Testing quantum theory with generalized noncontextuality

Markus P. Müller ${ }^{1,2,3}$ and Andrew J. P. Garner ${ }^{1,2}$

${ }^{1}$ Institute for Quantum Optics and Quantum Information (IQOQI), Vienna
${ }^{2}$ Vienna Center for Quantum Science and Technology (VCQ), Vienna
${ }^{3}$ Perimeter Institute for Theoretical Physics (PI), Waterloo, Canada

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT?

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT

 without specific physical assumptions?
Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT without specific physical assumptions?

If Nature is fundamentally quantum, which effective state spaces (GPTs) can we reasonably expect to encounter?

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT without specific physical assumptions?

If Nature is fundamentally quantum, which effective state spaces (GPTs) can we reasonably expect to encounter?

$$
\Omega=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\}
$$

Two motivations

Suppose we prepare and measure a physical system in all ways accessible to us.

Could the resulting data falsify QT without specific physical assumptions?

If Nature is fundamentally quantum, which effective state spaces (GPTs) can we reasonably expect to encounter?

$$
\begin{array}{r}
\Omega=\left\{p=\left(p_{1}, \ldots, p_{n}\right) \mid\right. \\
\left.\quad p_{i} \geq 0, \sum p_{i}=1\right\}
\end{array}
$$

- classical probability theory
- noisy qubits etc.
- QT w/ superselection rules
- ... ?

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)

(all accessible measurement procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$ for all accessible preparations P.

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)
$P_{1} \sim P_{2}$ if they give identical probabilities for all outcomes of all accessible measurements.

State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$ for all accessible preparations P.

Effect $e_{k, M}=$ equivalence class of outcome-measurement pairs

1. Testing QT via theory-agnostic tomography

(all accessible preparation procedures)
$P_{1} \sim P_{2} \quad$ if they give identical
$\left(k_{1}, M_{1}\right) \sim\left(k_{2}, M_{2}\right)$ if
probabilities for all outcomes of all accessible measurements.
$\operatorname{Prob}\left(k_{1} \mid M_{1}, P\right)=\operatorname{Prob}\left(k_{2} \mid M_{2}, P\right)$
for all accessible preparations P.
State $\omega_{P}=$ equivalence class of preparation procedures

(all accessible measurement procedures)

Effect $e_{k, M}=$ equivalence class of outcome-measurement pairs

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=$ (vector space over \mathbb{R}, normalized states, effects $)$.

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=$ (vector space over \mathbb{R}, normalized states, effects).

Quantum theory (QT): \mathcal{Q}_{n}
$A=\mathbb{H}_{n}(\mathbb{C}) \quad$ (complex Hermitian $n \times n$ matrices) $E_{A}=\{E \mid 0 \leq E \leq \mathbf{1}\} \quad$ (POVM elements)
$\Omega_{A}=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\}$ (density matrices) $A^{*} \simeq A$ via $\langle X, Y\rangle=\operatorname{tr}(X Y)$.

$$
\operatorname{Prob}(k \mid P, M)=\left\langle\omega_{P}, e_{k, M}\right\rangle \quad\left(e_{k, M} \in A, \omega_{P} \in A^{*}\right) .
$$

General probabilistic theories

GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)=($ vector space over \mathbb{R}, normalized states, effects $)$.

Quantum theory (QT): \mathcal{Q}_{n}

$$
\begin{aligned}
& A=\mathbb{H}_{n}(\mathbb{C}) \quad \text { (complex Hermitian } n \times n \text { matrices) } \\
& E_{A}=\{E \mid 0 \leq E \leq \mathbf{1}\} \quad \text { (POVM elements) } \\
& \Omega_{A}=\{\rho \mid \rho \geq 0, \operatorname{tr}(\rho)=1\} \quad \text { (density matrices) } \\
& A^{*} \simeq A \text { via }\langle X, Y\rangle=\operatorname{tr}(X Y) .
\end{aligned}
$$

Classical probability theory (QT): \mathcal{C}_{n}

$$
\begin{aligned}
& A=\mathbb{R}^{n} \simeq A^{*} \\
& E_{A}=\left\{\left(e_{1}, \ldots, e_{n}\right) \mid 0 \leq e_{i} \leq 1\right\} \\
& \Omega_{A}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \sum_{i} p_{i}=1\right\}
\end{aligned}
$$

General probabilistic theories

The gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$

b) Cone of states A_{+}^{*}

c) Normalized states Ω_{A}

General probabilistic theories

The gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$

The four pure states $\alpha_{ \pm, \pm}$are pairwise perfectly distinguishable, but not jointly \Longrightarrow this cannot be a classical or quantum system.

Theory-agnostic tomography

Idea: Isolate a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.

Theory-agnostic tomography

Idea: Isolate a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

Theory-agnostic tomography

Idea: Isolate a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

[1]: Polarization degree of freedom of a single photon: "bumpy qubit" $\approx \mathcal{Q}_{2}$.

Theory-agnostic tomography

Idea: Isolate a physical system. Perform as many preparations and measurements as possible; fit a GPT to the data; compare with \mathcal{Q}_{n}.
[1] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
[2] M. Grabowecky, C. Pollack, A. Cameron, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 105, 032204 (2022).

[1]: Polarization degree of freedom of a single photon: "bumpy qubit" $\approx \mathcal{Q}_{2}$.

Tomographic completeness loophole: can never be sure that we probed the system completely.

Theory-agnostic tomography

Let's drop the tomographic completeness assumption. "Effective physical system": defined by a set of accessible procedures.

Theory-agnostic tomography

Let's drop the tomographic completeness assumption.

"Effective physical system": defined by a set of accessible procedures.
If we do theory-agnostic tomography on an effective physical system and obtain some weird noisy GPT, is QT a possible/plausible explanation?

Theory-agnostic tomography

Let's drop the tomographic completeness assumption.
"Effective physical system": defined by a set of accessible procedures.
If we do theory-agnostic tomography on an effective physical system and obtain some weird noisy GPT, is QT a possible/plausible explanation?

Is fundamental QT a plausible explanation of a given effective GPT?

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

2. Simulations, embeddings, and contextuality

Effective GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$ found in the lab

2. Simulations, embeddings, and contextuality

Effective GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$ found in the lab ...simulated by...

Fundamental GPT $\mathcal{B}=\left(B, \Omega_{B}, E_{B}\right)$
for example \mathcal{Q}_{n} for very large n or $n=\infty$.

2. Simulations, embeddings, and contextuality

Effective GPT $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$ found in the lab ..simulated by...

Fundamental GPT $\mathcal{B}=\left(B, \Omega_{B}, E_{B}\right)$
for example \mathcal{Q}_{n} for very large n or $n=\infty$.

Effectively preparing state ω_{A} means fundamentally preparing some ω_{B}, but ω_{B} may depend on the preparation procedure, i.e. the context. Collect all those states into a set $\Omega_{B}\left(\omega_{A}\right):=\left\{\omega_{B}\right\}$.

2. Simulations, embeddings, and contextuality

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4 -level system \mathcal{C}_{4}.

2. Simulations, embeddings, and contextuality

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\}
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.

2. Simulations, embeddings, and contextuality

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\}
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.

(Preparation) contextuality:

 the fundamental state β^{\prime} does not only depend on α^{\prime}, but must also depend on the way it has been prepared.
2. Simulations, embeddings, and contextuality

Example ("Holevo projection"): simulating the gbit $\mathcal{A}=\left(\mathbb{R}^{3}, \Omega_{A}, E_{A}\right)$ with a classical 4-level system \mathcal{C}_{4}.

$$
\Omega_{B}\left(\alpha_{ \pm \pm}\right)=\left\{\beta_{ \pm \pm}\right\}
$$

but $\Omega_{B}\left(\alpha^{\prime}\right)=\left\{\right.$ states β^{\prime} on blue line $\}$.

(Preparation) contextuality:

 the fundamental state β^{\prime} does not only depend on α^{\prime}, but must also depend on the way it has been prepared.This is an instance of implausible fine-tuning: the statistical differences among the fundamental states are miraculously exactly "washed out" on the effective level.

2. Simulations, embeddings, and contextuality

ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :

2. Simulations, embeddings, and contextuality

ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :

- all outcome probabilities are reproduced up to ε : for all $\omega_{A} \in \Omega_{A}, e_{A} \in E_{A}$, we have
$\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \quad \forall \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right) ;$
- mixtures of simulating states (effects) are valid simulations of mixtures of states (effects):
$\lambda \Omega_{B}\left(\omega_{A}\right)+(1-\lambda) \Omega_{B}\left(\varphi_{A}\right) \subseteq \Omega_{B}\left(\lambda \omega_{A}+(1-\lambda) \varphi_{A}\right)$
for all $0 \leq \lambda \leq 1$ and $\omega_{A}, \varphi_{A} \in \Omega_{A}$ (and the analogous inclusion for E_{B} on mixtures of effects);
- the fundamentally impossible effect is a valid simulation of the effectively impossible effect:

$$
\begin{equation*}
0 \in E_{B}(0) . \tag{6}
\end{equation*}
$$

2. Simulations, embeddings, and contextuality

ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :

- all outcome probabilities are reproduced up to ε : for all $\omega_{A} \in \Omega_{A}, e_{A} \in E_{A}$, we have
$\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \quad \forall \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right) ;$
- mixtures of simulating states (effects) are valid simulations of mixtures of states (effects):
$\lambda \Omega_{B}\left(\omega_{A}\right)+(1-\lambda) \Omega_{B}\left(\varphi_{A}\right) \subseteq \Omega_{B}\left(\lambda \omega_{A}+(1-\lambda) \varphi_{A}\right)$
for all $0 \leq \lambda \leq 1$ and $\omega_{A}, \varphi_{A} \in \Omega_{A}$ (and the analogous inclusion for E_{B} on mixtures of effects);
- the fundamentally impossible effect is a valid simulation of the effectively impossible effect:

$$
\begin{equation*}
0 \in E_{B}(0) . \tag{6}
\end{equation*}
$$

Noncontextual if all

$\Omega_{B}\left(\omega_{A}\right)$ and all $E_{B}\left(e_{A}\right)$ contain only one element.

2. Simulations, embeddings, and contextuality

ε-simulation of effective GPT \mathcal{A} by fundamental GPT \mathcal{B} :

- all outcome probabilities are reproduced up to ε : for all $\omega_{A} \in \Omega_{A}, e_{A} \in E_{A}$, we have
$\left|\left(\omega_{A}, e_{A}\right)-\left(\omega_{B}, e_{B}\right)\right| \leq \varepsilon \quad \forall \omega_{B} \in \Omega_{B}\left(\omega_{A}\right), e_{B} \in E_{B}\left(e_{A}\right) ;$
- mixtures of simulating states (effects) are valid simulations of mixtures of states (effects):
$\lambda \Omega_{B}\left(\omega_{A}\right)+(1-\lambda) \Omega_{B}\left(\varphi_{A}\right) \subseteq \Omega_{B}\left(\lambda \omega_{A}+(1-\lambda) \varphi_{A}\right)$
for all $0 \leq \lambda \leq 1$ and $\omega_{A}, \varphi_{A} \in \Omega_{A}$ (and the analogous inclusion for E_{B} on mixtures of effects);
- the fundamentally impossible effect is a valid simulation of the effectively impossible effect:

$$
\begin{equation*}
0 \in E_{B}(0) . \tag{6}
\end{equation*}
$$

Noncontextual if all

$\Omega_{B}\left(\omega_{A}\right)$ and all $E_{B}\left(e_{A}\right)$ contain only one element.

Classical probability theory can contextually simulate all GPTs:

2. Simulations, embeddings,

2. Simulations, embeddings, and contextuality

Lemma 1. Let \mathcal{A} be any GPT. Then, for every $\varepsilon>0$, there is a measurement-noncontextual (but, in general, preparation-contextual) ε-simulation of \mathcal{A} by \mathcal{C}_{n} (and thus by $\left.\mathcal{Q}_{n}\right)$ for some $n \leq\left\lceil\left(\frac{c}{\varepsilon}\right)^{(\operatorname{dim} A-2) / 2}\right\rceil$, where $c>0$ is a constant that only depends on Ω_{A}.

2. Simulations, embeddings, and contextuality

Lemma 1. Let \mathcal{A} be any GPT. Then, for every $\varepsilon>0$, there is a measurement-noncontextual (but, in general, preparation-contextual) ε-simulation of \mathcal{A} by \mathcal{C}_{n} (and thus by $\left.\mathcal{Q}_{n}\right)$ for some $n \leq\left\lceil\left(\frac{c}{\varepsilon}\right)^{(\operatorname{dim} A-2) / 2}\right\rceil$, where $c>0$ is a constant that only depends on Ω_{A}.

In special case $\mathcal{B}=\mathcal{C}_{n}$ (fundamental GPT is classical), this notion reduces exactly to Spekkens' notion [3] of contextuality.

$$
P(k \mid p, m)=\sum_{\lambda \in \Lambda} \mu_{p}(\lambda) \chi_{k, m}(\lambda)
$$

[3] R. W. Spekkens, Phys. Rev. A 71, 052108 (2005).

2. Simulations, embeddings, and contextuality

Lemma 1. Let \mathcal{A} be any GPT. Then, for every $\varepsilon>0$, there is a measurement-noncontextual (but, in general, preparation-contextual) ε-simulation of \mathcal{A} by \mathcal{C}_{n} (and thus by \mathcal{Q}_{n}) for some $n \leq\left\lceil\left(\frac{c}{\varepsilon}\right)^{(\operatorname{dim} A-2) / 2}\right\rceil$, where $c>0$ is a constant that only depends on Ω_{A}.

In special case $\mathcal{B}=\mathcal{C}_{n}$ (fundamental GPT is classical), this notion reduces exactly to Spekkens' notion [3] of contextuality.

$$
P(k \mid p, m)=\sum_{\lambda \in \Lambda} \mu_{p}(\lambda) \chi_{k, m}(\lambda)
$$

Theorem 1. Every discrete ontological model of an operational theory defines an exact simulation of the corresponding GPT by some \mathcal{C}_{n}, and vice versa. Moreover, the simulation is preparation-noncontextual / measurementnoncontextual / noncontextual if and only if the corresponding ontological model has this property.
[3] R. W. Spekkens, Phys. Rev. A 71, 052108 (2005).

Noncontextual simulations are embeddings

Noncontextual simulations are embeddings

Noncontextual simulations are embeddings

fundamental GPT

Definition 2 (Embedding). Let $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$ and $\mathcal{B}=\left(B, \Omega_{B}, E_{B}\right)$ be GPTs, and let $\varepsilon \geq 0$. A pair of linear maps $\Phi: A \rightarrow B$ and $\Psi: A^{*} \rightarrow B^{*}$ is said to be an ε-embedding of \mathcal{A} into \mathcal{B} if
(i) Φ and Ψ are positive and Ψ is normalizationpreserving, i.e. $\Phi\left(E_{A}\right) \subseteq E_{B}$ and $\Psi\left(\Omega_{A}\right) \subseteq \Omega_{B} ;$

Lemma 2. Every noncontextual ε-simulation of \mathcal{A} by \mathcal{B} defines an ε-embedding of \mathcal{A} into \mathcal{B}, and vice versa.
(ii) Φ and Ψ preserve outcome probabilities up to ε; i.e.

$$
|(\omega, e)-(\Psi(\omega), \Phi(e))| \leq \varepsilon \text { for all } e \in E_{A}, \omega \in \Omega_{A}
$$

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

The qubit (actually, rebit) does not have a noncontextual ontological model.
Quantitative statement:

$$
A:=\frac{1}{6} \sum_{t \in\{1,2,3\}} \sum_{b \in\{0,1\}} P\left(b \mid p_{t, b}, m_{t}\right) \leq \frac{5}{6}
$$

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

The qubit (actually, rebit) does not have a noncontextual ontological model.
Quantitative statement:

$$
A:=\frac{1}{6} \sum_{t \in\{1,2,3\}} \sum_{b \in\{0,1\}} P\left(b \mid p_{t, b}, m_{t}\right) \leq \frac{5}{6} .
$$

These imply bounds on the approximate embeddability into classical:
Example 1. Let $\varepsilon<\frac{1}{6}$. Then the rebit (and thus, also the qubit) cannot be ε-embedded into any \mathcal{C}_{n}.

Noncontextual inequalities and approximate embeddings

[4] M. D. Mazurek et al., An experimental test of noncontextuality without unphysical idealizations, Nat. Comm. 7, 11780 (2016).

The qubit (actually, rebit) does not have a noncontextual ontological model.
Quantitative statement:

$$
A:=\frac{1}{6} \sum_{t \in\{1,2,3\}} \sum_{b \in\{0,1\}} P\left(b \mid p_{t, b}, m_{t}\right) \leq \frac{5}{6} .
$$

These imply bounds on the approximate embeddability into classical:
Example 1. Let $\varepsilon<\frac{1}{6}$. Then the rebit (and thus, also the qubit) cannot be ε-embedded into any \mathcal{C}_{n}.

Proof of ε-nonembeddability admits experimental falsification of noncontextuality.

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality

3. Exact embeddings into quantum theory

4. Certifying non-embeddability

3. Exact embeddings into quantum theory

Which GPTs admit of a noncontextual simulation by QT, i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

3. Exact embeddings into quantum theory

Which GPTs admit of a noncontextual simulation by QT,

i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

Example: Classical PT can be embedded into QT.
$\left(p_{1}, \ldots, p_{n}\right) \xrightarrow{\Psi}\left(\begin{array}{ccc}p_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & p_{n}\end{array}\right)$.
$\left(e_{1}, \ldots, e_{n}\right) \xrightarrow{\Phi}\left(\begin{array}{ccc}e_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & e_{n}\end{array}\right)$.

$|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle$

3. Exact embeddings into quantum theory

Which GPTs admit of a noncontextual simulation by QT, i.e. can be embedded into QT \mathcal{Q}_{n} (say, exactly)?

Example: Classical PT can be embedded into QT.
$\left(p_{1}, \ldots, p_{n}\right) \xrightarrow{\Psi}\left(\begin{array}{ccc}p_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & p_{n}\end{array}\right)$.
$\left(e_{1}, \ldots, e_{n}\right) \xrightarrow{\Phi}\left(\begin{array}{ccc}e_{1} & \ldots & 0 \\ 0 & \ddots & 0 \\ 0 & \ldots & e_{n}\end{array}\right)$.

Similarly, QT over the real numbers can be embedded into QT.

$|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle$

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\} .
$$

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\} .
$$

Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\}
$$

> Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

- QT over real numbers \mathbb{R}, complex numbers \mathbb{C}, quaternions \mathbb{H},
- d-dimensional Bloch ball state spaces,
- direct sums of those, including CPT and QT with superselection rules.

3. Exact embeddings into quantum theory

Focus on the "unrestricted GPTs" where all vectors yielding valid probabilities on all states are effects: $\mathcal{A}=\left(A, \Omega_{A}, E_{A}\right)$

$$
E_{A}=\left\{e \in A \mid 0 \leq\langle\omega, e\rangle \leq 1 \text { for all } \omega \in \Omega_{A}\right\}
$$

Theorem 2. An unrestricted GPT can be exactly embedded into finite-dimensional quantum theory if and only if it corresponds to a special Euclidean Jordan algebra.

- QT over real numbers \mathbb{R}, complex numbers \mathbb{C}, quaternions \mathbb{H},
- d-dimensional Bloch ball state spaces,
- direct sums of those, including CPT and QT with superselection rules.

We should not be (and are not) surprised to find any of those in the lab.

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality

3. Exact embeddings into quantum theory

4. Certifying non-embeddability

Overview

1. Testing QT via theory-agnostic tomography

2. Simulations, embeddings, and contextuality
3. Exact embeddings into quantum theory
4. Certifying non-embeddability

Preparation

Measurement

4. Certifying non-embeddability into quantum theory

4. Certifying non-embeddability into quantum theory

What about restricted ("noisy") GPTs found in the lab, can we certify that there is not even an approximate noncontextual simulation by QT?

4. Certifying non-embeddability into quantum theory

What about restricted ("noisy") GPTs found in the lab, can we certify that there is not even an approximate noncontextual simulation by QT?

Example: the gbit (which is still unrestricted, but whatever).

4. Certifying non-embeddability into quantum theory

What about restricted ("noisy") GPTs found in the lab, can we certify that there is not even an approximate noncontextual simulation by QT?

Example: the gbit (which is still unrestricted, but whatever).

Example 2. Let $\varepsilon \leq 0.1014$. Then the gbit cannot be ε-embedded into any \mathcal{Q}_{n} or \mathcal{Q}_{∞}.

4. Certifying non-embeddability into quantum theory

What about restricted ("noisy") GPTs found in the lab, can we certify that there is not even an approximate noncontextual simulation by QT?

Example: the gbit (which is still unrestricted, but whatever).

Example 2. Let $\varepsilon \leq 0.1014$. Then the gbit cannot be ε-embedded into any \mathcal{Q}_{n} or \mathcal{Q}_{∞}.

Interpretation: finding an approximate gbit in the lab, up to that amount of statistical noise, would challenge QT.

4. Certifying non-embeddability into quantum theory

What about restricted ("noisy") GPTs found in the lab, can we certify that there is not even an approximate noncontextual simulation by QT?

Example: the gbit (which is still unrestricted, but whatever).

Example 2. Let $\varepsilon \leq 0.1014$. Then the gbit cannot be ε-embedded into any \mathcal{Q}_{n} or \mathcal{Q}_{∞}.

Interpretation: finding an approximate gbit in the lab, up to that amount of statistical noise, would challenge QT.

Proof sketch: the four pure states $\alpha_{ \pm \pm}$are simulated by four quantum states $\rho_{ \pm \pm}$which are pairwise almost perfectly distinguishable. Imagine a device that approx. distinguishes all four successively. Contradicts $\frac{1}{2} \rho_{-+}+\frac{1}{2} \rho_{+-}=\frac{1}{2} \rho_{--}+\frac{1}{2} \rho_{++}$.

4. Certifying non-embeddability into quantum theory

A method that in principle works for a large class of (restricted) GPTs: using Bell nonlocality on two "virtual" systems.

A method that in principle works for a large class of (restricted) GPTs: using Bell nonlocality on two "virtual" systems.

Lemma (informally, for details see paper).
If GPT \mathcal{A} can be ε-embedded into some \mathcal{Q}_{n} or \mathcal{Q}_{∞}, then all Bell correlations for all non-signalling states of $\mathcal{A} \mathcal{A}$ are $\mathcal{O}(\varepsilon)$-close to those of QT.

A method that in principle works for a large class of (restricted) GPTs: using Bell nonlocality on two "virtual" systems.

Lemma (informally, for details see paper).
If GPT \mathcal{A} can be ε-embedded into some \mathcal{Q}_{n} or \mathcal{Q}_{∞}, then all Bell correlations for all non-signalling states of $\mathcal{A} \mathcal{A}$ are $\mathcal{O}(\varepsilon)$-close to those of QT.

Example. All non-signalling correlations on two quaternionic QT-systems can be perfectly simulated within standard complex QT.

A method that in principle works for a large class of (restricted) GPTs: using Bell nonlocality on two "virtual" systems.

Lemma (informally, for details see paper).
If GPT \mathcal{A} can be ε-embedded into some \mathcal{Q}_{n} or \mathcal{Q}_{∞}, then all Bell correlations for all non-signalling states of $\mathcal{A} \mathcal{A}$ are $\mathcal{O}(\varepsilon)$-close to those of QT.

Example. All non-signalling correlations on two quaternionic QT-systems can be perfectly simulated within standard complex QT.

Example. If \mathcal{A} is an even-sided polygon, then some states on $\mathcal{A} \mathcal{A}$ violate the Tsirelson bound of $2 \sqrt{2}$ for the Bell-CHSH inequality. From this, we can compute some $\varepsilon>0$ such that \mathcal{A} cannot be ε-embedded.

Summary

- Have generalized Spekkens' notion of generalized noncontextuality: "Processes that are statistically indistinguishable in an effective theory should not require explanation by multiple distinguishable processes in a more fundamental theory."
- \rightarrow approximate simulations and embeddings of one GPT by another.
- We have classified all unrestricted GPTs exactly embeddable into QT...
- ... and we have given methods for certifying the impossibility of an approximate embedding. Not optimal. Open: find a better method!
- This admits a novel experimental test of QT that does not suffer from a "tomographic completeness loophole".

