeJeV6l21XKvlcRTQMTpBZ8hDV6iGblEDNRFFEj2jV/TmGOfFeXc+5q0rTj5zhP7A+fwBPLyQlA==</latexit>

A⇤ ' A via
<latexit sha1_base64="QEZt+OsYflaHYdHd0HEIOAo9h30=">AAACCXicbZDNSsNAFIUn9a/Wv6hLN4NFqCAhkaJuhIIblxVsm9KEMplO2qGTSZiZCCV068ZXceNCEbe+gTvfxmmahbYeGPg4917u3BMkjEpl299GaWV1bX2jvFnZ2t7Z3TP3D9oyTgUmLRyzWLgBkoRRTlqKKkbcRBAUBYx0gvHNrN55IELSmN+rSUL8CA05DSlGSlt9E3oM8SEj0D3reiLH68wTEVRiWnO7p1bfrNqWnQsug1NAFRRq9s0vbxDjNCJcYYak7Dl2ovwMCUUxI9OKl0qSIDxGQ9LTyFFEpJ/ll0zhiXYGMIyFflzB3P09kaFIykkU6M4IqZFcrM3M/2q9VIVXfkZ5kirC8XxRmDKoYjiLBQ6oIFixiQaEBdV/hXiEBMJKh1fRITiLJy9D+9xyLqz6Xb3aaBRxlMEROAY14IBL0AC3oAlaAINH8AxewZvxZLwY78bHvLVkFDOH4I+Mzx/2C5k5</latexit>

hX,Y i = tr(XY ).

<latexit sha1_base64="EnXVAe4miI9wTWLxGPA4JxNiyAw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5ct2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M7jO/PeXaiEg94izmfkhHSgwFo2glvxdSHDMq08a8r/rlilt1FyDrxMtJBXLU++Wv3iBiScgVMkmN6XpujH5KNQom+bzUSwyPKZvQEe9aqmjIjZ8uQs/JhVUGZBhp+xSShfp7I6WhMbMwsJNZSLPqZeJ/XjfB4Z2fChUnyBVbHhomkmBEsgbIQGjOUM4soUwLm5WwMdWUoe2pZEvwVr+8TlpXVe+met24rtRqeR1FOINzuAQPbqEGD1CHJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8VE5JP</latexit>

Qn
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General	probabilisDc	theories

GPT
<latexit sha1_base64="lpCPJ7Op41wF2DFTcW97gxc4KLs=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQoZREiroRGkRwZwX7gCaEyXTSDp1MwsxEKKEbN/6KGxeKuPUf3Pk3TtostPXAhcM593LvPX5MiZCm+a0VlpZXVteK66WNza3tHX13ry2ihCPcQhGNeNeHAlPCcEsSSXE35hiGPsUdf3SV+Z0HzAWJ2L0cx9gN4YCRgCAoleTph04I5RBBmtqTy4pddW5DPICeXb327BNPL5s1cwpjkVg5KYMcTU//cvoRSkLMJKJQiJ5lxtJNIZcEUTwpOYnAMUQjOMA9RRkMsXDT6RcT41gpfSOIuComjan6eyKFoRDj0Fed2c1i3svE/7xeIoMLNyUsTiRmaLYoSKghIyOLxOgTjpGkY0Ug4kTdaqAh5BBJFVxJhWDNv7xI2qc166xWv6uXG408jiI4AEegAixwDhrgBjRBCyDwCJ7BK3jTnrQX7V37mLUWtHxmH/yB9vkDUgyXKg==</latexit>

A = (A,⌦A, EA) =	(vector	space	over					,	normalized	states,	effects).
<latexit sha1_base64="/wIAX7PK2Vb0eLrs6p09I3Vg3lI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy6r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkJvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBej/rlytu1Z2DrBIvJxXI0eiXv3qDiCUhSsME1brrubHxU6oMZwJnpV6iMaZsQkfYtVTSELWfzhPPyJlVBmQYKfukIXP190ZKQ62nYWAns4R62cvE/7xuYobXfsplnBiUbPHRMBHERCQ7nwy4QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukdVH1Lqu1u1qlXs/rKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDv7OQ+Q==</latexit>

R

Quantum	theory	(QT):
<latexit sha1_base64="b8s/weoTKPPHHIh2brgCJWmcZJA=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkoiRd0IlW66rGAf0IYwmU7aoZNJmJkIJQTc+CtuXCji1p9w5984aSNo64GBM+fcy733eBGjUlnWl1FYWV1b3yhulra2d3b3zP2DjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS9SSPzu/dESBryOzWNiBOgEac+xUhpyTWPbq4HAVJjz0uaqcsrP59GeuaaZatqzQCXiZ2TMsjRcs3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yuyGFp1oZQj8U+nEFZ+rvjgQFUk4DT1dmK8pFLxP/8/qx8q+chPIoVoTj+SA/ZlCFMAsEDqkgWLGpJggLqneFeIwEwkrHVtIh2IsnL5POedW+qNZua+V6PY+jCI7BCagAG1yCOmiCFmgDDB7AE3gBr8aj8Wy8Ge/z0oKR9xyCPzA+vgFo2pdh</latexit>

A = Hn(C) (complex	Hermitian															matrices)<latexit sha1_base64="51AzmmokUqi3oa4eDULcLhKVjFY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzEOSJcxOZpMhM7PLTK8QQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcJzyUNGBFrFgFJ30qLsoFLdE98oVv+rPQVZJkJMK5Kj3yl/dfsIyxTUySa3tBH6K4YQaFEzyaambWZ5SNqID3nFUU7cmnMwPnpIzp/RJnBhXGslc/T0xocrasYpcp6I4tMveTPzP62QY34QTodMMuWaLRXEmCSZk9j3pC8MZyrEjlBnhbiVsSA1l6DIquRCC5ZdXSfOiGlxVL+8vK7VaHkcRTuAUziGAa6jBHdShAQwUPMMrvHnGe/HevY9Fa8HLZ47hD7zPH63pkFU=</latexit>n⇥ n
<latexit sha1_base64="+eL5ypC9SiwdazXKmK/g4Z4mDfI=">AAACE3icbVDLSsNAFJ34rPUVdelmsAgipSRS1I1QkYLLCvYBTQiT6aQdOnk4MxFKzD+48VfcuFDErRt3/o2TNAttPTAzh3PuZe49bsSokIbxrS0sLi2vrJbWyusbm1vb+s5uR4Qxx6SNQxbynosEYTQgbUklI72IE+S7jHTd8VXmd+8JFzQMbuUkIraPhgH1KEZSSY5+3HQuL6ykaVWt6kN2QcNi5A42Yf5YPpIj10vM1EodvWLUjBxwnpgFqYACLUf/sgYhjn0SSMyQEH3TiKSdIC4pZiQtW7EgEcJjNCR9RQPkE2En+U4pPFTKAHohVyeQMFd/dyTIF2Liu6oym1HMepn4n9ePpXduJzSIYkkCPP3IixmUIcwCggPKCZZsogjCnKpZIR4hjrBUMZZVCObsyvOkc1IzT2v1m3ql0SjiKIF9cACOgAnOQANcgxZoAwwewTN4BW/ak/aivWsf09IFrejZA3+gff4AqFycMQ==</latexit>

EA = {E | 0  E  1} (POVM	elements)
<latexit sha1_base64="9kMoCwqCqurGojEWxROO3P947gM=">AAACHnicbVDLSgMxFM3UV62vqks3wSJUKGVG6mNTqLhxZwXbCp1SMultG5rMjElGKGO/xI2/4saFIoIr/RszbRfaeiDh5Jx7ubnHCzlT2ra/rdTC4tLySno1s7a+sbmV3d6pqyCSFGo04IG89YgCznyoaaY53IYSiPA4NLzBReI37kEqFvg3ehhCS5Cez7qMEm2kdvbYvRLQI+3zshu7sh+4BbfwkFzjRw/usF0whsBajvKJdlh23FE7m7OL9hh4njhTkkNTVNvZT7cT0EiAryknSjUdO9StmEjNKIdRxo0UhIQOSA+ahvpEgGrF4/VG+MAoHdwNpDm+xmP1d0dMhFJD4ZlKQXRfzXqJ+J/XjHT3rBUzP4w0+HQyqBtxrAOcZIU7TALVfGgIoZKZv2LaJ5JQbRLNmBCc2ZXnSf2o6JwUS9elXKUyjSON9tA+yiMHnaIKukRVVEMUPaJn9IrerCfrxXq3PialKWvas4v+wPr6AQamoS4=</latexit>

⌦A = {⇢ | ⇢ � 0, tr(⇢) = 1} (density	matrices)
<latexit sha1_base64="jst+XdfOyv5Ojtf67Qssb2XDcxU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh5bvHisYD9gu5ZsOtuGZpM1yQpl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLS1TRaFJJZeqExINnAloGmY4dBIFJA45tMPRzdRvP4HSTIp7M04giMlAsIhRYqzk1x/Ou5rF8IjrvVLZrbgz4GXi5aSMcjR6pa9uX9I0BmEoJ1r7npuYICPKMMphUuymGhJCR2QAvqWCxKCDbHbyBJ9apY8jqWwJg2fq74mMxFqP49B2xsQM9aI3Ff/z/NRE10HGRJIaEHS+KEo5NhJP/8d9poAaPraEUMXsrZgOiSLU2JSKNgRv8eVl0rqoeJeV6l21XKvlcRTQMTpBZ8hDV6iGblEDNRFFEj2jV/TmGOfFeXc+5q0rTj5zhP7A+fwBPLyQlA==</latexit>

A⇤ ' A via
<latexit sha1_base64="QEZt+OsYflaHYdHd0HEIOAo9h30=">AAACCXicbZDNSsNAFIUn9a/Wv6hLN4NFqCAhkaJuhIIblxVsm9KEMplO2qGTSZiZCCV068ZXceNCEbe+gTvfxmmahbYeGPg4917u3BMkjEpl299GaWV1bX2jvFnZ2t7Z3TP3D9oyTgUmLRyzWLgBkoRRTlqKKkbcRBAUBYx0gvHNrN55IELSmN+rSUL8CA05DSlGSlt9E3oM8SEj0D3reiLH68wTEVRiWnO7p1bfrNqWnQsug1NAFRRq9s0vbxDjNCJcYYak7Dl2ovwMCUUxI9OKl0qSIDxGQ9LTyFFEpJ/ll0zhiXYGMIyFflzB3P09kaFIykkU6M4IqZFcrM3M/2q9VIVXfkZ5kirC8XxRmDKoYjiLBQ6oIFixiQaEBdV/hXiEBMJKh1fRITiLJy9D+9xyLqz6Xb3aaBRxlMEROAY14IBL0AC3oAlaAINH8AxewZvxZLwY78bHvLVkFDOH4I+Mzx/2C5k5</latexit>

hX,Y i = tr(XY ).

Classical	probability	theory	(QT):

<latexit sha1_base64="EnXVAe4miI9wTWLxGPA4JxNiyAw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5ct2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M7jO/PeXaiEg94izmfkhHSgwFo2glvxdSHDMq08a8r/rlilt1FyDrxMtJBXLU++Wv3iBiScgVMkmN6XpujH5KNQom+bzUSwyPKZvQEe9aqmjIjZ8uQs/JhVUGZBhp+xSShfp7I6WhMbMwsJNZSLPqZeJ/XjfB4Z2fChUnyBVbHhomkmBEsgbIQGjOUM4soUwLm5WwMdWUoe2pZEvwVr+8TlpXVe+met24rtRqeR1FOINzuAQPbqEGD1CHJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8VE5JP</latexit>

Qn

<latexit sha1_base64="EMmUbI0jlDpTVBCK5ixFFOUv3cc=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M6pnfnnJtRKQecRZzP6QjJYaCUbSS3wspjhmVaX3eV/1yxa26C5B14uWkAjka/fJXbxCxJOQKmaTGdD03Rj+lGgWTfF7qJYbHlE3oiHctVTTkxk8XoefkwioDMoy0fQrJQv29kdLQmFkY2MkspFn1MvE/r5vg8M5PhYoT5IotDw0TSTAiWQNkIDRnKGeWUKaFzUrYmGrK0PZUsiV4q19eJ62rqndTvX64rtRqeR1FOINzuAQPbqEG99CAJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w//opJB</latexit>

Cn

<latexit sha1_base64="C8nEPregXAnd3gYK0U35Z7s+IJg=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt2qW8M1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6waN8Q==</latexit>

(1, 0, 0)
<latexit sha1_base64="LyCB7hu0eCcY2yDxaJ45AaiWCjU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qrrk1fDksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wSN8Q==</latexit>

(0, 1, 0)

<latexit sha1_base64="WRUd1+JlpEwq2MMmGU6f/ZAMC8A=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQilZKeqx4MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTLd70NYHA4/3ZpiZ58eCa4Pxt1PY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2oYbwXqxYiT0Bev607uF331iSvNIPppZzLyQjCUPOCXGSt0qruGaezksV3AdZ0DrxM1JBXK0huWvwSiiScikoYJo3XdxbLyUKMOpYPPSINEsJnRKxqxvqSQh016anTtHF1YZoSBStqRBmfp7IiWh1rPQt50hMRO96i3E/7x+YoJbL+UyTgyTdLkoSAQyEVr8jkZcMWrEzBJCFbe3IjohilBjEyrZENzVl9dJ56ruXtcbD41KE+dxFOEMzqEKLtxAE+6hBW2gMIVneIU3J3ZenHfnY9lacPKZU/gD5/MH6wKN8Q==</latexit>

(0, 0, 1)

<latexit sha1_base64="sJVIDeQ5hbGzYKDeoHsi0q7/1Vs=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCuCgzUtSN0OLGZRX7gM60ZNK0DU0yY5IRylA3/oobF4q49S/c+Tdm2llo64ELh3Pu5d57gohRpR3n21pYXFpeWc2t5dc3Nre27Z3dugpjiUkNhyyUzQApwqggNU01I81IEsQDRhrB8Cr1Gw9EKhqKOz2KiM9RX9AexUgbqWPvVy49jvQgCJLbcVt4inJyDyvtk45dcIrOBHCeuBkpgAzVjv3ldUMccyI0ZkiplutE2k+Q1BQzMs57sSIRwkPUJy1DBeJE+cnkgzE8MkoX9kJpSmg4UX9PJIgrNeKB6UyvVbNeKv7ntWLdu/ATKqJYE4Gni3oxgzqEaRywSyXBmo0MQVhScyvEAyQR1ia0vAnBnX15ntRPi+5ZsXRTKpTLWRw5cAAOwTFwwTkog2tQBTWAwSN4Bq/gzXqyXqx362PaumBlM3vgD6zPH6yQlmQ=</latexit>

A = Rn ' A⇤
<latexit sha1_base64="M3T8ev5+o9ehZMr6cinQu1sRaRU=">AAACGnicbVDLSgMxFM34rPVVdekmWIQKpcxIUTdCRQSXFewDOmXIpLdtaCYzJhmhjP0ON/6KGxeKuBM3/o2ZtgttPZDcwzn3ktzjR5wpbdvf1sLi0vLKamYtu76xubWd29mtqzCWFGo05KFs+kQBZwJqmmkOzUgCCXwODX9wmfqNe5CKheJWDyNoB6QnWJdRoo3k5Zwr7+LcTQrgOUWXd0KtiuCJI7foFh/SC9suhzsMHhtXxx15ubxdssfA88SZkjyaourlPt1OSOMAhKacKNVy7Ei3EyI1oxxGWTdWEBE6ID1oGSpIAKqdjFcb4UOjdHA3lOYIjcfq74mEBEoNA990BkT31ayXiv95rVh3z9oJE1GsQdDJQ92YYx3iNCfcYRKo5kNDCJXM/BXTPpGEapNm1oTgzK48T+rHJeekVL4p5yuVaRwZtI8OUAE56BRV0DWqohqi6BE9o1f0Zj1ZL9a79TFpXbCmM3voD6yvHzx3noY=</latexit>

EA = {(e1, . . . , en) | 0  ei  1}
<latexit sha1_base64="v0/rBZwtmA8PEbuIeBlfB49DHz4="></latexit>

⌦A =

(
(p1, . . . , pn) | pi � 0,

X

i

pi = 1

)
.
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General	probabilisDc	theories

The	gbit

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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General	probabilisDc	theories

The	gbit
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(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)

The	four	pure	states														are	pairwise	perfectly	distinguishable,	
but	not	jointly											this	cannot	be	a	classical	or	quantum	system.
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FIG. 7. (Color). The GPT states and effects for the preparations and measurements realized in our two experiments and their
duals. (a),(b),(c) First experiment, in which we characterize 100 preparation and 100 measurement procedures. (d),(e),(f)
Second experiment, in which we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment,
the estimated space of realized GPT states, S̃realized is the convex polytope depicted in blue, while the wireframe convex
polytope which surrounds it is the estimated space of logically possible GPT states, S̃consistent, calculated from the realized
GPT effects. The true state space of the GPT describing nature must lie somewhere in between S̃realized and S̃consistent, modulo
experimental uncertainty. The gap between these two spaces is smaller for the second set of data, and hence this dataset does
a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a different 3-d
projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The wireframe convex polytopes are 3-d projections of
the estimated effect space consistent with the realized preparations, Ẽconsistent.

have at least k + 1 measurements implemented on each
preparation, and at least k+1 preparations on which each
measurement is implemented; otherwise, one can trivially
find a perfect fit. To be able to assess the quality of fit for
a rank-5 model, therefore, we needed to choose at least 6
measurements that are jointly tomographically complete
to implement on each of the m preparations and at least
6 preparations that are jointly tomographically complete
on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total
of 6(m+n−6) experimental configurations. Without ex-
ceeding the bound of ∼ 104 experimental configurations
being probed (implied by the data acquisition time), we
were able to take m = n = 1000 and thereby probe a
factor of 10 more preparations and measurements than
in the first experiment.

We refer to the set of six measurement effects (prepara-
tions) in this second experiment as the fiducial set. Our
choice of which six waveplate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 waveplate settings to pair with these is
also described there. Our choices are based on our ex-
pectation that the true GPT is close to quantum theory

and the desire to densely sample the set of all prepara-
tions and measurements. (Note that although our knowl-
edge of the quantum formalism informed our choices, our
analysis of the experimental data does not presume the
correctness of quantum theory.) In the end, we also im-
plemented each of our six fiducial measurement effects
on each of our six fiducial preparations, so that we had
m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006×1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000×1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best-
fit to F . For the entries in the 1000×1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the
only constraint in the fit is that each entry be in the range
[0, 1], so that it corresponds to a probability. The results
of this analysis are presented in Fig. 6(d)-(f).

The χ2 goodness-of-fit test (Fig. 6(d)) rules out the
rank-3 model, and therefore all models with rank less

[1]:	Polarization	degree	of	freedom	of	
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frequency matrix F , with the big difference to the first
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D̃realized corresponding to the unfilled entries in F , the
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”) such

that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to

fx+=

0

B@
1
1
0
0

1

CA, fx�=

0

B@
0
0
1
1

1

CA, fz+=

0

B@
1
0
1
0

1

CA, fz�=

0

B@
0
1
0
1

1

CA,

(7)

2

Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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0
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0
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• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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This	is	an	instance	of	implausible	fine-tuning:	
the	statistical	differences	among	the	fundamental	states	
are	miraculously	exactly	“washed	out”	on	the	effective	level.
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and
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As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”), such
that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is called an exact simulation.
The simulation is called preparation–noncontextual
if |⌦B(!A)| = 1 for all !A 2 ⌦A, measurement–
noncontextual if |EB(eA)| = 1 for all eA 2 EA,

and noncontextual if it is both preparation– and

measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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0
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0
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0
1
0
1
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(7)
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EB(eA)

contain	only	one	element.

Classical	probability	
theory	can	contextually	
simulate	all	GPTs:
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and uA 7! uB := (1, 1, 1, 1)T. This assignment can be
linearly extended to a map R3 ! R4 which is positive and
unital, and which hence defines for every gbit e↵ect eA 2
EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.

Now, how do we simulate the gbit states such that
probabilities are preserved? Going through each of the
four corners ↵i, we can pick a vector �i that satisfies
Eq. (4) for " = 0, when the e↵ects are defined as in
Eq. (7). For these states, there is only one such choice,
namely, to map each corner to an orthogonal classical
state:

�++ := (1, 0, 0, 0)T , �+� := (0, 1, 0, 0)T ,

��+ := (0, 0, 1, 0)T , ��� := (0, 0, 0, 1)T , (8)

as drawn in Figure 3.
The map ↵i 7! �i for i 2 {++,+�,�+,��} is mani-

festly nonlinear (the image of a square under any linear
map cannot contain more than two linearly independent
elements), and the trouble this causes is more obvious
when we consider the simulation of the nonextremal gbit
states. Consider the gbit state ↵0 = (1, 0, 0)T that is in
the center of the gbit’s square state space. Any state of

the form �0 =
�
�

2
, 1��

2
, 1��

2
, �

2
,
�T

for � 2 [0, 1] will yield
the correct statistics on the e↵ects eC , and so is a suitable
candidate for simulation. This is in line with the inclusion
(as opposed to equality) relationship in Eq. (5). Suppose
we consider a0 as the equal mixture of ↵++ and ↵��:
then the set ⌦B(↵0) = ⌦B(

1

2
↵++ + 1

2
↵��) must contain

the mid-point of the line between �++ and ��� (midpoint
of top line of tetrahedron in Figure 3). Conversely, the
very same point a0 is also the equal mixture of ↵+� and
↵�+, mandating that ⌦B(↵0) = ⌦B(

1

2
↵+�+ 1

2
↵�+) must

contain the mid-point of the line between �+� and ��+

(midpoint of bottom line of tetrahedron in Figure 3). In-
deed, writing ↵0 := �

2
(↵++ + ↵��) +

1��

2
(↵+� + ↵�+)

for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context

(↵++/↵�� or ↵+�/↵�+) in which it was prepared. This
arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.

FIG. 4. Approximating convex sets by polytopes.
When map f" “shrinks” convex set ⌦A towards interior point
µ, there always exists a polytope P" between ⌦A and f"(⌦A),
the “shadow” of a classical GPT. Together with a bound on
the number of vertices, this is proven in Appendix A.

Lemma 1. Let A be any GPT. Then, for every " > 0,
there is a measurement-noncontextual (but, in general,

preparation-contextual) "-simulation of A by Cn (and

thus by Qn) for some n 
⇠⇣ c

"

⌘(dimA�2)/2
⇡
, where c > 0

is a constant that only depends on ⌦A.

Proof. Pick some point µ in the relative interior [60] of
⌦A. Then the function f" : ⌦A ! ⌦A

f"(!A) := "µ+ (1� ")!A (9)

“shrinks” ⌦A towards µ. Geometric intuition (Figure 4)
suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A.
Lemma A1 in Appendix A gives a rigorous proof that
this is indeed the case, and gives the claimed bound on
the number of vertices n := n". Denote the vertices of
P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
Consider the classical GPT C := Cn" , then the polytope
P" is the image of the simplex ⌦C under L" [61]. For
!A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)

EC(eA) := {L⇤
"
(eA)}. (11)

Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2

⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)

= (!A, eA) + "(µ� !A, eA). (12)
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and uA 7! uB := (1, 1, 1, 1)T. This assignment can be
linearly extended to a map R3 ! R4 which is positive and
unital, and which hence defines for every gbit e↵ect eA 2
EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.

Now, how do we simulate the gbit states such that
probabilities are preserved? Going through each of the
four corners ↵i, we can pick a vector �i that satisfies
Eq. (4) for " = 0, when the e↵ects are defined as in
Eq. (7). For these states, there is only one such choice,
namely, to map each corner to an orthogonal classical
state:

�++ := (1, 0, 0, 0)T , �+� := (0, 1, 0, 0)T ,

��+ := (0, 0, 1, 0)T , ��� := (0, 0, 0, 1)T , (8)

as drawn in Figure 3.
The map ↵i 7! �i for i 2 {++,+�,�+,��} is mani-

festly nonlinear (the image of a square under any linear
map cannot contain more than two linearly independent
elements), and the trouble this causes is more obvious
when we consider the simulation of the nonextremal gbit
states. Consider the gbit state ↵0 = (1, 0, 0)T that is in
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the correct statistics on the e↵ects eC , and so is a suitable
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we consider a0 as the equal mixture of ↵++ and ↵��:
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(midpoint of bottom line of tetrahedron in Figure 3). In-
deed, writing ↵0 := �

2
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for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context

(↵++/↵�� or ↵+�/↵�+) in which it was prepared. This
arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.

FIG. 4. Approximating convex sets by polytopes.
When map f" “shrinks” convex set ⌦A towards interior point
µ, there always exists a polytope P" between ⌦A and f"(⌦A),
the “shadow” of a classical GPT. Together with a bound on
the number of vertices, this is proven in Appendix A.
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thus by Qn) for some n 
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is a constant that only depends on ⌦A.

Proof. Pick some point µ in the relative interior [60] of
⌦A. Then the function f" : ⌦A ! ⌦A

f"(!A) := "µ+ (1� ")!A (9)

“shrinks” ⌦A towards µ. Geometric intuition (Figure 4)
suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A.
Lemma A1 in Appendix A gives a rigorous proof that
this is indeed the case, and gives the claimed bound on
the number of vertices n := n". Denote the vertices of
P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
Consider the classical GPT C := Cn" , then the polytope
P" is the image of the simplex ⌦C under L" [61]. For
!A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)
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Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2

⌦C(!A) and eC 2 EC(eA). Then
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and uA 7! uB := (1, 1, 1, 1)T. This assignment can be
linearly extended to a map R3 ! R4 which is positive and
unital, and which hence defines for every gbit e↵ect eA 2
EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.

Now, how do we simulate the gbit states such that
probabilities are preserved? Going through each of the
four corners ↵i, we can pick a vector �i that satisfies
Eq. (4) for " = 0, when the e↵ects are defined as in
Eq. (7). For these states, there is only one such choice,
namely, to map each corner to an orthogonal classical
state:

�++ := (1, 0, 0, 0)T , �+� := (0, 1, 0, 0)T ,

��+ := (0, 0, 1, 0)T , ��� := (0, 0, 0, 1)T , (8)

as drawn in Figure 3.
The map ↵i 7! �i for i 2 {++,+�,�+,��} is mani-

festly nonlinear (the image of a square under any linear
map cannot contain more than two linearly independent
elements), and the trouble this causes is more obvious
when we consider the simulation of the nonextremal gbit
states. Consider the gbit state ↵0 = (1, 0, 0)T that is in
the center of the gbit’s square state space. Any state of

the form �0 =
�
�

2
, 1��

2
, 1��

2
, �

2
,
�T

for � 2 [0, 1] will yield
the correct statistics on the e↵ects eC , and so is a suitable
candidate for simulation. This is in line with the inclusion
(as opposed to equality) relationship in Eq. (5). Suppose
we consider a0 as the equal mixture of ↵++ and ↵��:
then the set ⌦B(↵0) = ⌦B(

1

2
↵++ + 1

2
↵��) must contain

the mid-point of the line between �++ and ��� (midpoint
of top line of tetrahedron in Figure 3). Conversely, the
very same point a0 is also the equal mixture of ↵+� and
↵�+, mandating that ⌦B(↵0) = ⌦B(
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(midpoint of bottom line of tetrahedron in Figure 3). In-
deed, writing ↵0 := �

2
(↵++ + ↵��) +

1��

2
(↵+� + ↵�+)

for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context

(↵++/↵�� or ↵+�/↵�+) in which it was prepared. This
arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.

FIG. 4. Approximating convex sets by polytopes.
When map f" “shrinks” convex set ⌦A towards interior point
µ, there always exists a polytope P" between ⌦A and f"(⌦A),
the “shadow” of a classical GPT. Together with a bound on
the number of vertices, this is proven in Appendix A.

Lemma 1. Let A be any GPT. Then, for every " > 0,
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preparation-contextual) "-simulation of A by Cn (and

thus by Qn) for some n 
⇠⇣ c

"

⌘(dimA�2)/2
⇡
, where c > 0

is a constant that only depends on ⌦A.

Proof. Pick some point µ in the relative interior [60] of
⌦A. Then the function f" : ⌦A ! ⌦A

f"(!A) := "µ+ (1� ")!A (9)

“shrinks” ⌦A towards µ. Geometric intuition (Figure 4)
suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A.
Lemma A1 in Appendix A gives a rigorous proof that
this is indeed the case, and gives the claimed bound on
the number of vertices n := n". Denote the vertices of
P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
Consider the classical GPT C := Cn" , then the polytope
P" is the image of the simplex ⌦C under L" [61]. For
!A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)

EC(eA) := {L⇤
"
(eA)}. (11)

Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2

⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)

= (!A, eA) + "(µ� !A, eA). (12)
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and uA 7! uB := (1, 1, 1, 1)T. This assignment can be
linearly extended to a map R3 ! R4 which is positive and
unital, and which hence defines for every gbit e↵ect eA 2
EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.

Now, how do we simulate the gbit states such that
probabilities are preserved? Going through each of the
four corners ↵i, we can pick a vector �i that satisfies
Eq. (4) for " = 0, when the e↵ects are defined as in
Eq. (7). For these states, there is only one such choice,
namely, to map each corner to an orthogonal classical
state:

�++ := (1, 0, 0, 0)T , �+� := (0, 1, 0, 0)T ,

��+ := (0, 0, 1, 0)T , ��� := (0, 0, 0, 1)T , (8)

as drawn in Figure 3.
The map ↵i 7! �i for i 2 {++,+�,�+,��} is mani-

festly nonlinear (the image of a square under any linear
map cannot contain more than two linearly independent
elements), and the trouble this causes is more obvious
when we consider the simulation of the nonextremal gbit
states. Consider the gbit state ↵0 = (1, 0, 0)T that is in
the center of the gbit’s square state space. Any state of

the form �0 =
�
�

2
, 1��

2
, 1��

2
, �

2
,
�T

for � 2 [0, 1] will yield
the correct statistics on the e↵ects eC , and so is a suitable
candidate for simulation. This is in line with the inclusion
(as opposed to equality) relationship in Eq. (5). Suppose
we consider a0 as the equal mixture of ↵++ and ↵��:
then the set ⌦B(↵0) = ⌦B(

1

2
↵++ + 1

2
↵��) must contain

the mid-point of the line between �++ and ��� (midpoint
of top line of tetrahedron in Figure 3). Conversely, the
very same point a0 is also the equal mixture of ↵+� and
↵�+, mandating that ⌦B(↵0) = ⌦B(

1

2
↵+�+ 1

2
↵�+) must

contain the mid-point of the line between �+� and ��+

(midpoint of bottom line of tetrahedron in Figure 3). In-
deed, writing ↵0 := �

2
(↵++ + ↵��) +

1��

2
(↵+� + ↵�+)

for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context

(↵++/↵�� or ↵+�/↵�+) in which it was prepared. This
arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.

FIG. 4. Approximating convex sets by polytopes.
When map f" “shrinks” convex set ⌦A towards interior point
µ, there always exists a polytope P" between ⌦A and f"(⌦A),
the “shadow” of a classical GPT. Together with a bound on
the number of vertices, this is proven in Appendix A.

Lemma 1. Let A be any GPT. Then, for every " > 0,
there is a measurement-noncontextual (but, in general,

preparation-contextual) "-simulation of A by Cn (and

thus by Qn) for some n 
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suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A.
Lemma A1 in Appendix A gives a rigorous proof that
this is indeed the case, and gives the claimed bound on
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P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
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Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
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⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)
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In	special	case																	(fundamental	GPT	is	classical),	this	notion	reduces	
exactly	to	Spekkens’	notion	[3]	of	contextuality.
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the various contexts in which the same mixed state of A
could be prepared necessitated di↵erent states in B.

Noncontextuality does not imply that there cannot be
distinct elements of the fundamental (simulating) GPT
B that produce identical statistics in the e↵ective (simu-
lated) GPT A. These elements can (and typically will)
exist, but the point is that they are not necessary for
the simulation. For example, let A = C2 and B = C4 be
classical 2- and 4-level systems, respectively. Then the
maps

✓
p1
p2

◆
 7!

0

B@

p1/2
p1/2
p2/2
p2/2

1

CA ,

✓
e1
e2

◆
�7!

0

B@

e1
e1
e2
e2

1

CA (15)

define an exact embedding of A into B, i.e. an exact non-
contextual simulation of A by B. We can interpret A as
a coarse-graining of B. Instead of simulating the state
(1, 0)T 2 ⌦A via  ((1, 0)T) = ( 1

2
, 1

2
, 0, 0)T, we could also

simulate it via, for example, ( 3
4
, 1

4
, 0, 0)T 2 ⌦B , since this

would reproduce the exact same probabilities on all sim-
ulated e↵ects. Crucially, however, the simulation does
not require such alternatives (cf. the Holevo projection).
We will say more about coarse-graining processes and
contextuality in Section VC.

Embeddings have a rich mathematical structure, which
we explore in the following lemmas. These properties will
become relevant in later sections of this article.

Lemma 4. Let A = (A,⌦A, EA) and B = (B,⌦B , EB)
be GPTs, and let " � 0. If there exists an "-embedding

of A into B, then there exists a (2")-embedding of A into

B that is unital.

Lemma 5. For an exact embedding A ! B with maps

� : A ! B and  : A⇤ ! B⇤
:

(i)  ⇤� = 1A, i.e. the dual of  is a left-inverse of �,
hence dimA  dimB. Likewise, �⇤ = 1A⇤ .

(ii) The map P := � ⇤ : B ! B is a projection onto

the image of e↵ects �(A) (P 2 = P and P (B) =
�(A)). Furthermore, if the embedding is unital, we

have PuB = uB, i.e. P is unital too. Similarly,

P ⇤ =  �⇤ : B⇤ ! B⇤
is a projection onto the image

of states  (A⇤) (P ⇤2 = P ⇤
and P ⇤(B⇤) =  (A⇤)).

Lemma 6. Let A be unrestricted. For an exact embed-

ding A ! B with maps � : A ! B and  : A⇤ ! B⇤
:

(i) �⇤
,  ⇤

, P := � ⇤
and P ⇤ :=  �⇤

are all positive

maps,

(ii) '(A+) = '(A) \B+ = P (B+).

The proofs are given in Appendix B. For the com-
plementary case of embeddings into infinite-dimensional
classical systems, similar results are obtained in the forth-
coming work of Barnum and Lami [63].

IV. EMBEDDINGS INTO CLASSICAL
PROBABILITY THEORY:

STANDARD CONTEXTUALITY

In this section, we will briefly review Spekkens’ gener-
alized notion of contextuality [30] and prove equivalence
to ours in the special case of embeddings into (and sim-
ulations by) classical probability theory Cn. We subse-
quently elucidate the relation between contextuality in-
equalities [37, 38, 64, 65] and our notion of approximate
embeddings into Cn.

A. Equivalence of simulations and
ontological models

Recall from Section IIA that an operational theory
describes a collection of procedures accessible in a lab-
oratory, and specifies the probabilities P (k|p,m) of ob-
taining outcome k when measurement m is performed
after preparation p. For any given operational theory,
we can study ontological models for that theory, and the
properties of such models. As defined by Spekkens [30]:
“An ontological model is an attempt to o↵er an expla-

nation of the success of an operational theory by assum-

ing that there exist physical systems that are the subject of

the experiment. These systems are presumed to have at-

tributes regardless of whether they are being subjected to

experimental test, and regardless of what anyone knows

about them. These attributes describe the real state of

a↵airs of the system. Thus, a specification of which in-

stance of each attribute applies at a given time we call

the ontic state of the system.”

The ontic state of the given system will be denoted
�, and the set of all such states (formally, a measurable
space) is ⇤. Here, as in Schmid et al. [66], we restrict
our attention to discrete ⇤ for simplicity. An ontological
model should reproduce the probabilistic predictions of
the operational theory as follows: To every preparation
procedure p, there is a specific probability distribution µp

over the ontic states, and to every measurement m and
outcome k, there is a specific function �k,m : ⇤ ! [0, 1]
with

P (k|p,m) =
X

�2⇤
µp(�)�k,m(�) (16)

such that
P

�2⇤ µp(�) = 1 and
P

k
�k,m(�) = 1 for all �.

We can interpret an ontological model as specifying a
way to reproduce the statistics of the operational theory
in classical terms: the preparation p amounts to sampling
an ontic state � according to a certain probability distri-
bution µp, and the measurement procedure implements a
(possibly noisy) classical measurement of that ontic state.
We assume that ontological models are closed under sta-
tistical mixing, i.e. that we can implement one of two
preparation procedures with some probability and obtain
the corresponding convex combinations of the involved
µp. We denote the resulting procedure by qp+ (1� q)p0,

[3]	R.	W.	Spekkens,	Phys.	Rev.	A	71,	052108	(2005).
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and uA 7! uB := (1, 1, 1, 1)T. This assignment can be
linearly extended to a map R3 ! R4 which is positive and
unital, and which hence defines for every gbit e↵ect eA 2
EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.

Now, how do we simulate the gbit states such that
probabilities are preserved? Going through each of the
four corners ↵i, we can pick a vector �i that satisfies
Eq. (4) for " = 0, when the e↵ects are defined as in
Eq. (7). For these states, there is only one such choice,
namely, to map each corner to an orthogonal classical
state:

�++ := (1, 0, 0, 0)T , �+� := (0, 1, 0, 0)T ,

��+ := (0, 0, 1, 0)T , ��� := (0, 0, 0, 1)T , (8)

as drawn in Figure 3.
The map ↵i 7! �i for i 2 {++,+�,�+,��} is mani-

festly nonlinear (the image of a square under any linear
map cannot contain more than two linearly independent
elements), and the trouble this causes is more obvious
when we consider the simulation of the nonextremal gbit
states. Consider the gbit state ↵0 = (1, 0, 0)T that is in
the center of the gbit’s square state space. Any state of

the form �0 =
�
�

2
, 1��

2
, 1��

2
, �

2
,
�T

for � 2 [0, 1] will yield
the correct statistics on the e↵ects eC , and so is a suitable
candidate for simulation. This is in line with the inclusion
(as opposed to equality) relationship in Eq. (5). Suppose
we consider a0 as the equal mixture of ↵++ and ↵��:
then the set ⌦B(↵0) = ⌦B(

1

2
↵++ + 1

2
↵��) must contain

the mid-point of the line between �++ and ��� (midpoint
of top line of tetrahedron in Figure 3). Conversely, the
very same point a0 is also the equal mixture of ↵+� and
↵�+, mandating that ⌦B(↵0) = ⌦B(

1

2
↵+�+ 1

2
↵�+) must

contain the mid-point of the line between �+� and ��+

(midpoint of bottom line of tetrahedron in Figure 3). In-
deed, writing ↵0 := �

2
(↵++ + ↵��) +

1��

2
(↵+� + ↵�+)

for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context

(↵++/↵�� or ↵+�/↵�+) in which it was prepared. This
arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.

FIG. 4. Approximating convex sets by polytopes.
When map f" “shrinks” convex set ⌦A towards interior point
µ, there always exists a polytope P" between ⌦A and f"(⌦A),
the “shadow” of a classical GPT. Together with a bound on
the number of vertices, this is proven in Appendix A.

Lemma 1. Let A be any GPT. Then, for every " > 0,
there is a measurement-noncontextual (but, in general,

preparation-contextual) "-simulation of A by Cn (and

thus by Qn) for some n 
⇠⇣ c

"

⌘(dimA�2)/2
⇡
, where c > 0

is a constant that only depends on ⌦A.

Proof. Pick some point µ in the relative interior [60] of
⌦A. Then the function f" : ⌦A ! ⌦A

f"(!A) := "µ+ (1� ")!A (9)

“shrinks” ⌦A towards µ. Geometric intuition (Figure 4)
suggests that there exists a convex polytope P" with all
vertices in ⌦A \ f"(⌦A), such that f"(⌦A) ⇢ P" ⇢ ⌦A.
Lemma A1 in Appendix A gives a rigorous proof that
this is indeed the case, and gives the claimed bound on
the number of vertices n := n". Denote the vertices of
P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
Consider the classical GPT C := Cn" , then the polytope
P" is the image of the simplex ⌦C under L" [61]. For
!A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)

EC(eA) := {L⇤
"
(eA)}. (11)

Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2

⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)

= (!A, eA) + "(µ� !A, eA). (12)
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EA a corresponding classical e↵ect eC 2 EC . However,
the set of these e↵ects eC is not linearly independent and
spans only a subspace of R4.
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Eq. (4) for " = 0, when the e↵ects are defined as in
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for � 2 [0, 1], we see that this mandates the inclusion of
every point in �0. Indeed, for this gbit simulation, every
nonextremal state maps to an infinite number of classi-
cal states. That is, this classical simulation of the gbit is
preparation-contextual.

In particular: suppose we prepare with 50% proba-
bility ↵++, and 50% probability ↵��, necessitating the
preparation of �++ or ��� in the fundamental theory B.
If we wanted to prepare the mixture of 50% ↵+� and
50% ↵�+, we would have to prepare completely di↵er-
ent states �+� and ��+ in B. Thus, to know how ↵0 is
represented in B, knowledge of the operational statistics
is insu�cient: we would also need to know the context
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arguably introduces an implausible amount of fine-tuning
in the explanation of how the e↵ective theory A is sup-
posed to arise from the fundamental theory B.

We will say more about this notion of contextuality,
its motivation, and its relation to the classical notion of
contextuality in Sections IV and VIIB below.

The above Holevo simulation of the gbit is not a rare
pathological example: every finite-dimensional GPT can
be classically simulated in this way.
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When map f" “shrinks” convex set ⌦A towards interior point
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P" (in arbitrary order) by v",1, v",2, . . . , v",n" , and define
the linear map L" : Rn" ! A via L"ei := v",i for i =
1, . . . , n", where ei denotes the ith unit vector of Rn" .
Consider the classical GPT C := Cn" , then the polytope
P" is the image of the simplex ⌦C under L" [61]. For
!A 2 ⌦A and eA 2 EA, define the sets

⌦C(!A) := {!C 2 ⌦C | L"!C = f"(!A)}, (10)

EC(eA) := {L⇤
"
(eA)}. (11)

Since f"(!A) 2 P", there must be at least one !C 2 ⌦C

which is mapped to this point via L", hence ⌦C(!A) is
a nonempty subset of classical states. The set EC(eA)
contains a single element eC , and it satisfies (!C , eC) =
(L"!C , eA) 2 [0, 1] for all !C 2 ⌦C since L"!C 2 P" ✓
⌦A. Thus EC(eA) ⇢ EC . Furthermore, Eqs. (5) and (6)
follow from convex-linearity of f" and linearity of L".
Now, for !A 2 ⌦A and eA 2 EA, pick any !C 2

⌦C(!A) and eC 2 EC(eA). Then

(!C , eC) = (L"!C , eA) = (f"(!A), eA)

= (!A, eA) + "(µ� !A, eA). (12)

In	special	case																	(fundamental	GPT	is	classical),	this	notion	reduces	
exactly	to	Spekkens’	notion	[3]	of	contextuality.
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the various contexts in which the same mixed state of A
could be prepared necessitated di↵erent states in B.

Noncontextuality does not imply that there cannot be
distinct elements of the fundamental (simulating) GPT
B that produce identical statistics in the e↵ective (simu-
lated) GPT A. These elements can (and typically will)
exist, but the point is that they are not necessary for
the simulation. For example, let A = C2 and B = C4 be
classical 2- and 4-level systems, respectively. Then the
maps

✓
p1
p2

◆
 7!

0

B@

p1/2
p1/2
p2/2
p2/2

1

CA ,

✓
e1
e2

◆
�7!

0

B@

e1
e1
e2
e2

1

CA (15)

define an exact embedding of A into B, i.e. an exact non-
contextual simulation of A by B. We can interpret A as
a coarse-graining of B. Instead of simulating the state
(1, 0)T 2 ⌦A via  ((1, 0)T) = ( 1

2
, 1

2
, 0, 0)T, we could also

simulate it via, for example, ( 3
4
, 1

4
, 0, 0)T 2 ⌦B , since this

would reproduce the exact same probabilities on all sim-
ulated e↵ects. Crucially, however, the simulation does
not require such alternatives (cf. the Holevo projection).
We will say more about coarse-graining processes and
contextuality in Section VC.

Embeddings have a rich mathematical structure, which
we explore in the following lemmas. These properties will
become relevant in later sections of this article.

Lemma 4. Let A = (A,⌦A, EA) and B = (B,⌦B , EB)
be GPTs, and let " � 0. If there exists an "-embedding

of A into B, then there exists a (2")-embedding of A into

B that is unital.

Lemma 5. For an exact embedding A ! B with maps

� : A ! B and  : A⇤ ! B⇤
:

(i)  ⇤� = 1A, i.e. the dual of  is a left-inverse of �,
hence dimA  dimB. Likewise, �⇤ = 1A⇤ .

(ii) The map P := � ⇤ : B ! B is a projection onto

the image of e↵ects �(A) (P 2 = P and P (B) =
�(A)). Furthermore, if the embedding is unital, we

have PuB = uB, i.e. P is unital too. Similarly,

P ⇤ =  �⇤ : B⇤ ! B⇤
is a projection onto the image

of states  (A⇤) (P ⇤2 = P ⇤
and P ⇤(B⇤) =  (A⇤)).

Lemma 6. Let A be unrestricted. For an exact embed-

ding A ! B with maps � : A ! B and  : A⇤ ! B⇤
:

(i) �⇤
,  ⇤

, P := � ⇤
and P ⇤ :=  �⇤

are all positive

maps,

(ii) '(A+) = '(A) \B+ = P (B+).

The proofs are given in Appendix B. For the com-
plementary case of embeddings into infinite-dimensional
classical systems, similar results are obtained in the forth-
coming work of Barnum and Lami [63].

IV. EMBEDDINGS INTO CLASSICAL
PROBABILITY THEORY:

STANDARD CONTEXTUALITY

In this section, we will briefly review Spekkens’ gener-
alized notion of contextuality [30] and prove equivalence
to ours in the special case of embeddings into (and sim-
ulations by) classical probability theory Cn. We subse-
quently elucidate the relation between contextuality in-
equalities [37, 38, 64, 65] and our notion of approximate
embeddings into Cn.

A. Equivalence of simulations and
ontological models

Recall from Section IIA that an operational theory
describes a collection of procedures accessible in a lab-
oratory, and specifies the probabilities P (k|p,m) of ob-
taining outcome k when measurement m is performed
after preparation p. For any given operational theory,
we can study ontological models for that theory, and the
properties of such models. As defined by Spekkens [30]:
“An ontological model is an attempt to o↵er an expla-

nation of the success of an operational theory by assum-

ing that there exist physical systems that are the subject of

the experiment. These systems are presumed to have at-

tributes regardless of whether they are being subjected to

experimental test, and regardless of what anyone knows

about them. These attributes describe the real state of

a↵airs of the system. Thus, a specification of which in-

stance of each attribute applies at a given time we call

the ontic state of the system.”

The ontic state of the given system will be denoted
�, and the set of all such states (formally, a measurable
space) is ⇤. Here, as in Schmid et al. [66], we restrict
our attention to discrete ⇤ for simplicity. An ontological
model should reproduce the probabilistic predictions of
the operational theory as follows: To every preparation
procedure p, there is a specific probability distribution µp

over the ontic states, and to every measurement m and
outcome k, there is a specific function �k,m : ⇤ ! [0, 1]
with

P (k|p,m) =
X

�2⇤
µp(�)�k,m(�) (16)

such that
P

�2⇤ µp(�) = 1 and
P

k
�k,m(�) = 1 for all �.

We can interpret an ontological model as specifying a
way to reproduce the statistics of the operational theory
in classical terms: the preparation p amounts to sampling
an ontic state � according to a certain probability distri-
bution µp, and the measurement procedure implements a
(possibly noisy) classical measurement of that ontic state.
We assume that ontological models are closed under sta-
tistical mixing, i.e. that we can implement one of two
preparation procedures with some probability and obtain
the corresponding convex combinations of the involved
µp. We denote the resulting procedure by qp+ (1� q)p0,
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".

[3]	R.	W.	Spekkens,	Phys.	Rev.	A	71,	052108	(2005).
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But |(µ� !A, eA)|  1, and so |(!C , eC)� (!A, eA)|  ".
This shows that the above maps define an "-simulation
of A by Cn" .

It turns out that noncontextual simulations have a par-
ticularly simple structure: they are embeddings. We will
now first define this notion and then formulate this state-
ment as a lemma.

Definition 2 (Embedding). Let A = (A,⌦A, EA) and

B = (B,⌦B , EB) be GPTs, and let " � 0. A pair of

linear maps � : A ! B and  : A⇤ ! B⇤
is said to be

an "-embedding of A into B if

(i) � and  are positive and  is normalization-

preserving, i.e. �(EA) ✓ EB and  (⌦A) ✓ ⌦B;

(ii) � and  preserve outcome probabilities up to "; i.e.
|(!, e)� ( (!),�(e))|  " for all e 2 EA, ! 2 ⌦A.

If in addition �(uA) = uB, then we say that the embed-

ding is unital. An (" = 0)-embedding is also called an

exact embedding.

This notion of approximate embedding has already
been introduced and studied by Werner [62] for the case
that B is a quantum system and A a possibly infinite-
dimensional classical system. Here we are concerned with
general GPTs and finite-dimensional A.

Noncontextual simulations are embeddings:

Lemma 2. Every "-embedding of A into B defines a

noncontextual "-simulation of A by B, and vice versa.

Proof. First, consider a noncontextual "-simulation of A
by B. Let d := dimA, and pick d linearly indepen-
dent states !A

1
, . . . ,!A

d
2 ⌦A. Then there are d states

!B

1
, . . . ,!B

d
such that ⌦B(!A

i
) = {!B

i
} for all i. Define

 : A⇤ ! B⇤ as the linear extension of  (!A

i
) = !B

i

for i = 1, . . . , d. If !A 2 C := conv{!A

1
, . . . ,!A

d
}, i.e.

!A =
P

d

i=1
�i!A

i
for suitable �i � 0,

P
i
�i = 1, then

⌦B(!A) =
dX

i=1

�i⌦B(!
A

i
) =

(
dX

i=1

�i!
B

i

)
= { (!A)}.

(13)

Now suppose !A 2 ⌦A \ C. Pick any state 'A in the
relative interior of C, and consider the line connecting
'A and !A. On it, we can find some ⇢A 2 C \ {'A}, i.e.
there is some 0 < � < 1 such that ⇢A = �!A+(1��)'A.
Thus

{ (⇢A)} = ⌦B(⇢A) = �⌦B(!A) + (1� �)⌦B('A)

= �⌦B(!A) + (1� �){ ('A)}, (14)

and from this it is elementary to infer that ⌦B(!A) =
{ (!A)}. Hence  (⌦A) ✓ ⌦B , and  is a positive and
normalization-preserving linear map.

The argumentation for e↵ects is similar, applying the
above construction to the convex hull C of d linearly–
independent e↵ects and the zero e↵ect. Finally, the

preservation of outcome probabilities up to " follows di-
rectly from the definition of a simulation.

Conversely, given the linear maps � and � of an "-
embedding, we obtain a noncontextual "-simulation via
⌦B(!A) := { (!A)} and EB(eA) := {�(eA)}.

It is clear that embeddings satisfy a transitivity prop-
erty: for GPTs A, B and C, embedding A into B and
then B into C defines an embedding of A into C:

Lemma 3. Let (�, ) define an "-embedding of A into

B, and (�0, 0) define a �-embedding of B into C, where
", � � 0. Then (�0��, 0� ) defines an ("+�)-embedding

of A into C.

The proof is straightforward and thus omitted.
Noncontextuality thus extends transitively across dif-

ferent levels of description: think of A as an e↵ective
theory, B as a somewhat more fundamental (“intermedi-
ate”) theory, and C as the most fundamental among the
three. If A has a noncontextual explanation in terms of
B, and so does B in terms of C, then the e↵ective theory
A has a noncontextual explanation in term of the fun-
damental one C (with the approximation errors adding
up).

FIG. 5. Preparation–noncontextual simulation. Con-
sider preparing the state ⇢ := p!1 + (1� p)!2 in A by ran-
domly preparing either !1 with probability p or otherwise
preparing !2. The state ⇢0 in B that reproduces the statistics
of ⇢ can then likewise be prepared by randomly preparing ei-
ther !0

1 =  (!1) with probability p or otherwise !0
2 =  (!2).

If the simulation is preparation–noncontextual, only ⇢0 is re-
quired (and no other state) to simulate ⇢, even when ⇢ is
formed by mixing another set of states in ⌦A (e.g. those in-
dicated by the grey triangles).

Intuitively, the reason why noncontextuality implies
linearity can be understood via Figure 5: mixtures ⇢A
are uniquely simulated by mixtures ⇢0

B
, and mixture-

preservation is the operational source of linearity. There
may be other states ⇢̃B 6= ⇢0

B
on B that could simulate

⇢A, in the sense of reproducing the exact same probabili-
ties on all simulated measurements, but the point of non-
contextuality is that these are not needed for a successful
simulation of the GPT A. This is in contrast to, say, the
Holevo projection (discussed above, see Figure 3), where

effective	GPT
fundamental	GPT
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But |(µ� !A, eA)|  1, and so |(!C , eC)� (!A, eA)|  ".
This shows that the above maps define an "-simulation
of A by Cn" .

It turns out that noncontextual simulations have a par-
ticularly simple structure: they are embeddings. We will
now first define this notion and then formulate this state-
ment as a lemma.

Definition 2 (Embedding). Let A = (A,⌦A, EA) and

B = (B,⌦B , EB) be GPTs, and let " � 0. A pair of

linear maps � : A ! B and  : A⇤ ! B⇤
is said to be

an "-embedding of A into B if

(i) � and  are positive and  is normalization-

preserving, i.e. �(EA) ✓ EB and  (⌦A) ✓ ⌦B;

(ii) � and  preserve outcome probabilities up to "; i.e.
|(!, e)� ( (!),�(e))|  " for all e 2 EA, ! 2 ⌦A.

If in addition �(uA) = uB, then we say that the embed-

ding is unital. An (" = 0)-embedding is also called an

exact embedding.

This notion of approximate embedding has already
been introduced and studied by Werner [62] for the case
that B is a quantum system and A a possibly infinite-
dimensional classical system. Here we are concerned with
general GPTs and finite-dimensional A.

Noncontextual simulations are embeddings:

Lemma 2. Every "-embedding of A into B defines a

noncontextual "-simulation of A by B, and vice versa.

Proof. First, consider a noncontextual "-simulation of A
by B. Let d := dimA, and pick d linearly indepen-
dent states !A

1
, . . . ,!A

d
2 ⌦A. Then there are d states

!B

1
, . . . ,!B

d
such that ⌦B(!A

i
) = {!B

i
} for all i. Define

 : A⇤ ! B⇤ as the linear extension of  (!A

i
) = !B

i

for i = 1, . . . , d. If !A 2 C := conv{!A

1
, . . . ,!A

d
}, i.e.

!A =
P

d

i=1
�i!A

i
for suitable �i � 0,

P
i
�i = 1, then

⌦B(!A) =
dX

i=1

�i⌦B(!
A

i
) =

(
dX

i=1

�i!
B

i

)
= { (!A)}.

(13)

Now suppose !A 2 ⌦A \ C. Pick any state 'A in the
relative interior of C, and consider the line connecting
'A and !A. On it, we can find some ⇢A 2 C \ {'A}, i.e.
there is some 0 < � < 1 such that ⇢A = �!A+(1��)'A.
Thus

{ (⇢A)} = ⌦B(⇢A) = �⌦B(!A) + (1� �)⌦B('A)

= �⌦B(!A) + (1� �){ ('A)}, (14)

and from this it is elementary to infer that ⌦B(!A) =
{ (!A)}. Hence  (⌦A) ✓ ⌦B , and  is a positive and
normalization-preserving linear map.

The argumentation for e↵ects is similar, applying the
above construction to the convex hull C of d linearly–
independent e↵ects and the zero e↵ect. Finally, the

preservation of outcome probabilities up to " follows di-
rectly from the definition of a simulation.

Conversely, given the linear maps � and � of an "-
embedding, we obtain a noncontextual "-simulation via
⌦B(!A) := { (!A)} and EB(eA) := {�(eA)}.

It is clear that embeddings satisfy a transitivity prop-
erty: for GPTs A, B and C, embedding A into B and
then B into C defines an embedding of A into C:

Lemma 3. Let (�, ) define an "-embedding of A into

B, and (�0, 0) define a �-embedding of B into C, where
", � � 0. Then (�0��, 0� ) defines an ("+�)-embedding

of A into C.

The proof is straightforward and thus omitted.
Noncontextuality thus extends transitively across dif-

ferent levels of description: think of A as an e↵ective
theory, B as a somewhat more fundamental (“intermedi-
ate”) theory, and C as the most fundamental among the
three. If A has a noncontextual explanation in terms of
B, and so does B in terms of C, then the e↵ective theory
A has a noncontextual explanation in term of the fun-
damental one C (with the approximation errors adding
up).
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sider preparing the state ⇢ := p!1 + (1� p)!2 in A by ran-
domly preparing either !1 with probability p or otherwise
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But |(µ� !A, eA)|  1, and so |(!C , eC)� (!A, eA)|  ".
This shows that the above maps define an "-simulation
of A by Cn" .

It turns out that noncontextual simulations have a par-
ticularly simple structure: they are embeddings. We will
now first define this notion and then formulate this state-
ment as a lemma.

Definition 2 (Embedding). Let A = (A,⌦A, EA) and

B = (B,⌦B , EB) be GPTs, and let " � 0. A pair of
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is said to be

an "-embedding of A into B if

(i) � and  are positive and  is normalization-

preserving, i.e. �(EA) ✓ EB and  (⌦A) ✓ ⌦B;

(ii) � and  preserve outcome probabilities up to "; i.e.
|(!, e)� ( (!),�(e))|  " for all e 2 EA, ! 2 ⌦A.

If in addition �(uA) = uB, then we say that the embed-

ding is unital. An (" = 0)-embedding is also called an

exact embedding.

This notion of approximate embedding has already
been introduced and studied by Werner [62] for the case
that B is a quantum system and A a possibly infinite-
dimensional classical system. Here we are concerned with
general GPTs and finite-dimensional A.

Noncontextual simulations are embeddings:

Lemma 2. Every "-embedding of A into B defines a

noncontextual "-simulation of A by B, and vice versa.

Proof. First, consider a noncontextual "-simulation of A
by B. Let d := dimA, and pick d linearly indepen-
dent states !A

1
, . . . ,!A

d
2 ⌦A. Then there are d states

!B

1
, . . . ,!B

d
such that ⌦B(!A

i
) = {!B

i
} for all i. Define

 : A⇤ ! B⇤ as the linear extension of  (!A

i
) = !B

i

for i = 1, . . . , d. If !A 2 C := conv{!A

1
, . . . ,!A

d
}, i.e.

!A =
P

d

i=1
�i!A

i
for suitable �i � 0,

P
i
�i = 1, then

⌦B(!A) =
dX

i=1

�i⌦B(!
A

i
) =

(
dX

i=1

�i!
B

i

)
= { (!A)}.

(13)

Now suppose !A 2 ⌦A \ C. Pick any state 'A in the
relative interior of C, and consider the line connecting
'A and !A. On it, we can find some ⇢A 2 C \ {'A}, i.e.
there is some 0 < � < 1 such that ⇢A = �!A+(1��)'A.
Thus

{ (⇢A)} = ⌦B(⇢A) = �⌦B(!A) + (1� �)⌦B('A)

= �⌦B(!A) + (1� �){ ('A)}, (14)

and from this it is elementary to infer that ⌦B(!A) =
{ (!A)}. Hence  (⌦A) ✓ ⌦B , and  is a positive and
normalization-preserving linear map.

The argumentation for e↵ects is similar, applying the
above construction to the convex hull C of d linearly–
independent e↵ects and the zero e↵ect. Finally, the

preservation of outcome probabilities up to " follows di-
rectly from the definition of a simulation.

Conversely, given the linear maps � and � of an "-
embedding, we obtain a noncontextual "-simulation via
⌦B(!A) := { (!A)} and EB(eA) := {�(eA)}.

It is clear that embeddings satisfy a transitivity prop-
erty: for GPTs A, B and C, embedding A into B and
then B into C defines an embedding of A into C:

Lemma 3. Let (�, ) define an "-embedding of A into

B, and (�0, 0) define a �-embedding of B into C, where
", � � 0. Then (�0��, 0� ) defines an ("+�)-embedding

of A into C.

The proof is straightforward and thus omitted.
Noncontextuality thus extends transitively across dif-

ferent levels of description: think of A as an e↵ective
theory, B as a somewhat more fundamental (“intermedi-
ate”) theory, and C as the most fundamental among the
three. If A has a noncontextual explanation in terms of
B, and so does B in terms of C, then the e↵ective theory
A has a noncontextual explanation in term of the fun-
damental one C (with the approximation errors adding
up).

FIG. 5. Preparation–noncontextual simulation. Con-
sider preparing the state ⇢ := p!1 + (1� p)!2 in A by ran-
domly preparing either !1 with probability p or otherwise
preparing !2. The state ⇢0 in B that reproduces the statistics
of ⇢ can then likewise be prepared by randomly preparing ei-
ther !0

1 =  (!1) with probability p or otherwise !0
2 =  (!2).

If the simulation is preparation–noncontextual, only ⇢0 is re-
quired (and no other state) to simulate ⇢, even when ⇢ is
formed by mixing another set of states in ⌦A (e.g. those in-
dicated by the grey triangles).

Intuitively, the reason why noncontextuality implies
linearity can be understood via Figure 5: mixtures ⇢A
are uniquely simulated by mixtures ⇢0

B
, and mixture-

preservation is the operational source of linearity. There
may be other states ⇢̃B 6= ⇢0

B
on B that could simulate

⇢A, in the sense of reproducing the exact same probabili-
ties on all simulated measurements, but the point of non-
contextuality is that these are not needed for a successful
simulation of the GPT A. This is in contrast to, say, the
Holevo projection (discussed above, see Figure 3), where
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r ! y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp
4;1 and are considered supplements to the primary set. We then

search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r ! y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r ! y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4" 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the

P i
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P s
1,0

P s
1,1

P s
2,1
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x
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3,1
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3,0

P i
3,1

P i
3,0

P i
2,1
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2,0
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1,1

P p
2,1
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2,0
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1,0
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1,1
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3,1
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3,0
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Figure 1 | Solution to the problem of inexact operational equivalences.
Here, we illustrate our solution for the case of preparations under the
simplifying assumption that these are confined to the x# z plane of the
Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line
connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pit;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)
exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Ppt;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these
preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Ppt;0 and Ppt;1
can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Ppt;b are depicted by the grey

region. (c) Secondary preparations Pst;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating
that the operational equivalence (4) has been restored. Note that we
require only that the mixtures of the three pairs of preparations be the
same, not that they correspond to the completely mixed state.
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r ! y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp
4;1 and are considered supplements to the primary set. We then

search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r ! y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r ! y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4" 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the
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Figure 1 | Solution to the problem of inexact operational equivalences.
Here, we illustrate our solution for the case of preparations under the
simplifying assumption that these are confined to the x# z plane of the
Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line
connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pit;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)
exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Ppt;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these
preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Ppt;0 and Ppt;1
can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Ppt;b are depicted by the grey

region. (c) Secondary preparations Pst;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating
that the operational equivalence (4) has been restored. Note that we
require only that the mixtures of the three pairs of preparations be the
same, not that they correspond to the completely mixed state.
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".

These	imply	bounds	on	the	approximate	embeddability	into	classical:
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r ! y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp
4;1 and are considered supplements to the primary set. We then

search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r ! y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r ! y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4" 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the

P i
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P s
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P s
1,1

P s
2,1
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x
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2,1
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2,0
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1,0
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3,1
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3,0

a b
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Figure 1 | Solution to the problem of inexact operational equivalences.
Here, we illustrate our solution for the case of preparations under the
simplifying assumption that these are confined to the x# z plane of the
Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line
connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pit;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)
exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Ppt;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these
preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Ppt;0 and Ppt;1
can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Ppt;b are depicted by the grey

region. (c) Secondary preparations Pst;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating
that the operational equivalence (4) has been restored. Note that we
require only that the mixtures of the three pairs of preparations be the
same, not that they correspond to the completely mixed state.
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The	qubit	(actually,	rebit)	does	not	have	a	
noncontextual	ontological	model.	
Quantitative	statement:
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence

5

6
� 1

6

X

t,b

(!t,b, et,b) �
1

6

X

t,b

�
tr(⇢t,bEt,b)� "

�
= 1� ".

(18)

Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".

These	imply	bounds	on	the	approximate	embeddability	into	classical:
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where 0  q  1 is the probability of implementing p.
Similar reasoning applies to measurements and their out-
comes and their corresponding �k,m. We also assume
that �k,m ⌘ 0 is a valid response function that describes
an impossible outcome.

Recall furthermore from Section IIA that by identify-
ing equivalence classes of preparation and measurement
procedures, we can associate a GPT with an operational
theory. The notion of equivalence of procedures is also
the main ingredient for Spekkens’ definition of noncon-
textuality: an ontological model of an operational the-
ory is preparation–noncontextual if equivalent prepara-
tions p ⇠ p0 yield identical distributions of ontic states,
µp = µp0 , and measurement–noncontextual if equivalent
outcome-measurement pairs [66] (k,m) ⇠ (k0,m0) yield
identical response functions, �k,m = �k0,m0 . The model
is called noncontextual if it is both preparation– and
measurement–noncontextual.

It turns out that our notion of “simulation by a classi-
cal GPT” (special case B = Cn of Definition 1) is equiva-
lent to that of an ontological model, and that the corre-
sponding notions of contextuality are equivalent:

Theorem 1. Every discrete ontological model of an op-

erational theory defines an exact simulation of the corre-

sponding GPT by some Cn, and vice versa. Moreover, the

simulation is preparation–noncontextual / measurement–

noncontextual / noncontextual if and only if the corre-

sponding ontological model has this property.

The proof is given in Appendix C. Essentially, the
claim follows by associating each distinct distribution µ
with a simulating state in Cn, and each response function
� with a simulating e↵ect.

This theorem implies a simple corollary that subsumes
the main result of [66]: a GPT admits of a discrete onto-
logical model (in the restricted sense of their definition,
i.e. noncontextual) if and only if the GPT is simplex-
embeddable (recall that the state spaces ⌦n of the clas-
sical GPTs Cn are simplices).

Corollary 1. An operational theory admits of a discrete

noncontextual ontological model if and only if the corre-

sponding GPT is embeddable into some Cn.

This follows from Theorem 1 because a noncontextual
simulation is an embedding (see Lemma 2 and Defini-
tion 2). Furthermore, our results on exact embeddings
into quantum theory (in Section V below) imply as a
simple consequence (Corollary 3) a result that has also
been found in [63, 66, 67]: that the only unrestricted
GPTs that are exactly embeddable into classical proba-
bility theory are the classical GPTs, i.e. the Cn.

B. Approximate embeddability and
noncontextuality inequalities

There has been a wave of recent interest on how con-
textuality (in the sense of Spekkens [30]) can be experi-

mentally tested [37, 38, 64, 65]. This requires noncontex-
tuality certificates that are robust to a certain amount
of noise. One way to achieve this is via noncontextuality

inequalities, whose experimental violation (subject to cer-
tain assumptions [37]) rule out the existence of a noncon-
textual ontological model. We will now demonstrate that
noncontextuality inequalities imply statements about the
"-embeddability of quantum theory (or other GPTs) into
classical probability theory Cn.
Consider the noncontextuality inequality derived by

Mazurek et al. [37]:

A :=
1

6

X

t2{1,2,3}

X

b2{0,1}

P (b | pt,b,mt) 
5

6
. (17)

Here, pt,b denotes six preparation procedures and mt

three measurement procedures (with two possible out-
comes b 2 {0, 1}) in an operational theory. By assump-
tion, the three preparation procedures pt :=

1

2
pt,0+

1

2
pt,1

(obtained by tossing a fair coin and implementing either
pt,0 or pt,1) are operationally equivalent, i.e. statistically
indistinguishable. Furthermore, m = 1

3
m1 +

1

3
m2 +

1

3
m3

resembles a fair coin toss, i.e. yields outcomes 0 or 1 with
equal probability regardless of the preparation.
Mazurek et al. [37] show that the existence of a noncon-

textual ontological model implies inequality (17). How-
ever, this inequality can be violated via preparations and
measurements of a quantum bit, which admit a value of
A = 1. These preparations and measurements lie in an
equatorial plane of the Bloch ball, and can hence be in-
terpreted as procedures within quantum theory over the
real numbers (i.e. as elements of a rebit).
This contextuality inequality implies the nonexistence

of an approximate embedding into classical probability
theory:

Example 1. Let " < 1

6
. Then the rebit (and thus, also

the qubit) cannot be "-embedded into any Cn.

Proof sketch. Here we only summarize the proof; all
the details are given in Appendix E. To the six prepa-
ration procedures, pt,b, we associate six rebit states ⇢t,b,
and to the outcomes b of the measurements mt, we as-
sociate the rebit e↵ects Et,b such that P (b0|pt,b,mt0) =
tr(⇢t,bEt0,b0), as in Ref. [37]. Consider any "-embedding
of the rebit into some Cn. This defines classical states
!t,b :=  (⇢t,b) and e↵ects et,b := �(Et,b) such that
|(!t,b, et0,b0) � tr(⇢t,bEt0,b0)|  ", and the linear maps  
and � preserve the linear dependencies among the ⇢t,b
and among the Et,b, i.e. the operational equivalences.
But Cn certainly has a noncontextual ontological model
(namely itself), hence
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Thus " � 1

6
, and no "-embedding is possible for any

smaller value of ".
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”) such

that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1
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states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.
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A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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Similarly,	QT	over	the	real	numbers							
can	be	embedded	into	QT.
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .
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• d-dimensional	Bloch	ball	state	spaces,	
• direct	sums	of	those,	including	CPT	and	QT	with	superselection	rules.
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Thus, tr(�⇢) = 0 is only possible if � = 0 since ⇢ is
positive definite.

Now let x 2 �(A), y 2 B, and t 2 R be arbitrary, and
set z := tx+ y. We thus have x = P (x) and x2 = P (x2).
Since P is positive (Lemma 6) and unital (Lemma 5),
Kadison’s inequality gives 2tP (x • y) + P (y2) � 2tx •
P (y) + P (y)2 for all t 2 R. But if v = v† and w = w†

such that tv + w � 0 for all t 2 R, then v = 0 (to
see this, multiply from left and right by eigenvectors of
v). Thus, the terms linear in t must be equal, and so
P (x • y) = x • P (y).

If x, y 2 P (B) then x•y = x•P (y) = P (x•y) 2 P (B),
and hence (P (B) , •) is a Jordan subalgebra of Hn(C),
inheriting the properties of being special and Euclidean
from Hn(C).

Next we show that the image of the quantum ef-
fect cone under the positive projection P is the cone of
squares of the corresponding Jordan algebra:

Lemma 9. For every minimal exact unital embedding of

an unrestricted GPT A into finite-dimensional quantum

theory Qn =: B, we have

P (B+) = {x2 | x 2 P (B)}. (23)

Proof. The right-hand side equals the cone of squares J+

of (P (B) , •) due to Lemma 8. To show J+ ✓ P (B+),
let y := x2 with x 2 P (B). Then 0  y = x • P (x) =
P (x • x) = P (y) (using Lemma 8), and thus y 2 P (B+).

Meanwhile, using hx, yi = tr(xy) to identify B with
B⇤, we have ha • b, ci = ha, b • ci for all a, b, c, and in
particular for all a, b, c 2 P (B). Consequently, the cone
J+ is self-dual under this inner product [53, III.2] (i.e.,
J+ = J ⇤

+
). Let y 2 P (B+). Then, for all x 2 P (B),

hx2, yi = tr(x2y) � 0 since x2 � 0 and y � 0, and
thus y 2 J ⇤

+
⌘ J+, and thus P (B+) ✓ J+. Hence,

P (B+) = J+ = {x2 | x 2 P (B)}.

This allows us to classify all unrestricted GPTs
that have an exact noncontextual simulation by finite-
dimensional quantum theory:

Theorem 2. An unrestricted GPT can be exactly embed-

ded into finite-dimensional quantum theory if and only if

it corresponds to a special Euclidean Jordan algebra.

Proof. For the only if direction, we can choose a mini-
mal embedding � : A ! Hn(C), and Lemma 4 shows
that we can choose it to be unital. From Lemma 9, it
follows that �(A+) = {x2 | x 2 �(A)}, hence A is order-
isomorphic to the GPT of the special Euclidean Jordan
algebra (P (B), •). For the if direction, such algebras can
be exhaustively listed [51], and appropriate embeddings
exist for these [3, 73, 74] and their direct sums.

In other words, the examples in Section VA and their
direct sums are in fact the only unrestricted GPTs that
can be exactly embedded into quantum theory.

C. Decoherence, noise, and coarse-grainings

Suppose we can prepare any state and measure any
e↵ect of n-level quantum theory Qn = (Hn(C),⌦n, En),
but there is some unavoidable noise, described by a trace-
preserving quantum channel N , happening in between
the preparation and the measurement. Let us assume
that N is “nonsingular”, in the sense that its image has
full dimension, i.e. N (Hn(C)) = Hn(C). The states and
e↵ects in this situation will be described by an e↵ective
GPT

QN
n

:= (Hn(C),N (⌦n), En). (24)

That is, the e↵ective set of states is not ⌦n, but the
“noisy” set of states N (⌦n). Since we assume that this
set of states still spans all of Hn(C), all e↵ects in En can
still be statistically distinguished from each other by the
values they take on the states, which is necessary for QN

n

to be a valid GPT.

Lemma 10. Quantum theory under nonsingular non-

unitary noise N , i.e. QN
n
, is a restricted GPT which

can be embedded exactly into Qn.

Proof. Choosing � and  as the identity maps defines
the corresponding embedding. If D is not unitary, then
D(⌦n) ( ⌦n, and thus the resulting set of states is not
maximal given the set of e↵ects, i.e. QN

n
is restricted.

For nonsingular nonunitary qubit channels N , the
Bloch ball of states is e↵ectively mapped to a smaller
ellipsoid inside the ball [45], which represents the set of
states of the resulting GPT QD

2
. Lemma 10 tells us that

these naturally occurring GPTs admit of noncontextual
quantum simulations — in this sense, noise does not in-
troduce contextuality.
We do not currently know whether all singular quan-

tum channels (i.e. channels whose image is a proper sub-
space of Hn(C)) lead to e↵ective GPTs that are embed-
dable. However, one special class of channels of particular
interest does: complete decoherence processes and coarse-

graining processes D. Intuitively, complete decoherence
is a relaxation process that a↵ects a physical system in
the long time limit (in practice, often after a very short
time) such that “decohering twice is the same as deco-
hering once”, i.e. D2 = D. For example, the process that
removes the o↵-diagonal elements of a density matrix is
of this form.
Similarly, coarse-graining processes are described by

maps of this kind. Recall the example of Eq. (15) for the
case of classical probability theory: we can think of the
bit A as arising from two bits B by the map

P := � ⇤ =

0

B@

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

1

CA , (25)

which randomizes the four configurations in groups of
two, and P 2 = P .

• QT	over	real	numbers									complex	numbers							quaternions	
• d-dimensional	Bloch	ball	state	spaces,	
• direct	sums	of	those,	including	CPT	and	QT	with	superselection	rules.
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is supposed to reproduce the e↵ective statistics of !A)
may well depend on this context. Let us collect all the
resulting fundamental states !B , over all such contexts,
into a set that we will call ⌦B(!A) (“all the states of B
that simulate !A”). A notion of preparation contextual-
ity [30], i.e. of the dependence of !B from the context,
will then manifest itself in the fact that the set ⌦B(!A)
contains more than one element.

A priori, we can think of many di↵erent ways in which
a fundamental theory could simulate an e↵ective one ac-
cording to this scheme, and we do not want to limit our-
selves to any particular cases. We will, however, make
one additional assumption on the sets ⌦B(!A) that fol-
lows directly from the statistical interpretation of states.
Namely, consider two e↵ective states !A and 'A, and
two corresponding e↵ective preparation procedures giv-
ing rise to two corresponding states !B 2 ⌦B(!A) and
'B 2 ⌦B('A) at the fundamental level. We can certainly
implement a procedure that performs the first of these
two preparations with probability � and the second one
with probability 1 � �. This prepares the e↵ective state
⇢A := �!A + (1� �)'A, and it does so by fundamentally
preparing the state ⇢B := �!B + (1 � �)'B . Therefore,
no matter what the set of all fundamental states ⌦B(⇢A)
that simulate ⇢A turns out to be, at the very least, ⇢B
must be contained in it. This leads us to the inclusion
relation (5) below.

Arguing similarly for the e↵ects, and introducing an
approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”) such

that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to

fx+=

0

B@
1
1
0
0

1

CA, fx�=

0

B@
0
0
1
1

1

CA, fz+=

0

B@
1
0
1
0

1

CA, fz�=

0

B@
0
1
0
1

1

CA,

(7)
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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may well depend on this context. Let us collect all the
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relation (5) below.
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approximation parameter " that will ultimately take into
account experimental imperfections, motivates the fol-
lowing definition.

Definition 1 (Simulation). Consider A = (A,⌦A, EA)
(the “e↵ective GPT”) and B = (B,⌦B , EB) (the “fun-

damental GPT”), and let " � 0. An "-simulation of A
by B assigns to each !A 2 ⌦A a nonempty set of states

⌦B(!A) ⇢ ⌦B (“the states that simulate !A”), and to

every normalized e↵ect eA 2 EA a nonempty set of ef-

fects EB(eA) ⇢ EB (“the e↵ects that simulate eA”) such

that the following conditions hold:

• all outcome probabilities are reproduced up to ": for
all !A 2 ⌦A, eA 2 EA, we have

|(!A, eA)�(!B , eB)|  " 8!B 2 ⌦B(!A), eB 2 EB(eA);
(4)

• mixtures of simulating states (e↵ects) are valid sim-

ulations of mixtures of states (e↵ects):

�⌦B(!A)+ (1��)⌦B('A) ✓ ⌦B(�!A+(1��)'A) (5)

for all 0  �  1 and !A,'A 2 ⌦A (and the anal-

ogous inclusion for EB on mixtures of e↵ects);

• the fundamentally impossible e↵ect is a valid sim-

ulation of the e↵ectively impossible e↵ect:

0 2 EB(0). (6)

An (" = 0)-simulation is also called an exact sim-
ulation. The simulation is called preparation–
noncontextual if |⌦B(!A)| = 1 for all !A 2 ⌦A,

measurement–noncontextual if |EB(eA)| = 1 for all

eA 2 EA, and noncontextual if it is both preparation–

and measurement–noncontextual.

FIG. 3. Simulating gbit states classically. The “Holevo
projection” [59] simulates a gbit (yellow square ⌦A) by a
four-level classical system (blue tetrahedron ⌦B). While the
extremal gbit states {↵++,↵+�,↵�+,↵��} are mapped to
unique classical states �i := ⌦B(↵i), for general states the
mapping is not one-to-one. E.g. the state ↵0 = 1

2 (↵++ +
↵��) = 1

2 (↵+� + ↵�+) maps onto a line of infinitely many
states �0, where the di↵erent contexts in which ↵0 is prepared
(e.g. mixing ↵++ and ↵��, or mixing ↵+� and ↵�+) necessi-
tate the preparation of di↵erent states in B. This simulation
is thus preparation-contextual.

As we will elaborate on in Section IV below, the well-
known standard notion of contextuality corresponds to
the special case where B = Cn is n-level classical proba-
bility theory. The above definition extends this principle
to the simulation of any GPT by any other. Indeed,
for much of this paper, we will be concerned with iden-
tifying theories that can be noncontextually simulated
by quantum theory. In Section VIIB, we will discuss in
more detail why noncontextuality is a plausible assump-
tion in our setting, generalizing similar arguments that
have been put forward in favour of standard noncontex-
tuality.
As an example, let us consider an exact simulation of

a gbit A = (R3, EA,⌦A), with state and e↵ect spaces as
defined in Subsection II B above (Eqs. (1) and (2)). This
theory can be simulated by 4-level classical probability
theory C := C4 using an observation of Holevo [59]. In
particular, consider the map ei 7! fi that acts to take
the extremal gbit e↵ects to

fx+=

0

B@
1
1
0
0

1

CA, fx�=

0

B@
0
0
1
1

1

CA, fz+=

0

B@
1
0
1
0

1

CA, fz�=

0

B@
0
1
0
1

1

CA,

(7)
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Indeed, we know that quantum theory is just one
special case among a plethora of general probabilistic

theories [4–7], with di↵ering physical and information-
processing properties. This raises an important foun-
dational line of questioning: assuming the fundamental
validity of standard complex quantum theory, which ef-
fective probabilistic theories can we expect to find in na-
ture? For which theories of this kind is it possible to arise
from quantum theory, and for which ones is it plausible?

These questions are not only interesting in their own
right, but have crucial implications for experimental tests

of quantum theory. As is done for other pillars of modern
physics such as the equivalence principle [8], we should
arguably also submit quantum theory to precise scrutiny.
This turns out to be di�cult. For example, potential
beyond-quantum phenomena like higher-order interfer-
ence [9–13] or quaternionic amplitudes [14–17] can al-
ways be faked by introducing additional degrees of free-
dom [3, 18, 19] – in some sense, it is quantum theory’s
enormous flexibility that makes it so hard to falsify.

In this article, we give a partial classification of (and
many general results on) the probabilistic theories that
can plausibly arise – even approximately – as e↵ective de-
scriptions from quantum theory, and use this to propose
an experimental test of quantum theory that arguably
avoids the aforementioned problems to a large extent.
We do so by generalizing and amending concepts that
have recently been studied in a di↵erent context and with
di↵erent goals in quantum information theory.

First, to falsify quantum theory as a fundamental de-
scription of nature, it makes sense to draw inspiration
from the complementary goal of falsifying a fundamen-
tal classical description of nature – that is, of prov-
ing the nonclassicality of quantum phenomena [20–29].
One well-motivated notion of nonclassicality of excep-
tional conceptual clarity is generalized contextuality as
proposed by Spekkens [30]. In contrast to earlier propos-
als like Kochen-Specker’s, this notion applies to a wide
range of physical phenomena [31–35] and can be sub-
jected to direct experimental test [36–38]. It can be in-
terpreted as a version of Leibniz’ principle of the “identity
of the indiscernibles” [37, 39]: procedures that are indis-
tinguishable at the operational level should be identical
at the ontological level.

We generalize the notion of generalized contextuality
even further, and reinterpret it as a methodological prin-
ciple that relates di↵erent levels in a hierarchy of physical
description: statistically indistinguishable processes in an

e↵ective theory should not require multiple distinct pro-

cesses that explain it in a more fundamental theory. We
formulate this condition mathematically in terms of ap-
proximate embeddings, show that it reduces to Spekkens’
notion in the case of embeddings into classical theory, and
prove a multitude of related results, including a complete
characterization of the “unrestricted” probabilistic theo-
ries (defined below) that have an exact embedding into
quantum theory.

Subsequently, we use the resulting insights to propose
an experimental test of quantum theory that builds on
the recently proposed scheme of theory–agnostic tomog-

raphy [40, 41]. In a nutshell, the idea is to probe a
given physical system with as many preparations and
measurements as possible, and to fit a probabilistic the-
ory to the data. Our proposal is that the results of
such experiments should typically have an approximate
noncontextual quantum explanation in our generalized
sense, even if the experiment is not tomographically com-
plete [37, 40, 41] in the usual sense. Demonstrating the
opposite would therefore challenge quantum theory, and
we give results that allow for the robust certification of
this kind of contextuality.
Our article is organized as follows. We begin in

Section II with a brief review of the operational setting
of prepare–and–measure experiments, and how these can
be expressed in the framework of generalized probabilis-
tic theories. In Section III, we formalize the relationship
between e↵ective and fundamental theories as a simula-

tion, introduce a generalized notion of noncontextuality
as a property such simulations may have, and explore the
mathematical structure that such noncontextual simula-
tions must exhibit. Then, in Section IV, we show that
our general notion of contextuality aligns with existing
notions of contextuality, for the special case where the
fundamental theory is classical. Next, in Section V, we
categorize the unrestricted probabilistic theories that can
be noncontextually simulated by quantum theory with-
out error. Then, in Section VI, by adapting results from
nonlocality studies, we formulate a bound on the ac-
curacy of noncontextually simulating e↵ective theories
even approximately by quantum theory. Finally, in Sec-
tion VII, we outline how this bound can be applied to
experimentally test quantum theory.

II. FRAMEWORK

A. Prepare-and-measure experiments

FIG. 1. Prepare-and-measure scheme. In this article,
we consider a class of experimental scenarios consisting of a
preparation procedure (p) followed by a measurement proce-
dure (m) resulting, perhaps probabilistically, in an outcome
(k). A statistical description of such experiments is given by
the conditional probability distributions P (k|p,m).
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Example:	the	gbit	(which	is	still	unrestricted,	but	whatever).

4

(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)
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theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
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cone of e↵ects A+ is generated by EA; the second (b), the cone
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Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
,

↵�+ =

 
1
�1
1

!
, ↵�� =

 
1
�1
�1

!
. (2)

16

Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =

p
E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0

++
k1  2

p
", where

k · k1 is twice the trace distance, and hence:

| tr
�
⇢0
++

Ez

�
� tr (⇢++Ez) | 

p
". (33)

Thus, the joint probability of outcome ++ from D is:

P (+ + |⇢++) = P1(+|⇢++)P2(+|⇢0
++

)

� (1� ") tr
�
⇢0
++

Ez

�

� (1� ")
�
1� "�

p
"
�

(34)

By equivalent logic, P (ij|⇢ij) � (1� ") (1� "�
p
") for

the other i, j 2 {+,�}.
Suppose we input the state � :=  (↵0) into D, where

↵0 := 1

2
(↵++ + ↵��) = 1

2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
use the decomposition � = 1

2
(⇢++ + ⇢��), such that

P (+ + |�) � 1

2
P (+ + |⇢++) �

1� "

2

�
1�"�

p
"
�
; (35)

or we use � = 1

2
(⇢�+ + ⇢+�), such that

P (+ + |�) = 1

2
P (+ + |⇢�+) +

1

2
P (+ + |⇢+�)

 1

2
P1(+|⇢�+) +

1

2
P1(+|⇢+�)P2(+|⇢0

+�)

=
1

2
tr (Ex⇢�+) +

1

2
tr (Ex⇢+�) tr

�
Ez⇢

0
+�

�

 1

2
"+

1

2

�
tr(Ez⇢+�) +

p
"
�

 1

2
"+

1

2

�
"+

p
"
�
. (36)

For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.
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(!, e)  18e 2 EA}. In this case, A+ and A⇤
+

are dual

cones to each other [42]. In terms of preparations and
measurements, this means that there exists at least one
preparation procedure for every mathematically conceiv-
able state acting on the system’s e↵ects, and vice versa.
Generally, however, a GPT may be restricted, and in this
case A+ and A⇤

+
are only subsets of each others’ duals.

We thus specify a GPT by the triplet (A,⌦A, EA) of
its vector space A, its set of normalized states ⌦A, and
its set of e↵ects EA. The other objects of interest (uA,
A+, A⇤

+
, etc.) are uniquely implied by these.

FIG. 2. E↵ects and states in generalized probabilistic
theories (GPTs). A GPT (A,⌦A, EA) is specified by a
vector space A, a set of normalized states ⌦A and a set of
e↵ects EA. Such a GPT defines two cones: the first (a), the
cone of e↵ects A+ is generated by EA; the second (b), the cone
of states A⇤

+ is generated by ⌦A (c). The example drawn is a
gbit, explained in the text.

Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
Here, B+ = H+

n
(C) is the cone of positive–semidefinite

Hermitian matrices, and uB = n is the n⇥n identity ma-
trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤

+
= B+ = H+

n
(C).

That is, not only are the two cones duals of each other (as
in every unrestricted GPT), but there is an inner product
such that they become exactly equal. This property of
Qn is known as strong self-duality [46, 47], and is shared
by the classical GPTs Cn (among others).
Restricting the sets of states and e↵ects to ni ⇥ ni

block matrices in some basis gives us quantum theory
with superselection rules [48], defined on the linear
space

L
i
Hni(C). This encompasses classical probability

theory, since Rn '
L

n

i=1
H1(C), i.e. probability vectors

can be identified with diagonal density matrices.
Although quantum theory is unrestricted, it has some

interesting restricted subsets: for example the stabilizer

subset of quantum theory (see, e.g., [49]). For the stabi-
lizer subset of 2-level quantum theory, the allowed states
correspond to the eigenvectors of the Pauli matrices and
mixtures thereof, such that ⌦S is an octahedron. The
full dual cone of e↵ects yielding positive probabilities in-
cludes measurements beyond those possible within stan-
dard quantum theory (corresponding to a cube) – but
stablizer quantum theory is defined to not admit all such
e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
mixtures thereof.
Example: gbits. A foil theory to quantum mechan-

ics are the gbits [5]. These arise as the marginals of
maximally nonlocal Popescu–Rohrlich boxes [50]. Let us
specifically consider “2 measurements 2 outcomes” gbits,
and write this GPT as

�
R3, EA,⌦A

�
where we define EA

and ⌦A in the following paragraphs.
The e↵ect space is generated by two choices of mea-

surement (X and Z), each that results in one of two
outcomes (+1 or �1). The extremal e↵ects associated
with each outcome can be represented by the vectors

ex+=

 
1
1
0

!
, ex�=

 
1
�1
0

!
, ez+=

 
1
0
1

!
, ez�=

 
1
0
�1

!
,

(1)

such that the unit e↵ect is uA = ex++ex� = ez++ez� =
(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
We then take the unrestricted state space dual to the

above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
e 7! 1

2
↵ · e for ↵ 2 R3, where · is the Euclidean dot

product. Hence, we identify each state with such a vector
↵, so that the extremal normalized gbit states are:

↵++ =

 
1
1
1

!
, ↵+� =

 
1
1
�1

!
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!
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!
. (2)
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Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =

p
E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0

++
k1  2

p
", where

k · k1 is twice the trace distance, and hence:

| tr
�
⇢0
++

Ez

�
� tr (⇢++Ez) | 

p
". (33)

Thus, the joint probability of outcome ++ from D is:

P (+ + |⇢++) = P1(+|⇢++)P2(+|⇢0
++

)

� (1� ") tr
�
⇢0
++

Ez

�

� (1� ")
�
1� "�

p
"
�

(34)

By equivalent logic, P (ij|⇢ij) � (1� ") (1� "�
p
") for

the other i, j 2 {+,�}.
Suppose we input the state � :=  (↵0) into D, where

↵0 := 1

2
(↵++ + ↵��) = 1

2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
use the decomposition � = 1

2
(⇢++ + ⇢��), such that

P (+ + |�) � 1

2
P (+ + |⇢++) �

1� "

2

�
1�"�

p
"
�
; (35)

or we use � = 1

2
(⇢�+ + ⇢+�), such that

P (+ + |�) = 1

2
P (+ + |⇢�+) +

1

2
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 1
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For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.Interpretation:	finding	an	approximate	gbit	in	the	lab,	up	to	that	amount	

																											of	statistical	noise,	would	challenge	QT.
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Example: classical probability theory. An n-
outcome classical GPT is defined as Cn := (C,⌦C , EC),
where C := Rn, ⌦C is the set of n-outcome normalized
probability distributions, and EC is the set of nonneg-
ative vectors where no single element is greater than 1.
Here, the e↵ect cone C+ is the set of all vectors with non-
negative elements, and the unit e↵ect uC = (1, . . . , 1)T.
Via the usual ‘dot’ inner product, the classical state vec-
tor space C⇤ is also Rn, such that ⌦C may be written as
the set of n-dimensional probability vectors with nonneg-
ative elements that sum to 1. As every state that yields
a valid probability is included in the classical state space,
classical probability theory is unrestricted.

Example: quantum theory. As a GPT, an n-level
quantum system is given by Qn := (B,⌦B , EB) where
B := Hn(C) is the vector space of complex Hermitian
n ⇥ n matrices, ⌦B the set of unit trace n ⇥ n density
matrices, and EB the set of all possible n⇥n POVM ele-
ments [45]. Quantum theory is also an unrestricted GPT.
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trix. We identifyB and B⇤ via the Hilbert–Schmidt inner
product hx, yi := tr(xy), such that B⇤
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e↵ects, instead restricting the e↵ect space to correspond
also only to outcomes of Pauli matrix-measurements and
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(2, 0, 0)T. The set of e↵ects EA is the convex hull of all

of the above, uA, and (0, 0, 0)T (see Figure 2a).
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above e↵ects. This corresponds to admitting arbitrary
probability distributions for both measurements. Let us
write each state as a functional (on e↵ects) in the form
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Consider now the quantum device D (Figure 6), where
quantum input state ⇢ is first measured with the POVM
{Ex, � Ex} (with outcomes + and � respectively),
yielding post-measurement state ⇢0 =
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E⇢

p
E/ tr(E⇢),

where E = Ex if the outcome is + and � Ex oth-
erwise. Subsequently, ⇢0 is measured with the POVM
{Ez, � Ez}, also with respective outcomes + and �.
First, consider when ⇢++ is input to D. With probabil-
ity P1(+|⇢++) � 1� ", the first outcome is +. From the
gentle measurement lemma [88, 89], one can bound the
change in post-measurement state for the case that out-
come + is obtained, namely k⇢++�⇢0
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k · k1 is twice the trace distance, and hence:
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Thus, the joint probability of outcome ++ from D is:
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Suppose we input the state � :=  (↵0) into D, where
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2
(↵+� + ↵�+) is the state in

the center of the gbit’s square state space. Then we can
calculate the expected behaviour in two ways: Either we
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For the gbit embedding to satisfy both lower (Eq. (35))
and upper (Eq. (36)) bounds on the behaviour of P (++
|�), we thus require 4"+2

p
"�"

p
"�"2 � 1, which solves

to " � 0.101416. That is, no matter the dimension of the
quantum system we use, our embedding of a gbit must
have at least around 10% error.

Taking also Lemma 12 into account, we have thus
proven the following:

Example 2. Let "  0.1014. Then the gbit cannot be

"-embedded into any Qn or Q1.

This example provides some additional intuition on
why the gbit embedding has to be somewhat noisy. The

constraint that the equal mixture � of ⇢++ and ⇢�� is
statistically identical to the equal mixture of ⇢+� and
⇢�+ arises from the demand that the quantum simulation
is noncontextual. Meanwhile, the requirement to repli-
cate gbit behaviour also requires that these four states
have as distinguishable behaviour as possible when input
to D. A degree of noise is thus required to satisfy both
these constraints simultaneously. Contrast this noisy em-
bedding with the contextual behaviour of the exact (con-
textual) Holevo simulation. There, the two alternatives
how to prepare the gbit state a0 as mixtures, i.e. the two
contexts, are encoded onto entirely di↵erent states, hence
enabling the possibility of entirely di↵erent behaviour for
each context when the preparation is acted on by D.

B. Using nonlocality to certify nonembeddability

The above example gives us a lower bound on the re-
quired error to embed a gbit, but its derivation is very
specific to the gbit’s geometry. In the following subsec-
tion, we will provide a general prescription for obtaining
such bounds for a larger class of GPTs via concepts from
the study of Bell nonlocality.
It may seem surprising at first that the study of bipar-

tite correlations says anything about the "-embeddability
of single GPT systems into quantum theory. But both
embeddability and Bell nonlocality study dimension-

independent problems: is there any dimension n such
that we can embed A into Qn; or, what is the maximum
over all dimensions n of the local quantum systems for a
certain Bell correlation? This hints why insights into the
latter can be useful for the study of the former.

We begin by defining a notion of bipartite states on
pairs of GPTs. (Here, we ignore a large part of theory
about composition in GPTs, and focus only on those as-
pects that are relevant for the study of embeddings.)

Definition 4 (Bipartite states). Let A and B be GPTs.

A bipartite state on AB is a bilinear map !AB : A ⇥
B ! R which is normalized and positive, i.e.

• !AB(uA, uB) = 1,

• !AB(eA, fB) � 0 for all eA 2 ĒA, fB 2 ĒB,

where ĒA is the set of all e 2 A with 0  (!, e)  1 for

all ! 2 ⌦A. (Clearly EA ⇢ ĒA, and these sets agree if

A is unrestricted.) A special case are the product states
!AB = !A ⌦ 'B for !A 2 ⌦A,'B 2 ⌦B, acting as !A ⌦
'B(eA, fB) = !A(eA)'B(fB). A state !AB is separable
if it can be written as a convex combination of product

states, and otherwise it is entangled.

Since the set of product states is compact, so is their
convex hull (the set of separable states). The set of all
bipartite states, being closed and bounded, is also com-
pact. We will use bipartite states !AB only as calculation
tools, without any claim of direct physical relevance.Interpretation:	finding	an	approximate	gbit	in	the	lab,	up	to	that	amount	

																											of	statistical	noise,	would	challenge	QT.

Proof	sketch:	the	four	pure	states												are	simulated	by	four	quantum	
																					states											which	are	pairwise	almost	perfectly	distinguishable.	
																					Imagine	a	device	that	approx.	distinguishes	all	four	successively.	
																					Contradicts
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<latexit sha1_base64="FB7m2MfvqImOA0E1A+vRFD/yQP4=">AAACOXicbVA7SwNBGNyLrxhfp4KNzWJQhJBwF0RthAMbywjmAckR9jZ7yZK9vWN3TwjH/S0bf4HY2Qk2FopY2FjauHkUmmRgYZiZj2+/8SJGpbKsZyOzsLi0vJJdza2tb2xumds7NRnGApMqDlkoGh6ShFFOqooqRhqRICjwGKl7/cuhX78lQtKQ36hBRNwAdTn1KUZKS22z0vIFwtCGZdgSvbCdFAtpYVorFNOLmVxxTq6Qltpm3ipZI8BZYk9I3jnCD1+PP3uVtvnU6oQ4DghXmCEpm7YVKTdBQlHMSJprxZJECPdRlzQ15Sgg0k1Gl6fwUCsd6IdCP67gSP07kaBAykHg6WSAVE9Oe0NxnteMlX/uJpRHsSIcjxf5MYMqhMMaYYcKghUbaIKwoPqvEPeQrkPpsnO6BHv65FlSK5fs09LJtZ13HDBGFuyDA3AMbHAGHHAFKqAKMLgDL+ANvBv3xqvxYXyOoxljMrML/sH4/gXILq0o</latexit>

1
2⇢�+ + 1

2⇢+� = 1
2⇢�� + 1

2⇢++.
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A	method	that	in	principle	works	for	a	large	class	of	(restricted)	GPTs:	
using	Bell	nonlocality	on	two	“virtual”	systems.

Lemma	(informally,	for	details	see	paper).	
If	GPT						can	be				-embedded	into	some								or										then	all	Bell	correlations	
for	all	non-signalling	states	of										are											-close	to	those	of	QT.

<latexit sha1_base64="69CeIoi6AUHJvj4AaevIJsO5loo=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb7xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsg5U9</latexit>

A
<latexit sha1_base64="UmNcTqkwB4xIaR/0iQHarh2donE=">AAAB9HicbVDLSsNAFL2pr1pf1S7dDBbBhZRERF0G3LhswT6gDWUynbRDJ5M4MymUkI0/4caFIm79GBeCf+A3uHL6WGjrgYHDOfdyzxw/5kxp2/60ciura+sb+c3C1vbO7l5x/6ChokQSWicRj2TLx4pyJmhdM81pK5YUhz6nTX94PfGbIyoVi8StHsfUC3FfsIARrI3kdUKsBwTztJZ1RbdYtiv2FGiZOHNSdksf3/df2Wm1W3zv9CKShFRowrFSbceOtZdiqRnhNCt0EkVjTIa4T9uGChxS5aXT0Bk6NkoPBZE0T2g0VX9vpDhUahz6ZnISUi16E/E/r53o4MpLmYgTTQWZHQoSjnSEJg2gHpOUaD42BBPJTFZEBlhiok1PBVOCs/jlZdI4qzgXlfOaU3ZdmCEPh3AEJ+DAJbhwA1WoA4E7eIAneLZG1qP1Yr3ORnPWfKcEf2C9/QC+d5aC</latexit>

Qn
<latexit sha1_base64="G1wr1fCM04Dl/XOzj7RxH6yKl8A=">AAAB/HicbVDLSsNAFJ3UV62vaFfiwsEiuJCSiKjLgBuXLdgHNCFMppN26GQSZiZCCHXrZ7hxoYhbP6Q7v8MfcNJ2oa0HBg7n3Ms9c4KEUaks68sorayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wei28DsPREga83uVJcSL0IDTkGKktOSbVTdCaogRy5tj36U8VNm5b9asujUFXCb2nNScwyc/nhx/N3xz4vZjnEaEK8yQlD3bSpSXI6EoZmRccVNJEoRHaEB6mnIUEenl0/BjeKqVPgxjoR9XcKr+3shRJGUWBXqyiCoXvUL8z+ulKrzxcsqTVBGOZ4fClEEVw6IJ2KeCYMUyTRAWVGeFeIgEwkr3VdEl2ItfXibti7p9Vb9s2jXHATOUwRE4AWfABtfAAXegAVoAgww8g1fwZjwaL8a78TEbLRnznSr4A+PzB8qkmI8=</latexit>

Q1,
<latexit sha1_base64="xh19d93kafOqb8a5pDTermuo1dU=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRN3Z4kKXFewDOkPJpJk2NJMZkoxQh/6GGxeKuNWv8AvcufRPzLRdaOuBwOGce7knx485U9q2v6zcwuLS8kp+tbC2vrG5VdzeaagokYTWScQj2fKxopwJWtdMc9qKJcWhz2nTH1xmfvOOSsUicauHMfVC3BMsYARrI7luiHWfYJ5Wq6NOsWSX7THQPHGmpHTxcf999b6X1jrFT7cbkSSkQhOOlWo7dqy9FEvNCKejgpsoGmMywD3aNlTgkCovHWceoUOjdFEQSfOERmP190aKQ6WGoW8ms4xq1svE/7x2ooNzL2UiTjQVZHIoSDjSEcoKQF0mKdF8aAgmkpmsiPSxxESbmgqmBGf2y/OkcVx2TssnN06pUoEJ8rAPB3AEDpxBBa6hBnUgEMMDPMGzlViP1ov1OhnNWdOdXfgD6+0HOEGViA==</latexit>

AA
<latexit sha1_base64="KcIzatfFIdNb7MU8Z3fe0vfD1Q4=">AAACAXicbVDLSgMxFM34aq2vUTeCm2AR6qbMiK9lwY07W7AP6Awlk2ba0EwyJJlCGerGX3HjQhG3/oU7f0D8DDNtF9p64MLhnHu5954gZlRpx/m0lpZXVtdy+fXCxubW9o69u9dQIpGY1LFgQrYCpAijnNQ11Yy0YklQFDDSDAbXmd8cEqmo4Hd6FBM/Qj1OQ4qRNlLHPvAipPsYsfR2XPKGSJJYUSb4SccuOmVnArhI3BkpVmDt+yufO6927A+vK3ASEa4xQ0q1XSfWfoqkppiRccFLFIkRHqAeaRvKUUSUn04+GMNjo3RhKKQpruFE/T2RokipURSYzuxeNe9l4n9eO9HhlZ9SHieacDxdFCYMagGzOGCXSoI1GxmCsKTmVoj7SCKsTWgFE4I7//IiaZyW3YvyWc0tVipgijw4BEegBFxwCSrgBlRBHWBwDx7BM3ixHqwn69V6m7YuWbOZffAH1vsPbV+Zzw==</latexit>

O(")

<latexit sha1_base64="fUKbC9m5o4OWsfrs6mL0Y2lwzjk=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusVy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/2BJVt</latexit>"
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A	method	that	in	principle	works	for	a	large	class	of	(restricted)	GPTs:	
using	Bell	nonlocality	on	two	“virtual”	systems.

Lemma	(informally,	for	details	see	paper).	
If	GPT						can	be				-embedded	into	some								or										then	all	Bell	correlations	
for	all	non-signalling	states	of										are											-close	to	those	of	QT.

<latexit sha1_base64="69CeIoi6AUHJvj4AaevIJsO5loo=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb7xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsg5U9</latexit>

A
<latexit sha1_base64="UmNcTqkwB4xIaR/0iQHarh2donE=">AAAB9HicbVDLSsNAFL2pr1pf1S7dDBbBhZRERF0G3LhswT6gDWUynbRDJ5M4MymUkI0/4caFIm79GBeCf+A3uHL6WGjrgYHDOfdyzxw/5kxp2/60ciura+sb+c3C1vbO7l5x/6ChokQSWicRj2TLx4pyJmhdM81pK5YUhz6nTX94PfGbIyoVi8StHsfUC3FfsIARrI3kdUKsBwTztJZ1RbdYtiv2FGiZOHNSdksf3/df2Wm1W3zv9CKShFRowrFSbceOtZdiqRnhNCt0EkVjTIa4T9uGChxS5aXT0Bk6NkoPBZE0T2g0VX9vpDhUahz6ZnISUi16E/E/r53o4MpLmYgTTQWZHQoSjnSEJg2gHpOUaD42BBPJTFZEBlhiok1PBVOCs/jlZdI4qzgXlfOaU3ZdmCEPh3AEJ+DAJbhwA1WoA4E7eIAneLZG1qP1Yr3ORnPWfKcEf2C9/QC+d5aC</latexit>

Qn
<latexit sha1_base64="G1wr1fCM04Dl/XOzj7RxH6yKl8A=">AAAB/HicbVDLSsNAFJ3UV62vaFfiwsEiuJCSiKjLgBuXLdgHNCFMppN26GQSZiZCCHXrZ7hxoYhbP6Q7v8MfcNJ2oa0HBg7n3Ms9c4KEUaks68sorayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wei28DsPREga83uVJcSL0IDTkGKktOSbVTdCaogRy5tj36U8VNm5b9asujUFXCb2nNScwyc/nhx/N3xz4vZjnEaEK8yQlD3bSpSXI6EoZmRccVNJEoRHaEB6mnIUEenl0/BjeKqVPgxjoR9XcKr+3shRJGUWBXqyiCoXvUL8z+ulKrzxcsqTVBGOZ4fClEEVw6IJ2KeCYMUyTRAWVGeFeIgEwkr3VdEl2ItfXibti7p9Vb9s2jXHATOUwRE4AWfABtfAAXegAVoAgww8g1fwZjwaL8a78TEbLRnznSr4A+PzB8qkmI8=</latexit>

Q1,
<latexit sha1_base64="xh19d93kafOqb8a5pDTermuo1dU=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRN3Z4kKXFewDOkPJpJk2NJMZkoxQh/6GGxeKuNWv8AvcufRPzLRdaOuBwOGce7knx485U9q2v6zcwuLS8kp+tbC2vrG5VdzeaagokYTWScQj2fKxopwJWtdMc9qKJcWhz2nTH1xmfvOOSsUicauHMfVC3BMsYARrI7luiHWfYJ5Wq6NOsWSX7THQPHGmpHTxcf999b6X1jrFT7cbkSSkQhOOlWo7dqy9FEvNCKejgpsoGmMywD3aNlTgkCovHWceoUOjdFEQSfOERmP190aKQ6WGoW8ms4xq1svE/7x2ooNzL2UiTjQVZHIoSDjSEcoKQF0mKdF8aAgmkpmsiPSxxESbmgqmBGf2y/OkcVx2TssnN06pUoEJ8rAPB3AEDpxBBa6hBnUgEMMDPMGzlViP1ov1OhnNWdOdXfgD6+0HOEGViA==</latexit>

AA
<latexit sha1_base64="KcIzatfFIdNb7MU8Z3fe0vfD1Q4=">AAACAXicbVDLSgMxFM34aq2vUTeCm2AR6qbMiK9lwY07W7AP6Awlk2ba0EwyJJlCGerGX3HjQhG3/oU7f0D8DDNtF9p64MLhnHu5954gZlRpx/m0lpZXVtdy+fXCxubW9o69u9dQIpGY1LFgQrYCpAijnNQ11Yy0YklQFDDSDAbXmd8cEqmo4Hd6FBM/Qj1OQ4qRNlLHPvAipPsYsfR2XPKGSJJYUSb4SccuOmVnArhI3BkpVmDt+yufO6927A+vK3ASEa4xQ0q1XSfWfoqkppiRccFLFIkRHqAeaRvKUUSUn04+GMNjo3RhKKQpruFE/T2RokipURSYzuxeNe9l4n9eO9HhlZ9SHieacDxdFCYMagGzOGCXSoI1GxmCsKTmVoj7SCKsTWgFE4I7//IiaZyW3YvyWc0tVipgijw4BEegBFxwCSrgBlRBHWBwDx7BM3ixHqwn69V6m7YuWbOZffAH1vsPbV+Zzw==</latexit>

O(")

<latexit sha1_base64="fUKbC9m5o4OWsfrs6mL0Y2lwzjk=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusVy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/2BJVt</latexit>"

Example.	All	non-signalling	correlations	on	two	quaternionic	QT-systems	
																		can	be	perfectly	simulated	within	standard	complex	QT.
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using	Bell	nonlocality	on	two	“virtual”	systems.

Lemma	(informally,	for	details	see	paper).	
If	GPT						can	be				-embedded	into	some								or										then	all	Bell	correlations	
for	all	non-signalling	states	of										are											-close	to	those	of	QT.

<latexit sha1_base64="69CeIoi6AUHJvj4AaevIJsO5loo=">AAAB8nicbVDLSgNBEJz1GeMrPm5eBoPgKeyKqDcjHvQYwTwgWcLsZDYZMjuzzPQKcclnePGgiFfxK/wCbx79E2eTHDSxoKGo6qarO4gFN+C6X87c/MLi0nJuJb+6tr6xWdjarhmVaMqqVAmlGwExTHDJqsBBsEasGYkCwepB/zLz63dMG67kLQxi5kekK3nIKQErNVsRgR4lIr0YtgtFt+SOgGeJNyHF84/776v33bTSLny2OoomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjqKPMQHVungUGlbEvBI/T2RksiYQRTYziyimfYy8T+vmUB45qdcxgkwSceLwkRgUDi7H3e4ZhTEwBJCNbdZMe0RTSjYL+XtE7zpk2dJ7ajknZSOb7xiuYzGyKE9tI8OkYdOURldowqqIooUekBP6NkB59F5cV7HrXPOZGYH/YHz9gOsg5U9</latexit>

A
<latexit sha1_base64="UmNcTqkwB4xIaR/0iQHarh2donE=">AAAB9HicbVDLSsNAFL2pr1pf1S7dDBbBhZRERF0G3LhswT6gDWUynbRDJ5M4MymUkI0/4caFIm79GBeCf+A3uHL6WGjrgYHDOfdyzxw/5kxp2/60ciura+sb+c3C1vbO7l5x/6ChokQSWicRj2TLx4pyJmhdM81pK5YUhz6nTX94PfGbIyoVi8StHsfUC3FfsIARrI3kdUKsBwTztJZ1RbdYtiv2FGiZOHNSdksf3/df2Wm1W3zv9CKShFRowrFSbceOtZdiqRnhNCt0EkVjTIa4T9uGChxS5aXT0Bk6NkoPBZE0T2g0VX9vpDhUahz6ZnISUi16E/E/r53o4MpLmYgTTQWZHQoSjnSEJg2gHpOUaD42BBPJTFZEBlhiok1PBVOCs/jlZdI4qzgXlfOaU3ZdmCEPh3AEJ+DAJbhwA1WoA4E7eIAneLZG1qP1Yr3ORnPWfKcEf2C9/QC+d5aC</latexit>

Qn
<latexit sha1_base64="G1wr1fCM04Dl/XOzj7RxH6yKl8A=">AAAB/HicbVDLSsNAFJ3UV62vaFfiwsEiuJCSiKjLgBuXLdgHNCFMppN26GQSZiZCCHXrZ7hxoYhbP6Q7v8MfcNJ2oa0HBg7n3Ms9c4KEUaks68sorayurW+UNytb2zu7e+b+QVvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wei28DsPREga83uVJcSL0IDTkGKktOSbVTdCaogRy5tj36U8VNm5b9asujUFXCb2nNScwyc/nhx/N3xz4vZjnEaEK8yQlD3bSpSXI6EoZmRccVNJEoRHaEB6mnIUEenl0/BjeKqVPgxjoR9XcKr+3shRJGUWBXqyiCoXvUL8z+ulKrzxcsqTVBGOZ4fClEEVw6IJ2KeCYMUyTRAWVGeFeIgEwkr3VdEl2ItfXibti7p9Vb9s2jXHATOUwRE4AWfABtfAAXegAVoAgww8g1fwZjwaL8a78TEbLRnznSr4A+PzB8qkmI8=</latexit>

Q1,
<latexit sha1_base64="xh19d93kafOqb8a5pDTermuo1dU=">AAAB83icbVDLSgMxFL1TX7W+6mPnJlgEV2VGRN3Z4kKXFewDOkPJpJk2NJMZkoxQh/6GGxeKuNWv8AvcufRPzLRdaOuBwOGce7knx485U9q2v6zcwuLS8kp+tbC2vrG5VdzeaagokYTWScQj2fKxopwJWtdMc9qKJcWhz2nTH1xmfvOOSsUicauHMfVC3BMsYARrI7luiHWfYJ5Wq6NOsWSX7THQPHGmpHTxcf999b6X1jrFT7cbkSSkQhOOlWo7dqy9FEvNCKejgpsoGmMywD3aNlTgkCovHWceoUOjdFEQSfOERmP190aKQ6WGoW8ms4xq1svE/7x2ooNzL2UiTjQVZHIoSDjSEcoKQF0mKdF8aAgmkpmsiPSxxESbmgqmBGf2y/OkcVx2TssnN06pUoEJ8rAPB3AEDpxBBa6hBnUgEMMDPMGzlViP1ov1OhnNWdOdXfgD6+0HOEGViA==</latexit>

AA
<latexit sha1_base64="KcIzatfFIdNb7MU8Z3fe0vfD1Q4=">AAACAXicbVDLSgMxFM34aq2vUTeCm2AR6qbMiK9lwY07W7AP6Awlk2ba0EwyJJlCGerGX3HjQhG3/oU7f0D8DDNtF9p64MLhnHu5954gZlRpx/m0lpZXVtdy+fXCxubW9o69u9dQIpGY1LFgQrYCpAijnNQ11Yy0YklQFDDSDAbXmd8cEqmo4Hd6FBM/Qj1OQ4qRNlLHPvAipPsYsfR2XPKGSJJYUSb4SccuOmVnArhI3BkpVmDt+yufO6927A+vK3ASEa4xQ0q1XSfWfoqkppiRccFLFIkRHqAeaRvKUUSUn04+GMNjo3RhKKQpruFE/T2RokipURSYzuxeNe9l4n9eO9HhlZ9SHieacDxdFCYMagGzOGCXSoI1GxmCsKTmVoj7SCKsTWgFE4I7//IiaZyW3YvyWc0tVipgijw4BEegBFxwCSrgBlRBHWBwDx7BM3ixHqwn69V6m7YuWbOZffAH1vsPbV+Zzw==</latexit>

O(")

<latexit sha1_base64="fUKbC9m5o4OWsfrs6mL0Y2lwzjk=">AAAB8nicbZDLSgMxFIYzXmu91cvOTbAIrsqMiLqz4EKXFewFpkPJpGfa0EwyJJlCHfoYblwo4lZ8Cp/AnUvfxPSy0NYfAh//fw4554QJZ9q47pezsLi0vLKaW8uvb2xubRd2dmtapopClUouVSMkGjgTUDXMcGgkCkgccqiHvatRXu+D0kyKOzNIIIhJR7CIUWKs5Tf7REGiGZeiVSi6JXcsPA/eFIqXH/ff1+/7WaVV+Gy2JU1jEIZyorXvuYkJMqIMoxyG+WaqISG0RzrgWxQkBh1k45GH+Mg6bRxJZZ8weOz+7shIrPUgDm1lTExXz2Yj87/MT010EWRMJKkBQScfRSnHRuLR/rjNFFDDBxYIVczOimmXKEKNvVLeHsGbXXkeaicl76x0eusVy2U0UQ4doEN0jDx0jsroBlVQFVEk0QN6Qs+OcR6dF+d1UrrgTHv20B85bz/2BJVt</latexit>"

Example.	All	non-signalling	correlations	on	two	quaternionic	QT-systems	
																		can	be	perfectly	simulated	within	standard	complex	QT.

Example.	If							is	an	even-sided	polygon,	then	some	states	
																		on											violate	the	Tsirelson	bound	of													for	
																		the	Bell-CHSH	inequality.	From	this,	we	can	compute	
																		some															such	that							cannot	be					-embedded.

<latexit sha1_base64="xuoCsDk15CFYKQnS0EfVvORVPu8=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9RL96MYB6QLGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzDhGP6QDyfucUWOlVucuxAHtXnWLJbfszkCWiZeREmSodYtfnV7EkhClYYJq3fbc2PgpVYYzgZNCJ9EYUzaiA2xbKmmI2k9n907IiVV6pB8pW9KQmfp7IqWh1uMwsJ0hNUO96E3F/7x2YvqXfsplnBiUbL6onwhiIjJ9nvS4QmbE2BLKFLe3EjakijJjIyrYELzFl5dJ46zsnZcr95VS9TqLIw9HcAyn4MEFVOEWalAHBgKe4RXenEfnxXl3PuatOSebOYQ/cD5/AKN1j7g=</latexit>

⌦A

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A
<latexit sha1_base64="qcFgpQPj95en+tI8qaISQOGoqpo=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtWNy4r2Ad0hpJJM21oJhOSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnlJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJIqQtsk4YnqhVhTzgRtG2Y47UlFcRxy2g0nd7nffaJKs0Q8mqmkQYxHgkWMYGMl34+xGRPMs2ZzNqjW3Lo7B1olXkFqUKA1qH75w4SkMRWGcKx133OlCTKsDCOczip+qqnEZIJHtG+pwDHVQTbPPENnVhmiKFH2CYPm6u+NDMdaT+PQTuYZ9bKXi/95/dREN0HGhEwNFWRxKEo5MgnKC0BDpigxfGoJJorZrIiMscLE2JoqtgRv+curpHNR967qlw+XtcZtUUcZTuAUzsGDa2jAPbSgDQQkPMMrvDmp8+K8Ox+L0ZJT7BzDHzifP/7rkas=</latexit>

AA
<latexit sha1_base64="FEKYlJO12CFjzIjRie4vRwC7ISc=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIzHxRHYJUY9ELx4xkYeBDZkdBpgwM7vO9JqQDV/hxYPGePVzvPk3DrAHBSvppFLVne6uMBbcoOd9O7m19Y3Nrfx2YWd3b/+geHjUNFGiKWvQSES6HRLDBFesgRwFa8eaERkK1grHNzO/9cS04ZG6x0nMAkmGig84JWilh0rXPGpMK9NeseSVvTncVeJnpAQZ6r3iV7cf0UQyhVQQYzq+F2OQEo2cCjYtdBPDYkLHZMg6lioimQnS+cFT98wqfXcQaVsK3bn6eyIl0piJDG2nJDgyy95M/M/rJDi4ClKu4gSZootFg0S4GLmz790+14yimFhCqOb2VpeOiCYUbUYFG4K//PIqaVbK/kW5elct1a6zOPJwAqdwDj5cQg1uoQ4NoCDhGV7hzdHOi/PufCxac042cwx/4Hz+ALlIkF8=</latexit>

2
p
2

<latexit sha1_base64="hh1PtyojJdR2zBDRjw7ecwGJinw=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFoPgKexKUE8S9OIxgnlAsoTZSW8yZHZmnZkNhJDv8OJBEa9+jDf/xkmyB00saCiquunuChPOtPG8bye3tr6xuZXfLuzs7u0fFA+PGlqmimKdSi5VKyQaORNYN8xwbCUKSRxybIbDu5nfHKHSTIpHM04wiElfsIhRYqwUdEZEYaIZl+LG6xZLXtmbw10lfkZKkKHWLX51epKmMQpDOdG67XuJCSZEGUY5TgudVGNC6JD0sW2pIDHqYDI/euqeWaXnRlLZEsadq78nJiTWehyHtjMmZqCXvZn4n9dOTXQdTJhIUoOCLhZFKXeNdGcJuD2mkBo+toRQxeytLh0QRaixORVsCP7yy6ukcVH2L8uVh0qpepvFkYcTOIVz8OEKqnAPNagDhSd4hld4c0bOi/PufCxac042cwx/4Hz+ALbykhI=</latexit>

" > 0
<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A <latexit sha1_base64="qC0qfI/yHI+ITxUj4KJhCViJFT0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPSUDbbTbt0sxt2J4VS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBXcoOd9O4WNza3tneJuaW//4PCofHzSMirTlDWpEkp3ImKY4JI1kaNgnVQzkkSCtaPR/dxvj5k2XMknnKQsTMhA8phTglYKumOiWWq4ULJXrnhVbwF3nfg5qUCORq/81e0rmiVMIhXEmMD3UgynRCOngs1K3cywlNARGbDAUkkSZsLp4uSZe2GVvhsrbUuiu1B/T0xJYswkiWxnQnBoVr25+J8XZBjfhlMu0wyZpMtFcSZcVO78f7fPNaMoJpYQqrm91aVDoglFm1LJhuCvvrxOWldV/7pae6xV6nd5HEU4g3O4BB9uoA4P0IAmUFDwDK/w5qDz4rw7H8vWgpPPnMIfOJ8/vL2RkA==</latexit>"



Summary

• Have	generalized	Spekkens’	noDon	of	generalized	noncontextuality:	
“Processes	that	are	sta<s<cally	indis<nguishable	in	an	effec<ve	theory	
should	not	require	explana<on	by	mul<ple	dis<nguishable	processes	
in	a	more	fundamental	theory.”	

• 								approximate	simula`ons	and	embeddings	of	one	GPT	by	another.

• …	and	we	have	given	methods	for	cerDfying	the	impossibility	of	an	
				approximate	embedding.	Not	op<mal.	Open:	find	a	beFer	method!

arXiv:2112.09719

Thank	you!

• We	have	classified	all	unrestricted	GPTs	exactly	embeddable	into	QT…

• This	admits	a	novel	experimental	test	of	QT	that	does	not	suffer	from	
a	“tomographic	completeness	loophole”.


