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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are

~a1

~a2

~a3

~a4

e"X
�~a1

~b4

~b3

~b2

FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦

✓
1
~a2

◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that

7
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?
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• In	quantum	physics:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaTons	the	most	general	
that	saTsfy	the	no-signalling	principle?
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CorrelaTons	in	C	come	from	classical	prob.	theory,	
correlaTons	in	Q	from	quantum	theory,	
correlaTons	in	NS	describe	alternaUve	physics.
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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Other	scenarios:	
not	just	Bell	scenarios,	but	for	example	
semi-DI	scenarios	like	“prepare	and	measure”:
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servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Other	scenarios:	
not	just	Bell	scenarios,	but	for	example	
semi-DI	scenarios	like	“prepare	and	measure”:



Black	boxes	and	correlaTons

Why	study	such	correlations?	
• Foundational:	“Why”	does	nature	admit	Q	but	not	more?	Principles?		
• Applications:	Randomness	amplification	or	cryptographic	security	
from	no-signalling	principle	&	violation	of	Bell	inequality	alone.	
Device-independent	protocols.
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
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of using entanglement and loophole-free Bell tests. Their experimental requirements
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theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
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Other	scenarios:	
not	just	Bell	scenarios,	but	for	example	
semi-DI	scenarios	like	“prepare	and	measure”:
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Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)
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<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	perhaps	outputs)	
are	spatiotemporal	quantities?

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
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2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	perhaps	outputs)	
are	spatiotemporal	quantities?

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seXngs.



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	perhaps	outputs)	
are	spatiotemporal	quantities?

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seXngs.

• Study	interplay	of	probability,	space	and	Ume	under	minimal	
assumpTons	(even	without	assuming	QT). Recall	QFT!



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	perhaps	outputs)	
are	spatiotemporal	quantities?

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seXngs.

• Study	interplay	of	probability,	space	and	Ume	under	minimal	
assumpTons	(even	without	assuming	QT).

• Use	spaceTme	symmetries	in	protocols?

Recall	QFT!



Single	black	boxes

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

Inputs	and	outputs	are	typically	
taken	as	abstract	labels	(bits	etc.)

What	if	inputs	(and	perhaps	outputs)	
are	spatiotemporal	quantities?

R Rd

P(a, b | a, b) =
2J

Â
m=0

2J

Â
n=�2J

cab
mn cos (ma�nb) + sab

mn sin (ma�nb) ,

C(a, b) =
2J

Â
m=0

2J

Â
n=�2J

Cmn cos(ma � nb) + Smn sin(ma � nb) .

max
a,b

|C(a, b)� C00|  gJ(1 � |C00|),

gJ :=
p

2e�1 [4J (2J + 1)]�
3
2 ,

�2  C(a1, b2) + C(a3, b2) + C(a3, b4)� C(a1, b4)  2,

# J := �KJ +

r
K2

J +
D2

4
,

KJ :=
p

2p2

3
J(2J + 1)(4J + 1),

• This	is	the	case	in	many	actual	experimental	seXngs.

• Study	interplay	of	probability,	space	and	Ume	under	minimal	
assumpTons	(even	without	assuming	QT).

• Use	spaceTme	symmetries	in	protocols?

• How	could	possible	beyond-quantum	physics	fit	into	space	and	Tme?

Recall	QFT!



Example:	Stern-Gerlach	experiment



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcTon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaTal	rotaTon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcTon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaTal	rotaTon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcTon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaTal	rotaTon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.

• Manifold	of	inputs:	the	unit	sphere,
<latexit sha1_base64="KptQG99GS8cFf5fV6euSdliAKy8=">AAACBnicbZDNSgMxFIUz9a/Wv1GXuggWod2MM7WgG6Hoxp2VWltox5JJM21oJjMkGaEM3bjxVdy4UBC3PoM738a0HURbDwQ+zr2Xm3u8iFGpbPvLyCwsLi2vZFdza+sbm1vm9s6tDGOBSR2HLBRND0nCKCd1RRUjzUgQFHiMNLzBxbjeuCdC0pDfqGFE3AD1OPUpRkpbHXO/dlc6S9oigLWrUeG4ePTDpaLVMfO2ZU8E58FJIQ9SVTvmZ7sb4jggXGGGpGw5dqTcBAlFMSOjXDuWJEJ4gHqkpZGjgEg3mVwxgofa6UI/FPpxBSfu74kEBVIOA093Bkj15WxtbP5Xa8XKP3UTyqNYEY6ni/yYQRXCcSSwSwXBig01ICyo/ivEfSQQVjq4nA7BmT15HholyylbjnNdzlfO0zyyYA8cgAJwwAmogEtQBXWAwQN4Ai/g1Xg0no03433amjHSmV3wR8bHN259lmo=</latexit>

S2
= SO(3)/SO(2).



Example:	Stern-Gerlach	experiment

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="Q0gePKVsWuIM9G7NfnQyPn1+818=">AAAB9nicbVBNSwMxEJ2tX7V+VT16CRZBUMtGCnosevFYwdpCdy3ZNNuGZrNLklXK0v/hxYOCePW3ePPfmLZ70NYHA4/3ZpiZFySCa+O6305haXllda24XtrY3NreKe/u3es4VZQ1aSxi1Q6IZoJL1jTcCNZOFCNRIFgrGF5P/NYjU5rH8s6MEuZHpC95yCkxVnogHpdedoZPT7A3rnbLFbfqToEWCc5JBXI0uuUvrxfTNGLSUEG07mA3MX5GlOFUsHHJSzVLCB2SPutYKknEtJ9Nrx6jI6v0UBgrW9Kgqfp7IiOR1qMosJ0RMQM9703E/7xOasJLP+MySQ2TdLYoTAUyMZpEgHpcMWrEyBJCFbe3IjogilBjgyrZEPD8y4ukdV7FtSrGt7VK/SrPowgHcAjHgOEC6nADDWgCBQXP8ApvzpPz4rw7H7PWgpPP7MMfOJ8/Xz+Rlw==</latexit>

a 2 {�1,+1}.
<latexit sha1_base64="hrLAg2xj0J9V9Opstp0ogLS6tOk=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2VXCnosevFYwdrCdinZNNuGZpMlmS2WtT/DiwcF8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hbX1jc6u4XdrZ3ds/KB8ePRiVaspaVAmlOyExTHDJWsBBsE6iGYlDwdrh6Gbmt8dMG67kPUwSFsRkIHnEKQEr+c0qeeqOGcWP571yxa25c+BV4uWkgnI0e+Wvbl/RNGYSqCDG+J6bQJARDZwKNi11U8MSQkdkwHxLJYmZCbL5yVN8ZpU+jpS2JQHP1d8TGYmNmcSh7YwJDM2yNxP/8/wUoqsg4zJJgUm6WBSlAoPCs/9xn2tGQUwsIVRzeyumQ6IJBZtSyYbgLb+8StoXNa9e87y7eqVxnedRRCfoFFWRhy5RA92iJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AOT2kNE=</latexit>

P (a|~x)
<latexit sha1_base64="g4w+sRZmBPwo6CzMKpADc6+Wa5Y=">AAAB+nicbVBNS8NAEJ3Ur1q/oh69LBahXkoiBb0IRS8eq1hbaEPYbDft0s0m7G6KJfafePGgIF79Jd78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFldW98obpa2tnd29+z9gwcVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd8aUalYLO71OKFehPuChYxgbSTfti8bFfx0h7ojStCj75z6dtmpOjOgZeLmpAw5Gr791e3FJI2o0IRjpTquk2gvw1Izwumk1E0VTTAZ4j7tGCpwRJWXzS6foBOj9FAYS1NCo5n6eyLDkVLjKDCdEdYDtehNxf+8TqrDCy9jIkk1FWS+KEw50jGaxoB6TFKi+dgQTCQztyIywBITbcIqmRDcxZeXSeus6taqrntbK9ev8jyKcATHUAEXzqEON9CAJhAYwTO8wpuVWS/Wu/Uxby1Y+cwh/IH1+QML2ZJy</latexit>

= P (a|R~x0)

• Default	direcTon	of	inhomogeneity	of	field:
<latexit sha1_base64="IXq6RGTUbYOx73rlHB9IC0Yu4jM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeiF48VrK20oWy203bpZhN2N8US+iu8eFAQr/4bb/4bt20O2vpg4PHeDDPzwkRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjBx2nimGDxSJWrZBqFFxiw3AjsJUopFEosBmObmZ+c4xK81jem0mCQUQHkvc5o8ZKj50xMvLU9dxuueK53hxklfg5qUCOerf81enFLI1QGiao1m3fS0yQUWU4EzgtdVKNCWUjOsC2pZJGqINsfvCUnFmlR/qxsiUNmau/JzIaaT2JQtsZUTPUy95M/M9rp6Z/FWRcJqlByRaL+qkgJiaz70mPK2RGTCyhTHF7K2FDqigzNqOSDcFffnmVNC9cv+r6/l21UrvO8yjCCZzCOfhwCTW4hTo0gEEEz/AKb45yXpx352PRWnDymWP4A+fzB3AUj/w=</latexit>

~x0.

• SpaTal	rotaTon	applied	to	it:

<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,
<latexit sha1_base64="7dZ5iiwXdr+7A7YA4nYIjfgSIoQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8SNmVgl6EohePFawtbJeSTWfb0GyyJNli2fZnePGgIF79M978N6btHrT1wcDjvRlm5oUJZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODh+1TBWFBpVcqlZINHAmoGGY4dBKFJA45NAMB7dTvzkEpZkUD2aUQBCTnmARo8RYyR+3h0Dx0/jaO++Uym7FnQEvEy8nZZSj3il9tbuSpjEIQznR2vfcxAQZUYZRDpNiO9WQEDogPfAtFSQGHWSzkyf41CpdHEllSxg8U39PZCTWehSHtjMmpq8Xvan4n+enJroKMiaS1ICg80VRyrGRePo/7jIF1PCRJYQqZm/FtE8UocamVLQheIsvL5PmRcWrVjzvvlqu3eR5FNAxOkFnyEOXqIbuUB01EEUSPaNX9OYY58V5dz7mrStOPnOE/sD5/AEGApDl</latexit>

|~x| = 1,

• Stabilizer	subgroup																															i.e.																									for
<latexit sha1_base64="FqQjLM3KyNJo2+ceNdTZl4Q/514=">AAACCHicbVBNS8NAEN3Ur1q/oh4FWSxCBSlJKeix6KU3K1pbaELZbDft0t0k7m6EEnLz4l/x4kFBvPoTvPlv3LQ5aOuDgcd7M8zM8yJGpbKsb6OwtLyyulZcL21sbm3vmLt7dzKMBSZtHLJQdD0kCaMBaSuqGOlGgiDuMdLxxpeZ33kgQtIwuFWTiLgcDQPqU4yUlvrmocORGmHEkmbqSMrJPUwcweHNVVqpnZz2zbJVtaaAi8TOSRnkaPXNL2cQ4piTQGGGpOzZVqTcBAlFMSNpyYkliRAeoyHpaRogTqSbTP9I4bFWBtAPha5Awan6eyJBXMoJ93RndrWc9zLxP68XK//cTWgQxYoEeLbIjxlUIcxCgQMqCFZsognCgupbIR4hgbDS0ZV0CPb8y4ukU6va9aptX9fLjYs8jyI4AEegAmxwBhqgCVqgDTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBYUGYxQ==</latexit>

H ' SO(2),

<latexit sha1_base64="lKx00CUyzg02Llj//ewuvM/elWw=">AAACBnicbVDLSsNAFJ3UV62vqEtdDBahbkKiBd0IRRe6sz5qC00ok+m0HTqZhJmJUEI2bvwVNy4UxK3f4M6/cdJmoa0HLhzOuZd77/EjRqWy7W+jMDe/sLhUXC6trK6tb5ibW/cyjAUmDRyyULR8JAmjnDQUVYy0IkFQ4DPS9Ifnmd98IELSkN+pUUS8APU57VGMlJY65u6NS7kbIDXAiCUX6WniigDeXqWVowOrY5Ztyx4DzhInJ2WQo94xv9xuiOOAcIUZkrLt2JHyEiQUxYykJTeWJEJ4iPqkrSlHAZFeMv4ihfta6cJeKHRxBcfq74kEBVKOAl93ZvfKaS8T//PaseqdeAnlUawIx5NFvZhBFcIsEtilgmDFRpogLKi+FeIBEggrHVxJh+BMvzxLmoeWU7Uc57parp3leRTBDtgDFeCAY1ADl6AOGgCDR/AMXsGb8WS8GO/Gx6S1YOQz2+APjM8ftsSX2g==</latexit>

R 2 G = SO(3).
<latexit sha1_base64="77NT1TnMSdQlPCENUSNl52UXV4E=">AAAB/XicbZDNSsNAFIUn9a/Wv2iXbgaL4KokUtCNUHTjsoq1hTaEyfSmHTqZhJlJsYT6Km5cKIhb38Odb+O0jaCtBwY+zr2Xe+cECWdKO86XVVhZXVvfKG6WtrZ3dvfs/YN7FaeSQpPGPJbtgCjgTEBTM82hnUggUcChFQyvpvXWCKRisbjT4wS8iPQFCxkl2li+Xb7F3RFQ/OA7Fz/g2xWn6syEl8HNoYJyNXz7s9uLaRqB0JQTpTquk2gvI1IzymFS6qYKEkKHpA8dg4JEoLxsdvwEHxunh8NYmic0nrm/JzISKTWOAtMZET1Qi7Wp+V+tk+rw3MuYSFINgs4XhSnHOsbTJHCPSaCajw0QKpm5FdMBkYRqk1fJhOAufnkZWqdVt1Z13ZtapX6Z51FEh+gInSAXnaE6ukYN1EQUjdETekGv1qP1bL1Z7/PWgpXPlNEfWR/feFOT0w==</latexit>

R~x0 = ~x0
<latexit sha1_base64="YO+IxonUsm4zSUBYaTqVe93s6is=">AAAB+nicbVBNS8NAFHypX7V+RT16WSyCp5BIQY9FLz1WsbbQhLLZbtqlm03Y3RRK6D/x4kFBvPpLvPlv3LQ5aOvAwjDzHm92wpQzpV3326psbG5t71R3a3v7B4dH9vHJk0oySWiHJDyRvRArypmgHc00p71UUhyHnHbDyV3hd6dUKpaIRz1LaRDjkWARI1gbaWDbDz4Tfoz1mGCet+bOwK67jrsAWideSepQoj2wv/xhQrKYCk04VqrvuakOciw1I5zOa36maIrJBI9o31CBY6qCfJF8ji6MMkRRIs0TGi3U3xs5jpWaxaGZLDKqVa8Q//P6mY5ugpyJNNNUkOWhKONIJ6ioAQ2ZpETzmSGYSGayIjLGEhNtyqqZErzVL6+T7pXjNRzPu2/Um7dlH1U4g3O4BA+uoQktaEMHCEzhGV7hzcqtF+vd+liOVqxy5xT+wPr8AfPyk60=</latexit>

R 2 H.

• Manifold	of	inputs:	the	unit	sphere,
<latexit sha1_base64="KptQG99GS8cFf5fV6euSdliAKy8=">AAACBnicbZDNSgMxFIUz9a/Wv1GXuggWod2MM7WgG6Hoxp2VWltox5JJM21oJjMkGaEM3bjxVdy4UBC3PoM738a0HURbDwQ+zr2Xm3u8iFGpbPvLyCwsLi2vZFdza+sbm1vm9s6tDGOBSR2HLBRND0nCKCd1RRUjzUgQFHiMNLzBxbjeuCdC0pDfqGFE3AD1OPUpRkpbHXO/dlc6S9oigLWrUeG4ePTDpaLVMfO2ZU8E58FJIQ9SVTvmZ7sb4jggXGGGpGw5dqTcBAlFMSOjXDuWJEJ4gHqkpZGjgEg3mVwxgofa6UI/FPpxBSfu74kEBVIOA093Bkj15WxtbP5Xa8XKP3UTyqNYEY6ni/yYQRXCcSSwSwXBig01ICyo/ivEfSQQVjq4nA7BmT15HholyylbjnNdzlfO0zyyYA8cgAJwwAmogEtQBXWAwQN4Ai/g1Xg0no03433amjHSmV3wR8bHN259lmo=</latexit>

S2
= SO(3)/SO(2).

• In	general,	inputs	are	elements	of	a	homogeneous	space,
<latexit sha1_base64="SdLlbRE4auj+NWprLJY6uu8b7sk=">AAACAnicbZDNSsNAFIVv6l+tf1E3gptgEVzFRAq6LLqwywrWFtpQJtNJO3QyCTMToYS48VXcuFAQtz6FO9/GSRtEWw8MfJx7L3Pv8WNGpXKcL6O0tLyyulZer2xsbm3vmLt7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2x1d5vX1PhKQRv1WTmHghGnIaUIyUtvrmQS9EaoQRS6+z0x9uZHbfrDq2M5W1CG4BVSjU7JufvUGEk5BwhRmSsus6sfJSJBTFjGSVXiJJjPAYDUlXI0chkV46vSCzjrUzsIJI6MeVNXV/T6QolHIS+roz31HO13Lzv1o3UcGFl1IeJ4pwPPsoSJilIiuPwxpQQbBiEw0IC6p3tfAICYSVDq2iQ3DnT16E9pnt1mzXvalV65dFHmU4hCM4ARfOoQ4NaEILMDzAE7zAq/FoPBtvxvustWQUM/vwR8bHNxmVlxw=</latexit>

G/H.



SpaceTme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).



SpaceTme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup



SpaceTme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Stern-Gerlach	experiment
<latexit sha1_base64="JMsOo5FCUx3xDuSW4CnCRcKumOg=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSaEEvQsGD3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2FxaXlldXSWnl9Y3Nr297ZfVBRIjFp4YhFshMgRRgVpKWpZqQTS4J4wEg7GF3mfvuRSEUjca/HMfE5GggaUoy0kXr2vseRHmLE0qvsIvUkh3c3WfX0uGdXnJozAZwnbkEqoECzZ395/QgnnAiNGVKq6zqx9lMkNcWMZGUvUSRGeIQGpGuoQJwoP508kMEjo/RhGElTQsOJ+nsiRVypMQ9MZ36umvVy8T+vm+jw3E+piBNNBJ4uChMGdQTzNGCfSoI1GxuCsKTmVoiHSCKsTWZlE4I7+/I8aZ/U3HrNdW/rlUajyKMEDsAhqAIXnIEGuAZN0AIYZOAZvII368l6sd6tj2nrglXM7IE/sD5/ADhAlfM=</latexit>

G = SO(3) (spaTal	rotaTons)
<latexit sha1_base64="Coj8Yg2sYsp7iU1GyGkOmwXihZU=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSlIJehIKX3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2V1bX1jc3SVnl7Z3dv3z44fFBRIjHp4IhFshcgRRgVpKOpZqQXS4J4wEg3mFznfveRSEUjca+nMfE5GgkaUoy0kQb2sceRHmPE0lZ2lXqSw7ubrFo/H9gVp+bMAJeJW5AKKNAe2F/eMMIJJ0JjhpTqu06s/RRJTTEjWdlLFIkRnqAR6RsqECfKT2cPZPDMKEMYRtKU0HCm/p5IEVdqygPTmZ+rFr1c/M/rJzq89FMq4kQTgeeLwoRBHcE8DTikkmDNpoYgLKm5FeIxkghrk1nZhOAuvrxMuvWa26i57m2j0mwWeZTACTgFVeCCC9AELdAGHYBBBp7BK3iznqwX6936mLeuWMXMEfgD6/MHOEyV8w==</latexit>

H = SO(2) (axial	symmetry	of	magneTc	field)
<latexit sha1_base64="TUzV7CTzfI8zI5I/5dS4dQZlkHA=">AAACD3icbZDNSsNAFIUn/tb6F3XpZrAUXNWkFHQjFFzYZUVrC00sk+mkHTqZhJlJsYQ8gRtfxY0LBXHr1p1v46QNoq0HBj7OvZe593gRo1JZ1pextLyyurZe2Chubm3v7Jp7+7cyjAUmLRyyUHQ8JAmjnLQUVYx0IkFQ4DHS9kYXWb09JkLSkN+oSUTcAA049SlGSls9s+yMCU7uU4dyJ0BqiBFLLtOTH26k59d31Z5ZsirWVHAR7BxKIFezZ346/RDHAeEKMyRl17Yi5SZIKIoZSYtOLEmE8AgNSFcjRwGRbjI9J4Vl7fShHwr9uIJT9/dEggIpJ4GnO7M15XwtM/+rdWPln7kJ5VGsCMezj/yYQRXCLBvYp4JgxSYaEBZU7wrxEAmElU6wqEOw509ehHa1Ytcqtn1VK9XreR4FcAiOwDGwwSmogwZoghbA4AE8gRfwajwaz8ab8T5rXTLymQPwR8bHN4B6nMs=</latexit>

~x 2 G/H = S2 (unit	vector:	field	direcTon)

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H
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x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Polarizer,
(rotaTons	around	beam	axis)

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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<latexit sha1_base64="M10ismzGHcg260B1/ID38qYHMIc=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBahXkIiBT0WvXisYG2hCWWy3bRLN5tldyOU2L/hxYOCePXHePPfuG1z0NYHA4/3ZpiZF0nOtPG8b6e0tr6xuVXeruzs7u0fVA+PHnSaKULbJOWp6kagKWeCtg0znHalopBEnHai8c3M7zxSpVkq7s1E0jCBoWAxI2CsFLTq8BQAlyM4d/vVmud6c+BV4hekhgq0+tWvYJCSLKHCEA5a93xPmjAHZRjhdFoJMk0lkDEMac9SAQnVYT6/eYrPrDLAcapsCYPn6u+JHBKtJ0lkOxMwI73szcT/vF5m4qswZ0JmhgqyWBRnHJsUzwLAA6YoMXxiCRDF7K2YjEABMTamig3BX355lXQuXL/h+v5do9a8LvIooxN0iurIR5eoiW5RC7URQRI9o1f05mTOi/PufCxaS04xc4z+wPn8AZ0HkTk=</latexit>

P (a|↵).
<latexit sha1_base64="vv6ehmEg9sOFvDFCtTD8AS/6FV4=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSlIJehIIHvVnR2kITyma7aZfubsLuRighF/+KFw8K4tV/4c1/46bNQVsfDDzem2FmXhAzqrTjfFtLyyura+uljfLm1vbOrr23/6CiRGLSxhGLZDdAijAqSFtTzUg3lgTxgJFOML7M/c4jkYpG4l5PYuJzNBQ0pBhpI/XtQ48jPcKIpVfZRepJDu9usmr9tG9XnJozBVwkbkEqoECrb395gwgnnAiNGVKq5zqx9lMkNcWMZGUvUSRGeIyGpGeoQJwoP50+kMETowxgGElTQsOp+nsiRVypCQ9MZ36umvdy8T+vl+jw3E+piBNNBJ4tChMGdQTzNOCASoI1mxiCsKTmVohHSCKsTWZlE4I7//Ii6dRrbqPmureNSrNZ5FECR+AYVIELzkATXIMWaAMMMvAMXsGb9WS9WO/Wx6x1ySpmDsAfWJ8/NrqV8g==</latexit>

G = SO(2)

click	/	no	click:
<latexit sha1_base64="6HJP10xY25elA168ONOWLmnQVyo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KRgl6EghePFawttEvJptk2NMmuSVYoS/+EFw8K4tWf481/Y9ruQVsfDDzem2FmXpQKbmwQfHultfWNza3ydmVnd2//oHp49GCSTFPWoolIdCcihgmuWMtyK1gn1YzISLB2NL6Z+e0npg1P1L2dpCyUZKh4zCmxTuqQ614qEfb71VrgB3OgVYILUoMCzX71qzdIaCaZslQQY7o4SG2YE205FWxa6WWGpYSOyZB1HVVEMhPm83un6MwpAxQn2pWyaK7+nsiJNGYiI9cpiR2ZZW8m/ud1MxtfhTlXaWaZootFcSaQTdDseTTgmlErJo4Qqrm7FdER0YRaF1HFhYCXX14l7Qsf132M7+q1RqPIowwncArngOESGnALTWgBBQHP8Apv3qP34r17H4vWklfMHMMfeJ8/XhePVw==</latexit>

a = ±1.

<latexit sha1_base64="0ENZV2mtR3qZmK5bNM5Ni5LHoDU=">AAACBHicbVBNS8NAEJ34WetX1JteFovgqSRS0ItQ8NJjBWsLTSmb7aZdutmE3Y1QQsCLf8WLBwXx6o/w5r9xk+agrQ8W3r43w8w8P+ZMacf5tlZW19Y3Nitb1e2d3b19++DwXkWJJLRDIh7Jno8V5UzQjmaa014sKQ59Trv+9Cb3uw9UKhaJOz2L6SDEY8ECRrA20tA+9kKsJwTztJVde2nx84PUzbxsaNeculMALRO3JDUo0R7aX94oIklIhSYcK9V3nVgPUiw1I5xmVS9RNMZkise0b6jAIVWDtLghQ2dGGaEgkuYJjQr1d0eKQ6VmoW8q8x3VopeL/3n9RAdXg5SJONFUkPmgIOFIRygPBI2YpETzmSGYSGZ2RWSCJSbaxFY1IbiLJy+T7kXdbdRd97ZRazbLPCpwAqdwDi5cQhNa0IYOEHiEZ3iFN+vJerHerY956YpV9hzBH1ifPxgfmEA=</latexit>

H = {1} (no	addiTonal	symmetry)
<latexit sha1_base64="/2ReI7v9ddmm2ptkNs2KBsbB/fc=">AAACF3icbZDLSgMxFIYzXmu9jbp0EyxCXVhnSkE3QsGF3VnR2kKnlDNp2oZmMkOSEcowT+HGV3HjQkHc6s63Mb0g2vpD4OM/55Bzfj/iTGnH+bIWFpeWV1Yza9n1jc2tbXtn906FsSS0RkIeyoYPinImaE0zzWkjkhQCn9O6P7gY1ev3VCoWils9jGgrgJ5gXUZAG6ttH3vAoz54THgB6D4BnlymJz9cSc8TTwb45irNF48KbTvnFJyx8Dy4U8ihqapt+9PrhCQOqNCEg1JN14l0KwGpGeE0zXqxohGQAfRo06CAgKpWMj4rxYfG6eBuKM0TGo/d3xMJBEoNA990jvZVs7WR+V+tGevuWSthIoo1FWTyUTfmWId4lBHuMEmJ5kMDQCQzu2LSBwlEmySzJgR39uR5qBcLbqngutelXLk8zSOD9tEByiMXnaIyqqAqqiGCHtATekGv1qP1bL1Z75PWBWs6s4f+yPr4BlLYnzY=</latexit>

↵ 2 G/H = SO(2).
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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G = SO(2)⇥ SO(2)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)

013112-2
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s

013112-3

• Two-photon	singlet	state:
Examples:

<latexit sha1_base64="kJFXfdFHNJUMA0DtXllu8OD7Kjc=">AAACI3icbVDLSgMxFM34rPVVdekmWISKWiYi+MBCoRuXFawtdGq5k6Y2NPMgyQhl7KeIG5fu/AY3LhSLGxd+gp8gmD4Wvg4EDuecy809bii40rb9Zo2NT0xOTSdmkrNz8wuLqaXlMxVEkrISDUQgKy4oJrjPSpprwSqhZOC5gpXddqHvly+ZVDzwT3UnZDUPLnze5BS0keqpg0LGARG2YMtxmYaNw5yjIq8ew5ab2ybd83iTdMHFxYwRrn4k66m0nbUHwH8JGZF0PnP/8nH9eVesp3pOI6CRx3xNBShVJXaoazFIzalg3aQTKRYCbcMFqxrqg8dULR6c2MXrRmngZiDN8zUeqN8nYvCU6niuSXqgW+q31xf/86qRbu7XYu6HkWY+HS5qRgLrAPf7wg0uGdWiYwhQyc1fMW2BBKpNq0lTAvl98l9S3smS3SwhJySdP0JDJNAqWkMZRNAeyqNjVEQlRNENekBP6Nm6tR6tnvU6jI5Zo5kV9APW+xewbKd+</latexit>

C(↵,�) :=
P+1

a,b=�1 abP (a, b|↵,�)

<latexit sha1_base64="72Qn3hlt5B5N0u3GM/NMh83mBlE=">AAACEXicbZC7SgNBFIZn4y3GW9RSi8EgRjBhNwhaKATSWEYwJpBdwtnJbDJk9sLMrBCWPIIEfBUbCwVJa2fng9g7uRSa+MPAz3fO4cz53YgzqUzzy0gtLa+srqXXMxubW9s72d29exnGgtAaCXkoGi5IyllAa4opThuRoOC7nNbdXmVcrz9QIVkY3Kl+RB0fOgHzGAGlUSt7UsnbwKMunNkuVXB6XbBJKJulGS1MqVNsZXNm0ZwILxprZnLlw6Gd/x4Nq63sp90OSezTQBEOUjYtM1JOAkIxwukgY8eSRkB60KFNbQPwqXSSyUEDfKxJG3uh0C9QeEJ/TyTgS9n3Xd3pg+rK+doY/ldrxsq7dBIWRLGiAZku8mKOVYjH6eA2E5Qo3tcGiGD6r5h0QQBROsOMDsGaP3nR1EtF67xoWbdWrnyFpkqjA3SE8shCF6iMblAV1RBBj+gZvaI348l4Md6N0bQ1Zcxm9tEfGR8/luKfKw==</latexit>

C(↵,�) = � cos[2(↵� �)].

• Science-ficTon	polarizers:
<latexit sha1_base64="/fQzGkO5Qjm8m2DMxZH42zYpJeA=">AAACLnicbZBdSwJBFIZn+zT72uqymyEJDFJ2TbCLAsEuujTIFNxFzo6zOjj7wcxsIOIf6qa/EkEXBtFtP6NR9yK1AwMvz3sOZ87rxZxJZVkTY219Y3NrO7OT3d3bPzg0j46fZJQIQhsk4pFoeSApZyFtKKY4bcWCQuBx2vQGtanffKZCsih8VMOYugH0QuYzAkqjjnlXyzvA4z5cOh5VcHFbcHwBBJdwBTskku2r1C/MfbcwpYus2DFzVtGaFV4VdipyKK16x3x3uhFJAhoqwkHKtm3Fyh2BUIxwOs46iaQxkAH0aFvLEAIq3dHs2jE+16SL/UjoFyo8o38nRhBIOQw83RmA6stlbwr/89qJ8q/dEQvjRNGQzBf5CccqwtPocJcJShQfagFEMP1XTPqg01I64KwOwV4+eVU0S0W7XLTth3KuepPmkUGn6AzlkY0qqIruUR01EEEv6A1N0KfxanwYX8b3vHXNSGdO0EIZP78SaaYD</latexit>

C(↵,�) = �2

7
cos[3(↵� �)]� cos(↵� �).

QNS

“science-ficTon-	
	polarizers”

C



A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

SpaceTme	boxes

• Two-photon	singlet	state:
Examples:

<latexit sha1_base64="kJFXfdFHNJUMA0DtXllu8OD7Kjc="></latexit>

C(↵,�) :=
P+1

a,b=�1 abP (a, b|↵,�)

<latexit sha1_base64="72Qn3hlt5B5N0u3GM/NMh83mBlE=">AAACEXicbZC7SgNBFIZn4y3GW9RSi8EgRjBhNwhaKATSWEYwJpBdwtnJbDJk9sLMrBCWPIIEfBUbCwVJa2fng9g7uRSa+MPAz3fO4cz53YgzqUzzy0gtLa+srqXXMxubW9s72d29exnGgtAaCXkoGi5IyllAa4opThuRoOC7nNbdXmVcrz9QIVkY3Kl+RB0fOgHzGAGlUSt7UsnbwKMunNkuVXB6XbBJKJulGS1MqVNsZXNm0ZwILxprZnLlw6Gd/x4Nq63sp90OSezTQBEOUjYtM1JOAkIxwukgY8eSRkB60KFNbQPwqXSSyUEDfKxJG3uh0C9QeEJ/TyTgS9n3Xd3pg+rK+doY/ldrxsq7dBIWRLGiAZku8mKOVYjH6eA2E5Qo3tcGiGD6r5h0QQBROsOMDsGaP3nR1EtF67xoWbdWrnyFpkqjA3SE8shCF6iMblAV1RBBj+gZvaI348l4Md6N0bQ1Zcxm9tEfGR8/luKfKw==</latexit>

C(↵,�) = � cos[2(↵� �)].

• Science-ficTon	polarizers:
<latexit sha1_base64="/fQzGkO5Qjm8m2DMxZH42zYpJeA=">AAACLnicbZBdSwJBFIZn+zT72uqymyEJDFJ2TbCLAsEuujTIFNxFzo6zOjj7wcxsIOIf6qa/EkEXBtFtP6NR9yK1AwMvz3sOZ87rxZxJZVkTY219Y3NrO7OT3d3bPzg0j46fZJQIQhsk4pFoeSApZyFtKKY4bcWCQuBx2vQGtanffKZCsih8VMOYugH0QuYzAkqjjnlXyzvA4z5cOh5VcHFbcHwBBJdwBTskku2r1C/MfbcwpYus2DFzVtGaFV4VdipyKK16x3x3uhFJAhoqwkHKtm3Fyh2BUIxwOs46iaQxkAH0aFvLEAIq3dHs2jE+16SL/UjoFyo8o38nRhBIOQw83RmA6stlbwr/89qJ8q/dEQvjRNGQzBf5CccqwtPocJcJShQfagFEMP1XTPqg01I64KwOwV4+eVU0S0W7XLTth3KuepPmkUGn6AzlkY0qqIruUR01EEEv6A1N0KfxanwYX8b3vHXNSGdO0EIZP78SaaYD</latexit>

C(↵,�) = �2

7
cos[3(↵� �)]� cos(↵� �).

QNS

“science-ficTon-	
	polarizers”

C

QuesUon:	Could	the	form	of	the	correlaTons	(in	contrast	to	the	strength)	
																			already	imply	non-classicality?					



A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

SpaceTme	boxes

QuesUon:	Could	the	form	of	the	correlaTons	(in	contrast	to	the	strength)	
																			already	imply	non-classicality?								(Say,																		for	simplicity)

<latexit sha1_base64="eaZYupEa2fwT2PPYuctWu8eD3oU="></latexit>

C(↵,�) =
2JX

m=0

2JX

n=�2J

cmn cos(m↵� n�) + smn sin(m↵� n�)

<latexit sha1_base64="UY48/WJW3UsgL5KqMsguyJy57aA=">AAAB8HicdVBNS8NAEJ3Ur1q/qh69LBbBU0ikse1BKHjxWMHaQhvKZrtpl242cXcjlNA/4cWDgnj153jz37hNK6jog4HHezPMzAsSzpR2nA+rsLK6tr5R3Cxtbe/s7pX3D25VnEpC2yTmsewGWFHOBG1rpjntJpLiKOC0E0wu537nnkrFYnGjpwn1IzwSLGQEayN1ySBznNmFMyhXHNurN7yGi3JyXq8uiOfVkGs7OSqwRGtQfu8PY5JGVGjCsVI910m0n2GpGeF0VuqniiaYTPCI9gwVOKLKz/J7Z+jEKEMUxtKU0ChXv09kOFJqGgWmM8J6rH57c/Evr5fqsO5nTCSppoIsFoUpRzpG8+fRkElKNJ8agolk5lZExlhiok1EJRPC16fof9I5s92q7brX1UqzucyjCEdwDKfgQg2acAUtaAMBDg/wBM/WnfVovVivi9aCtZw5hB+w3j4BUXOP/A==</latexit>

c00 = 0

• Two-photon	singlet	state:
Examples:

<latexit sha1_base64="kJFXfdFHNJUMA0DtXllu8OD7Kjc="></latexit>

C(↵,�) :=
P+1

a,b=�1 abP (a, b|↵,�)

<latexit sha1_base64="72Qn3hlt5B5N0u3GM/NMh83mBlE=">AAACEXicbZC7SgNBFIZn4y3GW9RSi8EgRjBhNwhaKATSWEYwJpBdwtnJbDJk9sLMrBCWPIIEfBUbCwVJa2fng9g7uRSa+MPAz3fO4cz53YgzqUzzy0gtLa+srqXXMxubW9s72d29exnGgtAaCXkoGi5IyllAa4opThuRoOC7nNbdXmVcrz9QIVkY3Kl+RB0fOgHzGAGlUSt7UsnbwKMunNkuVXB6XbBJKJulGS1MqVNsZXNm0ZwILxprZnLlw6Gd/x4Nq63sp90OSezTQBEOUjYtM1JOAkIxwukgY8eSRkB60KFNbQPwqXSSyUEDfKxJG3uh0C9QeEJ/TyTgS9n3Xd3pg+rK+doY/ldrxsq7dBIWRLGiAZku8mKOVYjH6eA2E5Qo3tcGiGD6r5h0QQBROsOMDsGaP3nR1EtF67xoWbdWrnyFpkqjA3SE8shCF6iMblAV1RBBj+gZvaI348l4Md6N0bQ1Zcxm9tEfGR8/luKfKw==</latexit>

C(↵,�) = � cos[2(↵� �)].

• Science-ficTon	polarizers:
<latexit sha1_base64="/fQzGkO5Qjm8m2DMxZH42zYpJeA=">AAACLnicbZBdSwJBFIZn+zT72uqymyEJDFJ2TbCLAsEuujTIFNxFzo6zOjj7wcxsIOIf6qa/EkEXBtFtP6NR9yK1AwMvz3sOZ87rxZxJZVkTY219Y3NrO7OT3d3bPzg0j46fZJQIQhsk4pFoeSApZyFtKKY4bcWCQuBx2vQGtanffKZCsih8VMOYugH0QuYzAkqjjnlXyzvA4z5cOh5VcHFbcHwBBJdwBTskku2r1C/MfbcwpYus2DFzVtGaFV4VdipyKK16x3x3uhFJAhoqwkHKtm3Fyh2BUIxwOs46iaQxkAH0aFvLEAIq3dHs2jE+16SL/UjoFyo8o38nRhBIOQw83RmA6stlbwr/89qJ8q/dEQvjRNGQzBf5CccqwtPocJcJShQfagFEMP1XTPqg01I64KwOwV4+eVU0S0W7XLTth3KuepPmkUGn6AzlkY0qqIruUR01EEEv6A1N0KfxanwYX8b3vHXNSGdO0EIZP78SaaYD</latexit>

C(↵,�) = �2

7
cos[3(↵� �)]� cos(↵� �).

QNS

“science-ficTon-	
	polarizers”

C



A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

SpaceTme	boxes

QuesUon:	Could	the	form	of	the	correlaTons	(in	contrast	to	the	strength)	
																			already	imply	non-classicality?								(Say,																		for	simplicity)

Answer:	No.	If																																																																																then	C	admits

<latexit sha1_base64="eaZYupEa2fwT2PPYuctWu8eD3oU="></latexit>

C(↵,�) =
2JX

m=0

2JX

n=�2J

cmn cos(m↵� n�) + smn sin(m↵� n�)

<latexit sha1_base64="UY48/WJW3UsgL5KqMsguyJy57aA=">AAAB8HicdVBNS8NAEJ3Ur1q/qh69LBbBU0ikse1BKHjxWMHaQhvKZrtpl242cXcjlNA/4cWDgnj153jz37hNK6jog4HHezPMzAsSzpR2nA+rsLK6tr5R3Cxtbe/s7pX3D25VnEpC2yTmsewGWFHOBG1rpjntJpLiKOC0E0wu537nnkrFYnGjpwn1IzwSLGQEayN1ySBznNmFMyhXHNurN7yGi3JyXq8uiOfVkGs7OSqwRGtQfu8PY5JGVGjCsVI910m0n2GpGeF0VuqniiaYTPCI9gwVOKLKz/J7Z+jEKEMUxtKU0ChXv09kOFJqGgWmM8J6rH57c/Evr5fqsO5nTCSppoIsFoUpRzpG8+fRkElKNJ8agolk5lZExlhiok1EJRPC16fof9I5s92q7brX1UqzucyjCEdwDKfgQg2acAUtaAMBDg/wBM/WnfVovVivi9aCtZw5hB+w3j4BUXOP/A==</latexit>

c00 = 0

of	a	local	hidden-variable	model.	Likely	true	for	other	groups	too.

• Two-photon	singlet	state:
Examples:

<latexit sha1_base64="kJFXfdFHNJUMA0DtXllu8OD7Kjc="></latexit>

C(↵,�) :=
P+1

a,b=�1 abP (a, b|↵,�)

<latexit sha1_base64="72Qn3hlt5B5N0u3GM/NMh83mBlE=">AAACEXicbZC7SgNBFIZn4y3GW9RSi8EgRjBhNwhaKATSWEYwJpBdwtnJbDJk9sLMrBCWPIIEfBUbCwVJa2fng9g7uRSa+MPAz3fO4cz53YgzqUzzy0gtLa+srqXXMxubW9s72d29exnGgtAaCXkoGi5IyllAa4opThuRoOC7nNbdXmVcrz9QIVkY3Kl+RB0fOgHzGAGlUSt7UsnbwKMunNkuVXB6XbBJKJulGS1MqVNsZXNm0ZwILxprZnLlw6Gd/x4Nq63sp90OSezTQBEOUjYtM1JOAkIxwukgY8eSRkB60KFNbQPwqXSSyUEDfKxJG3uh0C9QeEJ/TyTgS9n3Xd3pg+rK+doY/ldrxsq7dBIWRLGiAZku8mKOVYjH6eA2E5Qo3tcGiGD6r5h0QQBROsOMDsGaP3nR1EtF67xoWbdWrnyFpkqjA3SE8shCF6iMblAV1RBBj+gZvaI348l4Md6N0bQ1Zcxm9tEfGR8/luKfKw==</latexit>

C(↵,�) = � cos[2(↵� �)].

• Science-ficTon	polarizers:
<latexit sha1_base64="/fQzGkO5Qjm8m2DMxZH42zYpJeA=">AAACLnicbZBdSwJBFIZn+zT72uqymyEJDFJ2TbCLAsEuujTIFNxFzo6zOjj7wcxsIOIf6qa/EkEXBtFtP6NR9yK1AwMvz3sOZ87rxZxJZVkTY219Y3NrO7OT3d3bPzg0j46fZJQIQhsk4pFoeSApZyFtKKY4bcWCQuBx2vQGtanffKZCsih8VMOYugH0QuYzAkqjjnlXyzvA4z5cOh5VcHFbcHwBBJdwBTskku2r1C/MfbcwpYus2DFzVtGaFV4VdipyKK16x3x3uhFJAhoqwkHKtm3Fyh2BUIxwOs46iaQxkAH0aFvLEAIq3dHs2jE+16SL/UjoFyo8o38nRhBIOQw83RmA6stlbwr/89qJ8q/dEQvjRNGQzBf5CccqwtPocJcJShQfagFEMP1XTPqg01I64KwOwV4+eVU0S0W7XLTth3KuepPmkUGn6AzlkY0qqIruUR01EEEv6A1N0KfxanwYX8b3vHXNSGdO0EIZP78SaaYD</latexit>

C(↵,�) = �2

7
cos[3(↵� �)]� cos(↵� �).

QNS

“science-ficTon-	
	polarizers”

C

<latexit sha1_base64="XtxPKxjs+MFb4iqotfbr68B8FNY="></latexit>

max
↵,�

|C(↵,�)| 
p
2e�1[4J(2J + 1)]�3/2



Overview

1.	General	framework	of	“spacetime	boxes”

2.	Foundational	insights

3.	Towards	novel	protocols…

4.	…	and	experimental	tests	of	QT



Overview

1.	General	framework	of	“spacetime	boxes”

2.	Foundational	insights

3.	Towards	novel	protocols…

4.	…	and	experimental	tests	of	QT



FoundaTonal	consequences

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).



FoundaTonal	consequences

GARNER, KRUMM, AND MÜLLER PHYSICAL REVIEW RESEARCH 2, 013112 (2020)

Alice Bob
polarizer

detector

polarizer

a b

detector

(b)
Alice Bob

x y
a b

(a)

FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
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[Fig. 1(b)]. Crucially, we describe such experiments without
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metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
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Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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Theorem:	The	quantum	(2,2,2)-correlaTons	Q	are	exactly	those	that	
																		can	be	obtained	by																															-boxes	that	transform	
																		locally	fundamentally	and	are	locally	unbiased,	restricted	to	
																		two	inputs	per	party,	and	supplemented	by	shared	randomness.
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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Hence,	bounding	the	representaUon	label	
can	severely	constrain	the	possible	correlaUons.

This	amounts	to	an	assumpTon	of	“how	the	devices	respond	
to	spaTotemporal	symmetry	transformaTons”.

Idea:	use	this	for	protocols.
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
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tus (M). The source S prepares one of two quantum systems, depending of an external
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E1, E2, where
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for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
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The scenario is therefore semi-DI. The interest of this proposal is that very simple
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The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2

<latexit sha1_base64="aNorDOmAidKoouklcefdsIAKqCc=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqswUUTdC0U2XFewDOkPJZDJtaJIZkoxSxn6KGxeKuPVL3Pk3ZtpZaOuBwOGce7knJ0gYVdpxvq3S2vrG5lZ5u7Kzu7d/YFcPuypOJSYdHLNY9gOkCKOCdDTVjPQTSRAPGOkFk9vc7z0QqWgs7vU0IT5HI0EjipE20tCueiHlHkd6jBHLWrPrxtCuOXVnDrhK3ILUQIH20P7ywhinnAiNGVJq4DqJ9jMkNcWMzCpeqkiC8ASNyMBQgThRfjaPPoOnRglhFEvzhIZz9fdGhrhSUx6YyTykWvZy8T9vkOroys+oSFJNBF4cilIGdQzzHmBIJcGaTQ1BWFKTFeIxkghr01bFlOAuf3mVdBt196LeuDuvNW+KOsrgGJyAM+CCS9AELdAGHYDBI3gGr+DNerJerHfrYzFasoqdI/AH1ucPAweT1w==</latexit>

dimH = 2
<latexit sha1_base64="ptkw970nXDyixd9BXtz6FuK1q48=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0SNQjiRePmAiY0IZsly1s2G6b3a0RG36JFw8a49Wf4s1/4wI9KPiSSV7em8nMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T447Kg4lYS2ScxjeR9gRTkTtK2Z5vQ+kRRHAafdYHw987sPVCoWizs9Sagf4aFgISNYG6lvlx89JrzMrdar59WGN+3bFafmzIFWiZuTCuRo9e0vbxCTNK JCE46V6rlOov0MS80Ip9OSlyqaYDLGQ9ozVOCIKj+bHz5Fp0YZoDCWpoRGc/X3RIYjpSZRYDojrEdq2ZuJ/3m9VIdXfsZEkmoqyGJRmHKkYzRLAQ2YpETziSGYSGZuRWSEJSbaZFUyIbjLL6+STr3mXtTqt41Ks5nHUYRjOIEzcOESmnADLWgDgRSe4RXerCfrxXq3PhatBSufOYI/sD5/AOM8ke8=</latexit>

x 2 {1, 2, 3, 4}

<latexit sha1_base64="lbgqN3mE87GS0M5xm9Ki4bgJAAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY8FLx4r2A9IQtlsN+3SzW7Y3Qgh9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777aytb2xubVd2qrt7+weHtaPjrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140uZv5vSeqNJPi0eQpDRM8EixmBBsr+XnARFB4l81gOqjV3YY7B1olXknqUKI9qH0FQ0myhApDONba99zUhAVWhhFOp9Ug0zTFZIJH1LdU4ITqsJifPEXnVhmiWCpbwqC5+nuiwInWeRLZzgSbsV72ZuJ/np+Z+DYsmEgzQwVZLIozjoxEs//RkClKDM8twUQxeysiY6wwMTalqg3BW355lXSbDe+60Xy4qrdaZRwVOIUzuAAPbqAF99CGDhCQ8Ayv8OYY58V5dz4WrWtOOXMCf+B8/gCot5DY</latexit>

y 2 {1, 2}

Physical	moUvaUon?



Towards	protocols



Idea:	For	SDI	protocols,	replace	dimension	bounds	by	physically	be\er	
										moUvated	assumpUons	on	how	systems	respond	to	symmetries.

Towards	protocols

S Mx 2 {1, 2} a 2 {±1}

�x

hHi  !

Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Also,	closer	to	parUcle	physics	intuiUon:	don’t	count	
dimensions,	but	representaTon	labels	(of	the	Poincaré	group).
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)

013112-2

SEMI-DEVICE-INDEPENDENT INFORMATION … PHYSICAL REVIEW RESEARCH 2, 013112 (2020)

are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s

013112-3
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Suppose	we	have	a	physically	well-moTvated	belief	that
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• If	on	repeaTng	many	Tmes,	they	find	the	correlaTons
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then	nonlocality	is	cerUfied	with	“one-sided	free	choice”	only.

Completely	useless,	

don’t	try	this	at	home!	

But:	proof	of	principle.
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QUANTUM OPTICS

Bell correlations in a
Bose-Einstein condensate
Roman Schmied,1* Jean-Daniel Bancal,2,4* Baptiste Allard,1* Matteo Fadel,1

Valerio Scarani,2,3 Philipp Treutlein,1† Nicolas Sangouard4†

Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body

442 22 APRIL 2016 • VOL 352 ISSUE 6284 sciencemag.org SCIENCE

Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.
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that has thus far been restricted to a purely theo-
retical framework.
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Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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SomeTmes,	all	we	know	
for	sure	is	that	we’ve	sent	
a	pulse	of	a	certain	duraTon	
(or	some	other	S.T.-quanTty)	
and	recorded	an	outcome.	
	
What	can	we	infer	from	this	alone?	
Or	from	very	few	addiUonal	assumpUons,	incl.	(or	not)	QT?

to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body

442 22 APRIL 2016 • VOL 352 ISSUE 6284 sciencemag.org SCIENCE

Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.
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Experiments	as	“black	boxes”



that has thus far been restricted to a purely theo-
retical framework.
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Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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SomeTmes,	all	we	know	
for	sure	is	that	we’ve	sent	
a	pulse	of	a	certain	duraTon	
(or	some	other	S.T.-quanTty)	
and	recorded	an	outcome.	
	
What	can	we	infer	from	this	alone?	
Or	from	very	few	addiUonal	assumpUons,	incl.	(or	not)	QT?

to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body
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Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.
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Experiments	as	“black	boxes”

Under	what	condiTons	could	the	result	falsify	Quantum	Theory?



Conclusions

• “SpaceUme	boxes”	via	group	representaTon	theory.

• FoundaTonal	insights:	study	of	interplay	probability	vs.	spaceUme,	
exact	characterizaTon	of	the	quantum	(2,2,2)-correlaUons.

• Towards	protocols:	bounding	representaUon	labels	as	a	physically	
well-moTvated	assumpTon.	“Proof	of	principle”	nonlocality	cerTficaTon.

• Novel	experimental	tests	of	QT?
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