
Reihenalgebra: What comes beyond
exponentiation?

M. Müller, mueller@math.tu-berlin.de

Abstract

Addition, multiplication and exponentiation are classical oper-
ations, successively defined by iteration. Continuing the iteration
process, one gets an infinite hierarchy of higher-order operations, the
first one sometimes called tetration

a ↑ b = aa
a

a...
}

b terms ,

followed by pentation, hexation, etc. This paper gives a survey on some
ideas, definitions and methods that the author has developed as a
young pupil for the German Jugend forscht science fair. It is meant to
be a collection of ideas, rather than a serious formal paper.

In particular, a definition for negative integer exponents b is given
for all higher-order operations, and a method is proposed that gives a
very natural (but non-trivial) interpolation to real (and even complex)
integers b for pentation and hexation and many other operations. It is
an open question if this method can also be applied to tetration.

1 Introduction

Multiplication of natural numbers is nothing but repeated addition,

a + a + a + . . . + a
︸ ︷︷ ︸

b terms

= a · b . (1)

Iterating multiplication, one gets another operation, namely exponentiation:

a · a · a · . . . · a
︸ ︷︷ ︸

b terms

= ab =: aˆb . (2)

Classically, this is it, and one stops here. But what if one continues the
iteration process? One could define something like

aˆaˆaˆ . . . ˆa
︸ ︷︷ ︸

b terms

= a ↑ b .

But, wait a minute, in contrast to eq. (1) and (6), this definition will depend
on the way we set brackets, i.e. on the order of exponentiation! Thus, we
have to distinguish between the two canonical possibilities

a ↑ b := aˆ(. . . ˆ(aˆ(aˆa)))
︸ ︷︷ ︸

b terms

= aa
aa...

(3)

1



and
a ↓ b := (((aˆa)ˆa)ˆ . . .)ˆa

︸ ︷︷ ︸

b terms

= ((aa)a)a...
. (4)

The ”power tower” a ↑ b is sometimes called ”tetration”. It is more in-
teresting than the operation a ↓ b, because we can simplify the latter to

a ↓ b = a(a
b−1).

Why do we only consider the two possibilities (3) and (4), and not other
orders of exponentiation where the brackets are set in a more random order?
The reason for this is that (3) and (4) have very simple recursion laws,
namely

a ↑ (b + 1) = aa↑b and a ↓ (b + 1) = (a ↓ b)a
.

While a ↓ b seems so uninteresting that we might forget about it, we should
remember it for consistency reasons - we may well still continue the itera-
tion process, and then, the corresponding ↓ operation will no more be un-
interesting. The next step beyond tetration involves four different possible
operations:

(((a ↑ a) ↑ a) ↑ a) ↑ . . . ↑ a
︸ ︷︷ ︸

b terms

=: a ↓↑ b ,

a ↑ . . . ↑ (a ↑ (a ↑ (a ↑ a)))
︸ ︷︷ ︸

b terms

=: a ↑↑ b ,

(((a ↓ a) ↓ a) ↓ a) ↓ . . . ↓ a
︸ ︷︷ ︸

b terms

=: a ↓↓ b ,

a ↓ . . . ↓ (a ↓ (a ↓ (a ↓ a)))
︸ ︷︷ ︸

b terms

=: a ↑↓ b .

2 Some examples

Exponentiation with one always gives the identity,

a · 1 = a1 = a ↑ 1 = a ↓ 1 = a ↑↑ 1 = . . . = a .

Similarly,

2 + 2 = 2 · 2 = 22 = 2 ↑ 2 = 2 ↓ 2 = 2 ↑↑ 2 = . . . = 4 .

A less trivial example is

2 ↓↑ 3 = (2 ↑ 2) ↑ 2 = 4 ↑ 2 = 44 = 256 ,

2 ↑↑ 3 = 2 ↑ (2 ↑ 2) = 2 ↑ 4 = 2222

= 65536 ,

2 ↓↓↑ 3 = (2 ↓↑ 2) ↓↑ 2 = 4 ↓↑ 2 = 4 ↑ 4 = 4444

= 2.36 · 10

0BB� 807230472602822537938263039708539903007136792173874
3031867082828418414481568309149198911814701229483451
981557574771156496457238535299087481244990261351116

1CCA
2



As one can see, the numbers soon get very, very large. One of the largest
numbers that have ever shown up in a mathematical proof is Graham’s
number. It can easily be majorized by

Graham’s number < 3 ↑↑ 129 .

Figure 1: The tree of operations

As shown in Figure 1, left and right arrow generate an infinite family
of operations beyond exponentiation. While the two different recursion laws
(5) are identical for ⊙ = + and ⊙ = ·, they are different for higher-order
operations. This is why the number of operations is doubling every step
above exponentiation.

3



3 General Definition for Positive Integer Expo-

nents

To state the general definition in a simple way, we use the conventions

↑ ˆ :=↑ and ↓ ˆ :=↓ .

We propose the following general definition:

Definition 3.1 (Hyperexponentiation)
If ⊙ is any combination of up- and downarrows or (classical) exponentiation,
i.e. ⊙ ∈ {ˆ} ∪ ⋃∞

n=1{↑, ↓}n, then we set

a ↑ ⊙1 = a ↓ ⊙1 := a ,

and recursively

a ↑ ⊙(b + 1) := a ⊙ (a ↑ ⊙b)

a ↓ ⊙(b + 1) := (a ↓ ⊙b) ⊙ a . (5)

4 Negative Integer Exponents

It is straight-forward to use equation (5) iteratively to compute values of
tetration and other hyperexponentials at negative integer arguments. For
example, since

aa↑0 = a ↑ 1 = a ,

we have
a ↑ 0 = loga a = 1 .

Similarly, since
aa↑−1 = a ↑ 0 = 1 ,

we get (up to a choice of the branch of the complex logarithm)

a ↑ −1 = loga 1 = 0 .

Definition 4.1 (Negative Integer Exponents)
Suppose that 0 ≥ b ∈ Z. Then, for every ⊙ ∈ {ˆ} ∪ ⋃∞

n=1{↑, ↓}n, we define

a ↑ ⊙b := {z ∈ D : a ⊙ (a ⊙ (a ⊙ (. . . a ⊙ z)))
︸ ︷︷ ︸

1−b times a

= a} ,

a ↓ ⊙b := {z ∈ D : (((z ⊙ a) ⊙ . . . ⊙ a) ⊙ a) ⊙ a
︸ ︷︷ ︸

1−b times a

= a} ,

where D ⊂ C is the (arbitrary) domain of definition.

4



So a⊙ b is defined to be a set if b < 0 is a negative integer. If the set has
only one element, we identify the set with its element.

To give another interesting example (which also prepares the later treat-
ment of fractional exponents), we introduce a higher-order-analogue to the
square root. Recall that the square root x =

√
a for a > 0 is defined to be

the only positive solution to x2 = a, or to

x · x = a .

Similarly, since the function x 7→ xx is increasing for x ≥ 1
e

(where e =
2.71828 . . . is Euler’s number), we can define the hyper square root x =

hsqrt2(a) to be the only solution x > e−
1
e to x ↑ 2 = a, or to

xx = a .

It is clear how to define hsqrtn(a) for other integers n ∈ N.
Let D := [1,∞) be our domain of definition. Since we have

(2 ↓↑ 0) ↑ 2 = 2 ↓↑ 1 = 2 ,

it must hold that

2 ↓↑ 0 = hsqrt2(2) = 1.559610469 . . .

Analogously, it holds that

(2 ↓↑ −1) ↑ 2 = 2 ↓↑ 0 ,

so it follows that

2 ↓↑ −1 = hsqrt2(hsqrt2(2)) = 1.3799703966 . . .

Thus, we can compute the binary pentation function P2(x) := 2 ↓↑ x (which
is the same as 2 ↓↓ x due to the basis 2) at negative integer x by iteration
of the hyper square root hsqrt2. Summarizingly,

P2(1) = 2 ,

P2(x + 1) = P2(x)P2(x) ,

P2(x − 1) = hsqrt2(P2(x)) .

It is interesting to note that, while P2(x) grows unbelievably quickly for
x → ∞, it holds that

lim
Z∋n→−∞

P2(n) = 1 .

We are now going to evaluate this function at non-integer arguments.

5



5 Non-integer exponents: A General Interpolation

Method

It is a very difficult task to find a natural definition for non-integer exponents
in full generality for all higher-order operations beyond exponentiation. In
fact, it is already amazingly difficult to do it for tetration, i.e. to define a ↑ x

for x 6∈ Z. Of course, it is possible to find an arbitrary interpolation, even
one that is continuous, by letting, say, 2 ↑ x := 2x for x ∈ [1, 2], and then
iteratively for every other x ∈ R via 2 ↑ (x+1) = 22↑x. But such a definition
looks ugly (also the graph of this function does), and seems arbitrary.

Shouldn’t there be a single natural definition that is in some sense ”the”
correct one, as it is for exponentiation? The definition a

1
2 :=

√
a obviously

is the ”right” one. Why? Because it respects the identity

ab+c = abac , (6)

an identity that is first proven for integer b, c, and carries it over to the
case of fractional exponents. Therefore, almost everybody who thinks about
defining tetration for non-integer exponents first comes to the idea to use

a ↑ 1

2

?
:= hsqrt2(a) .

Unfortunately, this definition cannot be justified, since there is no identity
comparable to (6) for tetration (still, the graph of this interpolation looks
ugly and does not seem to be differentiable).

Let us reformulate (6) in a more general setting. We can say that ”adding
1
2 to the exponent multiplies the expression with some constant”, i.e.

∃c : ab+ 1
2 = ab · c .

Already from this assertion, we can deduce that a
1
2 =

√
a, since a · ab =

ab+ 1
2
+ 1

2 = ab · c · c, so c =
√

a and a0+ 1
2 =

√
a. We can still reformulate (6)

by fixing a, and defining the function b 7→ c(b) by the equation

ab+ 1
2 = ab · c(b) . (7)

Knowing that c(b) ≡ c is constant again yields a
1
2 =

√
a. Equation (7) can

easily be extended to all higher-order operations. Fix a, and define c(b) by

a ↑ ⊙
(

b +
1

2

)

= c(b) ⊙ (a ↑ ⊙b) ,

a ↓ ⊙
(

b +
1

2

)

= (a ↓ ⊙b) ⊙ c(b) .

If c(b) is constant, then we can use these equations to compute a ↑ ⊙b or
a ↓ ⊙b at half-integer arguments. Unfortunately, c(b) cannot be constant in

6



general. For example, assuming that c(b) = c is constant for tetration with
a = 2, we have on the one hand

c(c
2↑1) = 2 ↑ 2 ,

so c = 1.6569 . . ., but on the other hand

c(c
2↑2) = 2 ↑ 3 ,

so c = 1.5729 . . ., which is a contradiction. Thus, c(b) cannot be constant.
But maybe we can require it to be decreasing? In this case, it would follow
that c(1) > 1.6569 . . ., and thus

2 ↑ 1.5 > (1.6569 . . .)2 = 2.745368 . . .

and since c(1.5) > 1.5729 . . ., it follows that

2 ↑ 1.5 < log1.5729... (2 ↑ 2) = 3.0606 . . .

Unfortunately, there is no chance to get more information on 2 ↑ 1.5 from
this method1.

It is an interesting coincidence that the same idea gives a chance to
compute pentation ↓↓ and hexation ↓↓↓ at fractional exponents! We will
illustrate it for the binary pentation function P2(x) = 2 ↓↓ x.

First, we define c(b) by

2 ↓↓
(

b +
1

2

)

= (2 ↓↓ b) ↓ c(b) .

Recall that x ↓ y = x(x
y−1). Again, it turns out that assuming c(b) to be

constant leads to a contradiction. But we can assume that c(b) is decreasing!
In particular, we require that c

(
n + 1

2

)
< c(n) for every n. Suppose n ∈ Z.

It follows that

2 ↓↓ (n + 1) = 2 ↓↓
(

n +
1

2

)

↓ c

(

n +
1

2

)

= 2 ↓↓ n ↓ c(n) ↓ c

(

n +
1

2

)

.

Thus, if we define c̃(n) as the solution of

2 ↓↓ (n + 1) = 2 ↓↓ n ↓ c̃(n) ↓ c̃(n) ,

we get c(n) > c̃(n), or

2 ↓↓
(

n +
1

2

)

> 2 ↓↓ n ↓ c̃(n) . (8)

1The following ideas do not help: estimate c(3) or c(4) and iterate backwards; try
smaller steps than 1

2
and stick them together.

7



On the other hand, the monotonicity of c(n) implies that c(n+1) < c̃(n),
so we get

2 ↓↓
(

n + 1 +
1

2

)

= 2 ↓↓ (n + 1) ↓ c(n + 1) < 2 ↓↓ (n + 1) ↓ c̃(n) ,

and by iterating backwards, i.e. taking the hyper square root

2 ↓↓
(

n +
1

2

)

< hsqrt2 (2 ↓↓ (n + 1) ↓ c̃(n)) . (9)

The function c̃(n) can be computed numerically. For example, c̃(1) =
1.42660839953973 . . ., so according to (8),

2 ↓↓ 1.5 > 2 ↓↓ 1 ↓ c̃(1) = 2.53867 . . . , (10)

and according to (9),

2 ↓↓ 1.5 < hsqrt2 (2 ↓↓ 2 ↓ c̃(1)) = 2.61024 . . . (11)

If we do the same calculation for example for n = −2, we get

1.325825835 . . . < 2 ↓↓ −1.5 < 1.3264742627 . . . ,

and we can compute new inequalities (a new interval) for 2 ↓↓ 1.5 just by
iterating forwards (using that 2 ↓↓ (x + 1) = (2 ↓↓ x)2↓↓x). We get

2.549442774 . . . < 2 ↓↓ 1.5 < 2.560742044 . . . ,

which is much better than (10) and (11)! Moreover, starting with the in-
equalities for n = −15 and iterating, one gets

2.551772168947734 . . . < 2 ↓↓ 1.5 < 2.55251901374805 . . .

It seems that the interval is getting smaller and smaller, if iteration and
equations (8) and (9) are used for n → −∞! One gets

2 ↓↓ 1.5 = P2(1.5) = 2.5518 . . . ,

and the method seems to be successful for other real exponents also. This
way, the binary pentation function P2(x) can be computed to any desired
accuracy2 for every x ∈ R (even x ∈ C).

Figure 3 shows a plot of P2(x) for x ∈ R. It looks smooth and natural.
It is interesting to note that many different interpolation schemes all

seem to give the same answer, if only they are based on

• interpolating the desired operation (exponentially, linearly or in any
monotone way) for exponents in the interval [n, n + 1],

8



Figure 2: The binary pentation function x 7→ P2(x) = 2 ↓↓ x

• iterating up to the desired value (for example b = 1.5),

• taking the limit n → −∞ of both steps.

The same method can even be applied to hexation H2(x) := 2 ↓↓↓ x,

which satisfies the recurrence relation H2(x + 1) = H2(x)(H2(x)H2(x)−1). This
seems to be the ”highest” non-standard operation that is accessible without
too extensive numerical efforts.

6 A Last Observation

Since 2⊙1 = 2 and 2⊙2 = 4 for multiplication and every higher-order oper-
ation, the value of 2⊙ 1.5 should be somewhere in between. It is interesting
to see that 2 ⊙ 1.5 seems to be decreasing in the ”order” of operation:

2 + 1.5 = 3.5 ,

2 · 1.5 = 3 ,

21.5 = 2.828427 . . . ,

2 ↓ 1.5 = 2.66514 . . .

2 ↓↓ 1.5 = 2.5518 . . . ,

2 ↓↓↓ 1.5 = 2.4655 . . .

2I do not have a proof that for n → −∞, the inequalites one gets become really sharp.

9



Figure 3: The binary hexation function x 7→ H2(x) = 2 ↓↓↓ x

References

[!!!] Note that I do not claim mathematical rigour in this paper, and
so I also do not claim in any way completeness of references.
Maybe a good starting point for further reading can be the website
http://www.tetration.org.

The following books are those that I used as a pupil for my Jugend
forscht project. The first one was my reference for the ”Verhulst”
process and iteration in general, while the second one is reference for
”Graham’s number”.

[B] R. Behr, Ein Weg zur fraktalen Geometrie, Ernst Klett Schulbuchverlag,
Stuttgart 1989

[W] D. Wells, Das Lexikon der Zahlen, Fischer Taschenbuch Verlag, Frank-
furt am Main 1990

10


	1 Introduction
	2 Some examples
	3 General Definition for Positive Integer Exponents
	4 Negative Integer Exponents
	5 Non-integer exponents: A General Interpolation Method
	6 A Last Observation

