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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that

7
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• In	quantum	physics:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.

8
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surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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More	general	than	quantum?



• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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• In	quantum	physics:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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Quantum	admits	more	general	P’s	due	to	the	violation	of	Bell	inequalities.

More	general	than	quantum?
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Cxy := E(a · b|x, y).



whereCHSH := |C00 + C01 + C10 � C11| ⇥ 2

CHSH  2

p
2.

Classical	probability	distribuSons	saSsfy	Bell	inequality:

The	Bell-CHSH	inequality

classical QM Quantum: Bell inequality violation.
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where

classical QM

CHSH := |C00 + C01 + C10 � C11| ⇥ 2

CHSH  2
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Classical	probability	distribuSons	saSsfy	Bell	inequality:

The	Bell-CHSH	inequality

S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaSons	the	most	general	
that	saSsfy	the	no-signalling	principle?

<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

Quantum: Bell inequality violation.
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Quantum: Bell inequality violation.

CHSH := |C00 + C01 + C10 � C11| ⇥ 2

CHSH  2

p
2.

Classical	probability	distribuSons	saSsfy	Bell	inequality:

The	Bell-CHSH	inequality

S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaSons	the	most	general	
that	saSsfy	the	no-signalling	principle?

<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

No!	Counterexample:	the	PR-box	correlaSons

CHSH=4

classical QM

<latexit sha1_base64="PZ6tYgjhG9/vrbeAfLEQVvqS8Fk=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoiIIhSK4rGAf0IQwmU7boZMHMxNpiFm78VfcuFDErV/gzr9x0mah1QMXDufcy733uCGjQhrGl1ZYWFxaXimultbWNza39O2dtggijkkLByzgXRcJwqhPWpJKRrohJ8hzGem440bmd+4IFzTwb2UcEttDQ58OKEZSSY6+33CSSZxeXFoekiPXTa7SCrJwP5DQvZ8cx0dVRy8bVWMK+JeYOSmDHE1H/7T6AY484kvMkBA90wilnSAuKWYkLVmRICHCYzQkPUV95BFhJ9NXUniolD4cBFyVL+FU/TmRIE+I2HNVZ3awmPcy8T+vF8nBuZ1QP4wk8fFs0SBiUAYwywX2KSdYslgRhDlVt0I8QhxhqdIrqRDM+Zf/kvZJ1Tyt1m5q5Xo9j6MI9sABqAATnIE6uAZN0AIYPIAn8AJetUftWXvT3metBS2f2QW/oH18A1Y4mgY=</latexit>

Cxy := E(a · b|x, y).

<latexit sha1_base64="qp6YB0O15IgoUFnLurPZwG18NkQ="></latexit>

P (+1,+1|x, y) = P (�1,�1|x, y) = 1

2
if (x, y) 2 {(0, 0), (0, 1), (1, 0)}

P (+1,�1|1, 1) = P (�1,+1|1, 1) = 1

2



where

Quantum: Bell inequality violation.

CHSH := |C00 + C01 + C10 � C11| ⇥ 2

CHSH  2

p
2.

Classical	probability	distribuSons	saSsfy	Bell	inequality:

The	Bell-CHSH	inequality

S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaSons	the	most	general	
that	saSsfy	the	no-signalling	principle?

<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

No!	Counterexample:	the	PR-box	correlaSons

CHSH=4

no-signallingclassical QM

<latexit sha1_base64="PZ6tYgjhG9/vrbeAfLEQVvqS8Fk=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoiIIhSK4rGAf0IQwmU7boZMHMxNpiFm78VfcuFDErV/gzr9x0mah1QMXDufcy733uCGjQhrGl1ZYWFxaXimultbWNza39O2dtggijkkLByzgXRcJwqhPWpJKRrohJ8hzGem440bmd+4IFzTwb2UcEttDQ58OKEZSSY6+33CSSZxeXFoekiPXTa7SCrJwP5DQvZ8cx0dVRy8bVWMK+JeYOSmDHE1H/7T6AY484kvMkBA90wilnSAuKWYkLVmRICHCYzQkPUV95BFhJ9NXUniolD4cBFyVL+FU/TmRIE+I2HNVZ3awmPcy8T+vF8nBuZ1QP4wk8fFs0SBiUAYwywX2KSdYslgRhDlVt0I8QhxhqdIrqRDM+Zf/kvZJ1Tyt1m5q5Xo9j6MI9sABqAATnIE6uAZN0AIYPIAn8AJetUftWXvT3metBS2f2QW/oH18A1Y4mgY=</latexit>

Cxy := E(a · b|x, y).

<latexit sha1_base64="qp6YB0O15IgoUFnLurPZwG18NkQ="></latexit>

P (+1,+1|x, y) = P (�1,�1|x, y) = 1

2
if (x, y) 2 {(0, 0), (0, 1), (1, 0)}

P (+1,�1|1, 1) = P (�1,+1|1, 1) = 1

2



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS

CorrelaSons	in	C	come	from	classical	prob.	theory,	
correlaSons	in	Q	from	quantum	theory,	
correlaSons	in	NS	from	a	theory	called	“boxworld”.



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS

CorrelaSons	in	C	come	from	classical	prob.	theory,	
correlaSons	in	Q	from	quantum	theory,	
correlaSons	in	NS	from	a	theory	called	“boxworld”.

3	examples	of	a	“generalized	probabilisKc	theory”.



Generalized	probabilisSc	theories
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PreparaSon transformaSon measurement



�

Example:	classical	coin	toss.

•	On	every	push	of	bu_on,	the	preparaSon	device	performs	
				a	biased	coin	toss.	
•	The	transformaSon	device,	for	example,	inverts	the	coin	
				(if	heads	then	tails,	and	vice	versa).	
•	The	measurement	outcome	is	"heads"	or	"tails".
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•	On	every	push	of	bu_on,	the	preparaSon	device	produces	
				a	biased	coin	toss.	
•	The	transformaSon	device,	for	example,	inverts	the	coin	
				(if	heads	then	tails,	and	vice	versa).	
•	The	measurement	outcome	is	"heads"	or	"tails".
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Example:	classical	coin	toss.
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•	The	preparaSon	device	prepares	a	physical	system	
•	in	a	state	ω.	Here

� =

✓
Prob(heads)
Prob(tails)

◆
=

✓
p

1� p

◆
.

?
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State	space	Ω:	the	set	of	all	possible	states
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•	The	preparaSon	device	prepares	a	physical	system	
•	in	a	state	ω.

T

✓
p

1� p

◆
=

✓
1� p
p

◆

✓
1
0

◆

✓
0
1

◆

✓
1/2
1/2

◆

•	TransformaSon:
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•	The	preparaSon	device	prepares	a	physical	system	
•	in	a	state	ω.

✓
0
1

◆

✓
1/2
1/2

◆

•	TransformaSon: T

✓
p

1� p

◆
=

✓
1� p
p

◆

Maps	states	to	states	and	is	linear.
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1
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•	Every	measurement	outcome	has	a	probability,	
			depending	linearly	on	the	state:
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✓
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◆
•	Every	measurement	outcome	has	a	probability,	
			depending	linearly	on	the	state:

Prob(heads|!) = p =

✓
1
0

◆
·
✓

p
1� p

◆
= e · !.
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Example:	quantum	spin-1/2	parScle.
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•	The	preparaSon	device	prepares	a	spin-1/2	
•	parScle	in	quantum	state	ω.

More	generally:	ω	is	2x2	density	matrix.

↵| �⇤+ �| ⇥⇤

Generalized	probabilisSc	theories

Example:	quantum	spin-1/2	parScle.

PreparaSon transformaSon measurement



�

•	The	preparaSon	device	prepares	a	spin-1/2	
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• Unitary transformation of the density matrix:
� 7! U�U†.

Generalized	probabilisSc	theories

Example:	quantum	spin-1/2	parScle.
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• Unitary transformation of the density matrix:
� 7! U�U†.

• Measurement in arbitrary spin direction d:
Prob(� |�) = Tr(Pd �)

Generalized	probabilisSc	theories

Example:	quantum	spin-1/2	parScle.
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• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliSes	of	the	possible	outcomes.
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• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliSes	of	the	possible	outcomes.

Generalized	probabilisSc	theories

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:

<latexit sha1_base64="kqYCupqATh/epZ4CkHtEzP+iAkI=">AAACJHicbZDNSgMxFIUz9a/Wv6pLN8EitJthRgqKIBTduKxgbaFTSibNtKGZJCQZpYx9Fze+ihsXiuLCjc9i2s5CWy+EfJxzL8k9oWRUG8/7cnJLyyura/n1wsbm1vZOcXfvVotEYdLAggnVCpEmjHLSMNQw0pKKoDhkpBkOLyd+844oTQW/MSNJOjHqcxpRjIyVusWzejkNVAwTOa6cT8mocTlQA/EQJBIpJe4DhXifkYDNrkytuN1iyXO9acFF8DMogazq3eJ70BM4iQk3mCGt274nTSdFylDMyLgQJJpIhIeoT9oWOYqJ7qTTHcfwyCo9GAllDzdwqv6eSFGs9SgObWeMzEDPexPxP6+dmOi0k1IuE0M4nj0UJQwaASeBwR5VBBs2soCwovavEA+QQtjYWAs2BH9+5UVoHrt+1fX962qpdpHlkQcH4BCUgQ9OQA1cgTpoAAwewTN4BW/Ok/PifDifs9ack83sgz/lfP8ADVOlkw==</latexit>

P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliSes	of	the	possible	outcomes.
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• What	is	a	state	space?	
It	is	the	collecSon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staKsKcal	mixtures.

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:

<latexit sha1_base64="kqYCupqATh/epZ4CkHtEzP+iAkI=">AAACJHicbZDNSgMxFIUz9a/Wv6pLN8EitJthRgqKIBTduKxgbaFTSibNtKGZJCQZpYx9Fze+ihsXiuLCjc9i2s5CWy+EfJxzL8k9oWRUG8/7cnJLyyura/n1wsbm1vZOcXfvVotEYdLAggnVCpEmjHLSMNQw0pKKoDhkpBkOLyd+844oTQW/MSNJOjHqcxpRjIyVusWzejkNVAwTOa6cT8mocTlQA/EQJBIpJe4DhXifkYDNrkytuN1iyXO9acFF8DMogazq3eJ70BM4iQk3mCGt274nTSdFylDMyLgQJJpIhIeoT9oWOYqJ7qTTHcfwyCo9GAllDzdwqv6eSFGs9SgObWeMzEDPexPxP6+dmOi0k1IuE0M4nj0UJQwaASeBwR5VBBs2soCwovavEA+QQtjYWAs2BH9+5UVoHrt+1fX962qpdpHlkQcH4BCUgQ9OQA1cgTpoAAwewTN4BW/Ok/PifDifs9ack83sgz/lfP8ADVOlkw==</latexit>

P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
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• What	is	a	state	space?	
It	is	the	collecSon	of	all	states	that	a	system	could	
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QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:
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⌦ = {⇢ 2 HN (C) | tr(⇢) = 1, ⇢ � 0}.
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• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliSes	of	the	possible	outcomes.
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• What	is	a	state	space?	
It	is	the	collecSon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staKsKcal	mixtures.

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:
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QT:
<latexit sha1_base64="0uc4pHpQB7Jg/+l02L/tMnpSoUw="></latexit>

⌦ = {⇢ 2 HN (C) | tr(⇢) = 1, ⇢ � 0}.

CPT:
<latexit sha1_base64="EtVPggItS4QzmPMY3cvEB3A62WY="></latexit>

⌦ = {(p1, . . . , pN ) | pi � 0,
X

i

pi = 1}.

convex
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Ω
!1

!2convex

<latexit sha1_base64="DEOVLSvp5adCTzPtX91ZZl1bpIE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinosePFYoV/QriWbZtvYbLIkWaEs/Q9ePCji1f/jzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWiCG0RyaXqBlhTzgRtGWY47caK4ijgtBNMbjO/80SVZlI0zTSmfoRHgoWMYGOldvMhvfBmg3LFrbpzoFXi5aQCORqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP51fO0NnVhmiUCpbwqC5+nsixZHW0yiwnRE2Y73sZeJ/Xi8x4Y2fMhEnhgqyWBQmHBmJstfRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlfVr2rau2+VqnX8ziKcAKncA4eXEMd7qABLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcEqY7F</latexit>

T�1

<latexit sha1_base64="+xZdS2dyVFxhkI7up7MZ+1nqbtU=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQxCvIRdCepFCHjxGCEvyC5hdjJJhsxjmZmNhDWf4sWDIl79Em/+jZNkD5pY0FBUddPdFcWMauN5305uY3Nreye/W9jbPzg8covHLS0ThUkTSyZVJ0KaMCpI01DDSCdWBPGIkXY0vpv77QlRmkrRMNOYhBwNBR1QjIyVem6xUQ4kJ0N0cRtMkIpHtOeWvIq3AFwnfkZKIEO9534FfYkTToTBDGnd9b3YhClShmJGZoUg0SRGeIyGpGupQJzoMF2cPoPnVunDgVS2hIEL9fdEirjWUx7ZTo7MSK96c/E/r5uYwU2YUhEnhgi8XDRIGDQSznOAfaoINmxqCcKK2lshHiGFsLFpFWwI/urL66R1WfGvKtWHaqlWy+LIg1NwBsrAB9egBu5BHTQBBo/gGbyCN+fJeXHenY9la87JZk7AHzifP4Vok4k=</latexit>

T (!) = '
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T	is	reversible	if												is	also	a	transformaSon.
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QT:	Completely	posiSve,	trace-non-increasing	maps.		
							Reversible	transformaSons:	unitary	maps,

Ω
!1

!2convex

<latexit sha1_base64="DEOVLSvp5adCTzPtX91ZZl1bpIE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinosePFYoV/QriWbZtvYbLIkWaEs/Q9ePCji1f/jzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWiCG0RyaXqBlhTzgRtGWY47caK4ijgtBNMbjO/80SVZlI0zTSmfoRHgoWMYGOldvMhvfBmg3LFrbpzoFXi5aQCORqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP51fO0NnVhmiUCpbwqC5+nsixZHW0yiwnRE2Y73sZeJ/Xi8x4Y2fMhEnhgqyWBQmHBmJstfRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlfVr2rau2+VqnX8ziKcAKncA4eXEMd7qABLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcEqY7F</latexit>

T�1

<latexit sha1_base64="+xZdS2dyVFxhkI7up7MZ+1nqbtU=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQxCvIRdCepFCHjxGCEvyC5hdjJJhsxjmZmNhDWf4sWDIl79Em/+jZNkD5pY0FBUddPdFcWMauN5305uY3Nreye/W9jbPzg8covHLS0ThUkTSyZVJ0KaMCpI01DDSCdWBPGIkXY0vpv77QlRmkrRMNOYhBwNBR1QjIyVem6xUQ4kJ0N0cRtMkIpHtOeWvIq3AFwnfkZKIEO9534FfYkTToTBDGnd9b3YhClShmJGZoUg0SRGeIyGpGupQJzoMF2cPoPnVunDgVS2hIEL9fdEirjWUx7ZTo7MSK96c/E/r5uYwU2YUhEnhgi8XDRIGDQSznOAfaoINmxqCcKK2lshHiGFsLFpFWwI/urL66R1WfGvKtWHaqlWy+LIg1NwBsrAB9egBu5BHTQBBo/gGbyCN+fJeXHenY9la87JZk7AHzifP4Vok4k=</latexit>

T (!) = '

<latexit sha1_base64="W7TYHEQ1k8XGa3LI/8fgka/WBBY=">AAACBXicbVBPS8MwHE3nvzn/VT3qITgET6WVoR4HXjxOsNtgrSNN0y4saUuSCqPs4sWv4sWDIl79Dt78NqZbD7r5IPDy3u9H8l6QMSqVbX8btZXVtfWN+mZja3tnd8/cP+jKNBeYuDhlqegHSBJGE+IqqhjpZ4IgHjDSC8bXpd97IELSNLlTk4z4HMUJjShGSktD89gTo9TjKJMqhW55ge69F6I4JsIamk3bsmeAy8SpSBNU6AzNLy9Mcc5JojBDUg4cO1N+gYSimJFpw8slyRAeo5gMNE0QJ9IvZimm8FQrIYxSoU+i4Ez9vVEgLuWEB3qSIzWSi14p/ucNchVd+QVNslyRBM8finIGdeKyEhhSQbBiE00QFlT/FeIREggrXVxDl+AsRl4m3XPLubBat61mu13VUQdH4AScAQdcgja4AR3gAgwewTN4BW/Gk/FivBsf89GaUe0cgj8wPn8AAH6YQA==</latexit>

⇢ 7! U⇢U †.
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QT:	Completely	posiSve,	trace-non-increasing	maps.		
							Reversible	transformaSons:	unitary	maps,

Ω
!1

!2convex

<latexit sha1_base64="DEOVLSvp5adCTzPtX91ZZl1bpIE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinosePFYoV/QriWbZtvYbLIkWaEs/Q9ePCji1f/jzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWiCG0RyaXqBlhTzgRtGWY47caK4ijgtBNMbjO/80SVZlI0zTSmfoRHgoWMYGOldvMhvfBmg3LFrbpzoFXi5aQCORqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP51fO0NnVhmiUCpbwqC5+nsixZHW0yiwnRE2Y73sZeJ/Xi8x4Y2fMhEnhgqyWBQmHBmJstfRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlfVr2rau2+VqnX8ziKcAKncA4eXEMd7qABLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcEqY7F</latexit>

T�1

<latexit sha1_base64="+xZdS2dyVFxhkI7up7MZ+1nqbtU=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQxCvIRdCepFCHjxGCEvyC5hdjJJhsxjmZmNhDWf4sWDIl79Em/+jZNkD5pY0FBUddPdFcWMauN5305uY3Nreye/W9jbPzg8covHLS0ThUkTSyZVJ0KaMCpI01DDSCdWBPGIkXY0vpv77QlRmkrRMNOYhBwNBR1QjIyVem6xUQ4kJ0N0cRtMkIpHtOeWvIq3AFwnfkZKIEO9534FfYkTToTBDGnd9b3YhClShmJGZoUg0SRGeIyGpGupQJzoMF2cPoPnVunDgVS2hIEL9fdEirjWUx7ZTo7MSK96c/E/r5uYwU2YUhEnhgi8XDRIGDQSznOAfaoINmxqCcKK2lshHiGFsLFpFWwI/urL66R1WfGvKtWHaqlWy+LIg1NwBsrAB9egBu5BHTQBBo/gGbyCN+fJeXHenY9la87JZk7AHzifP4Vok4k=</latexit>

T (!) = '

<latexit sha1_base64="W7TYHEQ1k8XGa3LI/8fgka/WBBY=">AAACBXicbVBPS8MwHE3nvzn/VT3qITgET6WVoR4HXjxOsNtgrSNN0y4saUuSCqPs4sWv4sWDIl79Dt78NqZbD7r5IPDy3u9H8l6QMSqVbX8btZXVtfWN+mZja3tnd8/cP+jKNBeYuDhlqegHSBJGE+IqqhjpZ4IgHjDSC8bXpd97IELSNLlTk4z4HMUJjShGSktD89gTo9TjKJMqhW55ge69F6I4JsIamk3bsmeAy8SpSBNU6AzNLy9Mcc5JojBDUg4cO1N+gYSimJFpw8slyRAeo5gMNE0QJ9IvZimm8FQrIYxSoU+i4Ez9vVEgLuWEB3qSIzWSi14p/ucNchVd+QVNslyRBM8finIGdeKyEhhSQbBiE00QFlT/FeIREggrXVxDl+AsRl4m3XPLubBat61mu13VUQdH4AScAQdcgja4AR3gAgwewTN4BW/Gk/FivBsf89GaUe0cgj8wPn8AAH6YQA==</latexit>

⇢ 7! U⇢U †.

• How	to	describe	measurements?	
By	a	collecSon	of	linear	funcSonals	
such	that	the	probability	of	outcome	i	is

<latexit sha1_base64="bDRJV5AQbc3uRy36V7pf87oglEU=">AAAB+3icbZDNSgMxFIUz9a/Wv1qXboJFcFHKTCnqsuDGZQXbCu0wZDJ32tBMMiQZsZS+ihsXirj1Rdz5NqbtLLT1QODj3Hu5NydMOdPGdb+dwsbm1vZOcbe0t39weFQ+rnS1zBSFDpVcqoeQaOBMQMcww+EhVUCSkEMvHN/M671HUJpJcW8mKfgJGQoWM0qMtYJyBQKvBkGjNuCRNNqiNatu3V0Ir4OXQxXlagflr0EkaZaAMJQTrfuemxp/SpRhlMOsNMg0pISOyRD6FgVJQPvTxe0zfG6dCMdS2ScMXri/J6Yk0XqShLYzIWakV2tz879aPzPxtT9lIs0MCLpcFGccG4nnQeCIKaCGTywQqpi9FdMRUYQaG1fJhuCtfnkduo26d1lv3jWrrVYeRxGdojN0gTx0hVroFrVRB1H0hJ7RK3pzZs6L8+58LFsLTj5zgv7I+fwBncGTiQ==</latexit>e1, e2, . . . , en
<latexit sha1_base64="35+Q17tNxC6qQ2xeZztGchCqG0I=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBahXkIiRT0WvHisYD+gCWWznbRLdzdhdyOU0L/hxYMiXv0z3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6PqscnHZ1kikKbJjxRvYho4ExC2zDDoZcqICLi0I0md3O/+wRKs0Q+mmkKoSAjyWJGibFSAANWDxIBI3LpDqo1z/UWwOvEL0gNFWgNql/BMKGZAGkoJ1r3fS81YU6UYZTDrBJkGlJCJ2QEfUslEaDDfHHzDF9YZYjjRNmSBi/U3xM5EVpPRWQ7BTFjverNxf+8fmbi2zBnMs0MSLpcFGccmwTPA8BDpoAaPrWEUMXsrZiOiSLU2JgqNgR/9eV10rly/Wu38dCoNZtFHGV0hs5RHfnoBjXRPWqhNqIoRc/oFb05mfPivDsfy9aSU8ycoj9wPn8ACxSRCg==</latexit>

ei(!).
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Ω
!1

!2convex

<latexit sha1_base64="DEOVLSvp5adCTzPtX91ZZl1bpIE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinosePFYoV/QriWbZtvYbLIkWaEs/Q9ePCji1f/jzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWiCG0RyaXqBlhTzgRtGWY47caK4ijgtBNMbjO/80SVZlI0zTSmfoRHgoWMYGOldvMhvfBmg3LFrbpzoFXi5aQCORqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP51fO0NnVhmiUCpbwqC5+nsixZHW0yiwnRE2Y73sZeJ/Xi8x4Y2fMhEnhgqyWBQmHBmJstfRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlfVr2rau2+VqnX8ziKcAKncA4eXEMd7qABLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcEqY7F</latexit>

T�1

<latexit sha1_base64="+xZdS2dyVFxhkI7up7MZ+1nqbtU=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQxCvIRdCepFCHjxGCEvyC5hdjJJhsxjmZmNhDWf4sWDIl79Em/+jZNkD5pY0FBUddPdFcWMauN5305uY3Nreye/W9jbPzg8covHLS0ThUkTSyZVJ0KaMCpI01DDSCdWBPGIkXY0vpv77QlRmkrRMNOYhBwNBR1QjIyVem6xUQ4kJ0N0cRtMkIpHtOeWvIq3AFwnfkZKIEO9534FfYkTToTBDGnd9b3YhClShmJGZoUg0SRGeIyGpGupQJzoMF2cPoPnVunDgVS2hIEL9fdEirjWUx7ZTo7MSK96c/E/r5uYwU2YUhEnhgi8XDRIGDQSznOAfaoINmxqCcKK2lshHiGFsLFpFWwI/urL66R1WfGvKtWHaqlWy+LIg1NwBsrAB9egBu5BHTQBBo/gGbyCN+fJeXHenY9la87JZk7AHzifP4Vok4k=</latexit>

T (!) = '

<latexit sha1_base64="W7TYHEQ1k8XGa3LI/8fgka/WBBY=">AAACBXicbVBPS8MwHE3nvzn/VT3qITgET6WVoR4HXjxOsNtgrSNN0y4saUuSCqPs4sWv4sWDIl79Dt78NqZbD7r5IPDy3u9H8l6QMSqVbX8btZXVtfWN+mZja3tnd8/cP+jKNBeYuDhlqegHSBJGE+IqqhjpZ4IgHjDSC8bXpd97IELSNLlTk4z4HMUJjShGSktD89gTo9TjKJMqhW55ge69F6I4JsIamk3bsmeAy8SpSBNU6AzNLy9Mcc5JojBDUg4cO1N+gYSimJFpw8slyRAeo5gMNE0QJ9IvZimm8FQrIYxSoU+i4Ez9vVEgLuWEB3qSIzWSi14p/ucNchVd+QVNslyRBM8finIGdeKyEhhSQbBiE00QFlT/FeIREggrXVxDl+AsRl4m3XPLubBat61mu13VUQdH4AScAQdcgja4AR3gAgwewTN4BW/Gk/FivBsf89GaUe0cgj8wPn8AAH6YQA==</latexit>

⇢ 7! U⇢U †.

• How	to	describe	measurements?	
By	a	collecSon	of	linear	funcSonals	
such	that	the	probability	of	outcome	i	is

<latexit sha1_base64="bDRJV5AQbc3uRy36V7pf87oglEU=">AAAB+3icbZDNSgMxFIUz9a/Wv1qXboJFcFHKTCnqsuDGZQXbCu0wZDJ32tBMMiQZsZS+ihsXirj1Rdz5NqbtLLT1QODj3Hu5NydMOdPGdb+dwsbm1vZOcbe0t39weFQ+rnS1zBSFDpVcqoeQaOBMQMcww+EhVUCSkEMvHN/M671HUJpJcW8mKfgJGQoWM0qMtYJyBQKvBkGjNuCRNNqiNatu3V0Ir4OXQxXlagflr0EkaZaAMJQTrfuemxp/SpRhlMOsNMg0pISOyRD6FgVJQPvTxe0zfG6dCMdS2ScMXri/J6Yk0XqShLYzIWakV2tz879aPzPxtT9lIs0MCLpcFGccG4nnQeCIKaCGTywQqpi9FdMRUYQaG1fJhuCtfnkduo26d1lv3jWrrVYeRxGdojN0gTx0hVroFrVRB1H0hJ7RK3pzZs6L8+58LFsLTj5zgv7I+fwBncGTiQ==</latexit>e1, e2, . . . , en
<latexit sha1_base64="35+Q17tNxC6qQ2xeZztGchCqG0I=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBahXkIiRT0WvHisYD+gCWWznbRLdzdhdyOU0L/hxYMiXv0z3vw3btsctPXBwOO9GWbmRSln2njet1Pa2Nza3invVvb2Dw6PqscnHZ1kikKbJjxRvYho4ExC2zDDoZcqICLi0I0md3O/+wRKs0Q+mmkKoSAjyWJGibFSAANWDxIBI3LpDqo1z/UWwOvEL0gNFWgNql/BMKGZAGkoJ1r3fS81YU6UYZTDrBJkGlJCJ2QEfUslEaDDfHHzDF9YZYjjRNmSBi/U3xM5EVpPRWQ7BTFjverNxf+8fmbi2zBnMs0MSLpcFGccmwTPA8BDpoAaPrWEUMXsrZiOiSLU2JgqNgR/9eV10rly/Wu38dCoNZtFHGV0hs5RHfnoBjXRPWqhNqIoRc/oFb05mfPivDsfy9aSU8ycoj9wPn8ACxSRCg==</latexit>

ei(!).

QT:	POVMs	(posiSve	operator-valued	measures),
<latexit sha1_base64="NfCPEtepyHYJZjYhv4K5i4bOpD0=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBahXkoiRb0IBRE8VrAf0ISw2U7bpbtJ2N0IJfTqxb/ixYMiXv0H3vw3btsctPXBwOO9GWbmhQlnSjvOt1VYWV1b3yhulra2d3b37P2DlopTSaFJYx7LTkgUcBZBUzPNoZNIICLk0A5H11O//QBSsTi61+MEfEEGEeszSrSRAhtDwCpeLGBATq8yTwqs5aRyE7BcqwZ22ak6M+Bl4uakjHI0AvvL68U0FRBpyolSXddJtJ8RqRnlMCl5qYKE0BEZQNfQiAhQfjb7ZIJPjNLD/ViaijSeqb8nMiKUGovQdAqih2rRm4r/ed1U9y/9jEVJqiGi80X9lGMd42ksuMckUM3HhhAqmbkV0yGRhGoTXsmE4C6+vExaZ1X3vFq7q5Xr9TyOIjpCx6iCXHSB6ugWNVATUfSIntErerOerBfr3fqYtxasfOYQ/YH1+QP3Z5k8</latexit>

ei(!) = tr(Ei!).
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular

Quantum	trit:	
8D	and	complicated!

Generalized	probabilisSc	theories



Generalized	probabilisSc	theories

There	is	a	large	landscape	of	state	spaces,	or	theories	(collecSons	
of	allowed	state	spaces):

I WHAT KIND OF “QUANTUM FOUNDATIONS”?

can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
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As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
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which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.
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FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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I WHAT KIND OF “QUANTUM FOUNDATIONS”?

can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.

QT CPT

operator-algebraic theories

“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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•	Postulate	2:	Tomographic	locality.

The	state	of	a	composite	system	is	
completely	characterized	by	the	
correla:ons	of	measurements	on	the	
individual	components.

4

�

release button

physical system

T

outcomes x and x̄

x

Figure 1. General experimental setup. From left to right, there are the
preparation, transformation and measurement devices. As soon as the release
button is pressed, the preparation device outputs a physical system in the state
specified by the knobs. The next device performs the transformation specified by
its knobs (which in particular can ‘do nothing’). The device on the right carries
out the measurement specified by its knobs, and the outcome (x or x̄) is indicated
by the corresponding light.

2. Generalized probabilistic theories

In CPT there can always be a joint probability distribution for all random variables under
consideration. The framework of generalized probabilistic theories (GPTs), also called the
convex operational framework, generalizes this by allowing the possibility of random variables
that cannot have a joint probability distribution or cannot be simultaneously measured (such as
noncommuting observables in QT).

This framework assumes that at some level there is a classical reality, where it makes
sense to talk about experimentalists performing basic operations such as preparations, mixtures,
measurements and counting the relative frequencies of outcomes. These are the primary
concepts of this framework. It also provides a unified way for all GPTs to represent states,
transformations and measurements. A particular GPT specifies which of these are allowed,
but it does not tell their correspondence to actual experimental setups. On its own, a GPT
can still make nontrivial predictions such as: the maximal violation of a Bell inequality [1],
the complexity-theoretic computational power [2, 18] and, in general, all information-theoretic
properties of the theory [6].

The framework of GPTs can be stated in different ways, but all lead to the same
formalism [3–9]. This formalism is presented in this section at a very basic level, providing
some elementary results without proofs.

2.1. States

Definition of a system. We associate with a setup like figure 1 a system if, for each configuration
of the preparation, transformation and measurement devices, the relative frequencies of the
outcomes tend to a unique probability distribution (in the large sample limit).

The probability of a measurement outcome x is denoted by p(x). This outcome can be
associated with a binary measurement that tells whether x happens or not (this second event
x̄ has probability p(x̄) = 1 � p(x)). The above definition of a system allows one to associate
with each preparation procedure a list of probabilities of the outcomes of all the measurements
that can be carried out on a system. As we show in section 4.3, our requirements imply that all
these probabilities p(x) are determined by a finite set of them; the smallest such set is used to
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can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.
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“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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There	is	a	type	of	system	(the	"ubit")	such	that	every	
system	can	be	encoded	into	a	sufficiently	large	number	of	ubits.	
Pairs	of	ubits	can	con:nuously	reversibly	interact.
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I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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lates having a clear and direct physical meaning, which can
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postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
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protocols at an abstract level, without considering whether
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that there is a type of system, the generalized bit or gbit,
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Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
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the above, bringing the arbitrary system back to its original
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strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
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strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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•	Postulate	4:	No	simultaneous	
																											encoding.

Theorem.	If	Postulates	1-4	hold,	then	the	state	space	of	n	ubits	is
<latexit sha1_base64="sBoKbDYfiEZaS4YI5baBH1tJIjE="></latexit>

⌦ = {⇢ 2 H2n(C) | tr(⇢) = 1, ⇢ � 0},
and	the	reversible	transformaSons	are	the	unitaries,

<latexit sha1_base64="9YKm/FM76eSjgb0FMqubjvnOTmI=">AAACBnicbVBPS8MwHE3nvzn/VT3qITgET6OVgR4HXjxOsG6w1pGmaReWpCVJhVF28eJX8eJBQbz6Gbz5bUy3HnTzQeDlvd+P5L0wY1Rpx/m2aiura+sb9c3G1vbO7p69f3Cn0lxi4uGUpbIfIkUYFcTTVDPSzyRBPGSkF46vSr/3QKSiqbjVk4wEHCWCxhQjbaShfezLUepzlCmdQq+8QO/ej1CSENka2k2n5cwAl4lbkSao0B3aX36U4pwToTFDSg1cJ9NBgaSmmJFpw88VyRAeo4QMDBWIExUUsxRTeGqUCMapNEdoOFN/bxSIKzXhoZnkSI/UoleK/3mDXMeXQUFFlmsi8PyhOGfQJC4rgRGVBGs2MQRhSc1fIR4hibA2xTVMCe5i5GXSO2+57Zbr3rSbnU7VRx0cgRNwBlxwATrgGnSBBzB4BM/gFbxZT9aL9W59zEdrVrVzCP7A+vwBndmYcA==</latexit>

⇢ 7! U⇢U †.
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IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.

34

Group	rep.	theory:	can	reparametrize	space	such	that	transformaSons	are	
																rotaSons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).



Example:	why	are	ubits	balls?

•	Postulate	1:	ConSnuous	reversibility.

•	Postulate	4:	No	simultaneous	
																											encoding.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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Group	rep.	theory:	can	reparametrize	space	such	that	transformaSons	are	
																rotaSons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).

If	full	ball:	can	encode	one	bit	by	preparing	
																			state	or	anSpodal	state.	That’s	all.
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Example:	why	are	ubits	balls?

•	Postulate	1:	ConSnuous	reversibility.

•	Postulate	4:	No	simultaneous	
																											encoding.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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Group	rep.	theory:	can	reparametrize	space	such	that	transformaSons	are	
																rotaSons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).

If	full	ball:	can	encode	one	bit	by	preparing	
																			state	or	anSpodal	state.	That’s	all.
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If	not	full	ball:	can	encode	one	bit	and	a	li^le	more	by	
																										preparing	state	or	one	of	anSpodal	states.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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Example:	why	are	ubits	balls?

•	Postulate	1:	ConSnuous	reversibility.

•	Postulate	4:	No	simultaneous	
																											encoding.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.

34

Group	rep.	theory:	can	reparametrize	space	such	that	transformaSons	are	
																rotaSons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).

If	full	ball:	can	encode	one	bit	by	preparing	
																			state	or	anSpodal	state.	That’s	all.
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If	not	full	ball:	can	encode	one	bit	and	a	li^le	more	by	
																										preparing	state	or	one	of	anSpodal	states.

Violates	Postulate	4.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are

~a1

~a2

~a3

~a4

e"X
�~a1

~b4

~b3

~b2

FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as
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1
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X
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.
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0
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and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0
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i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
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= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)
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i �2 ... �n

(6)
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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].
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(the corresponding Lie algebra) and " 2 R and expand:
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X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
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FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).
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v(~a1,~a2, . . . ,~an)
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� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦

✓
1
~a2

◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)

Generator	X	of	global	
reversible	transformaSon	
(no	idea	what	it	is…)

<latexit sha1_base64="kpz6jIYg9IyiP7c1b1vmj/sSen0=">AAAB+nicbZBLSwMxFIUz9VXra6pLN8EiuCozIuqy4MZlC/YB7Vgy6Z02NJMMSaZSxoJ/xI0LRdz6S9z5b0wfC209EPg454bcnDDhTBvP+3Zya+sbm1v57cLO7t7+gVs8bGiZKgp1KrlUrZBo4ExA3TDDoZUoIHHIoRkOb6Z5cwRKMynuzDiBICZ9wSJGibFW1y3CfdYZEQWJZlwK3Jp03ZJX9mbCq+AvoIQWqnbdr05P0jQGYSgnWrd9LzFBRpRhlMOk0Ek1JIQOSR/aFgWJQQfZbPUJPrVOD0dS2SMMnrm/b2Qk1noch3YyJmagl7Op+V/WTk10HWRMJKkBQecPRSnHRuJpD7jHFFDDxxYIVczuiumAKEKNbatgS/CXv7wKjfOyf1m+qF2UKrWneR15dIxO0Bny0RWqoFtURXVE0QN6Rq/ozXl0Xpx352M+mnMWFR6hP3I+fwCzuZS/</latexit>

e"X

We	must	obtain	valid	probabiliKes.	For	example,
<latexit sha1_base64="b3rRNPGpGuqLi47i/PAQRxiFu3Q="></latexit>

0  (e�~a1 ⌦ e~b2)e
"X(!~a1 ⌦ !~a2)  1.



Proof	idea

5

the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
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1+✏X+
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X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
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FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).
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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are

~a1

~a2

~a3

~a4

e"X
�~a1

~b4

~b3

~b2

FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦
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1
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◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)

For																this	gives	probability	zero,	which	must	be	a	local	minimum.
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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are

~a1
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~a3

~a4

e"X
�~a1

~b4
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FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦

✓
1
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◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)

For																this	gives	probability	zero,	which	must	be	a	local	minimum.
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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Some	"arSficial"	GPTs	exhibit	order-3	interference:

pure states of the model. The three edges of the triangle (which we denote by �ij) are the
other faces, and are analogous to two-level classical systems. We also have that for each
face F̃ of �A, there is a face F of the cone S+(A) such that F̃ = F ⇥H.

Now define three projections Pi (i = 1, 2, 3) onto the faces Fi (which are generated by
the vertices �i), with positive kernels Fjk (j, k �= i), and further take P123 = IR4. These
four projections are in fact filters, and the Pi form a size three mask. Finally, the filters
defined by Pjk = Pj +Pk will be projections onto the faces Fjk. Since lin{F̃12, F̃13, F̃23} just
gives the plane defined by (x, y, t = 0, z = 1) (in which the central triangle is embedded),
it is clear that S+(A) � lin{F12, F13, F23}; the linear span of these faces is missing the t
dimension. Therefore, any normalized state which is not in the central triangle will exhibit
third order interference with respect to the generalized slit system generated by {Pi}3i=1.

Figure 4.4: The triangular pillow state space discussed above, and in Chapter 8 of [7]. Pure
states on the smooth top or bottom parts of the pillow will display third-order interference
with respect to a 3-slit mask defined by the pure states of the central embedded triangle.

It is possible to construct many more similar examples simply by replacing the central
triangle embedded in R2 with a direct sum of an n-ball and an m-ball embedded in Rn+m

(see Chapter 8 of [7] for more detail). For example, for n = m = 3, the resulting state
space can roughly be considered as a direct sum of two qubits (or a four-level system with
a kind of super-selection rule) with an extra degree of freedom (t in the example above).
The subset of states which are in the ‘quantum’ sector all have t = 0.

One important point about the above type of construction is that the pure states of
the initial state space (the triangle of the triangular pillow) are of a di⇥erent type than the
pure states on the top and bottom of the smooth part of the pillow. In particular, these
theories display a high degree of asymmetry. In particular, it is not di⌅cult to convince
oneself that the filters, Pjk, defined on the triangular pillow are in fact mixing, and further,
the triagular pillow is not bit-symmetric.

88

C. Ududec, Perspectives on the Formalism of Quantum Theory,

PhD thesis, University of Waterloo, 2012.

Why	does	CPT	not	have	2nd-order	interference?
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(QM:	orthonormal	system)

A	quantum	detecSve	story

Postulate	1:	Every	state	is	a	mixture	of	frame	states,	
	
	
																						(QM:	spectral	decomposiSon	of	the	density	matrix)
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(QM:	orthonormal	system)

Postulate	2:	Every	two	frames	are	related	by	a	reversible	transformaSon.	
																						(QM:	every	two	ONBs	are	related	by	a	unitary.)
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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But	there	is	also	a	“spaceSme”	reason!
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d-dim.	"Bloch	
sphere"

RelaSvity:	there’s	a	frame	of	reference	in	which	TA	happens	before	TB...	
																			…	and	another	frame	where	it’s	the	other	way	around.

GA = GB ' SO(d� 1).
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Constraints	from	relaSvity

d-dim.	"Bloch	
sphere"

RelaSvity:	there’s	a	frame	of	reference	in	which	TA	happens	before	TB...	
																			…	and	another	frame	where	it’s	the	other	way	around.

GA = GB ' SO(d� 1).

<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg=">AAACL3icbVDLSgNBEJz1GeMr6tHLYBAiaNiVgF6EqAjejJqYQDaE2clsMmQey8ysGpZ8kRd/RQ+CCuLVv3DyOKixoKGo6qa7K4gY1cZ1X52p6ZnZufnUQnpxaXllNbO2fqNlrDCpYMmkqgVIE0YFqRhqGKlFiiAeMFINuqcDv3pLlKZSlE0vIg2O2oKGFCNjpWbmzL+i7Y5BSsk7fxeWm8e2To5sDbjPA3mfwFAqiBiDfSvtWsunIvEVh9cX/Vxrz9vJNzNZN+8OASeJNyZZMEapmXn2WxLHnAiDGdK67rmRaSRIGYoZ6af9WJMI4S5qk7qlAnGiG8nw3T7ctkpreFQohYFD9edEgrjWPR7YTo5MR//1BuJ/Xj024WEjoSKKDRF4tCiMGTQSDrKDLaoINqxnCcKK2lsh7iCFsLEJp20I3t+XJ0l1P+8V8p53WcgWi+M8UmATbIEc8MABKIJzUAIVgMEDeAJv4N15dF6cD+dz1DrljGc2wC84X98Qe6Z4</latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
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Constraints	from	relaSvity

d-dim.	"Bloch	
sphere"

RelaSvity:	there’s	a	frame	of	reference	in	which	TA	happens	before	TB...	
																			…	and	another	frame	where	it’s	the	other	way	around.

GA = GB ' SO(d� 1).

<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg=">AAACL3icbVDLSgNBEJz1GeMr6tHLYBAiaNiVgF6EqAjejJqYQDaE2clsMmQey8ysGpZ8kRd/RQ+CCuLVv3DyOKixoKGo6qa7K4gY1cZ1X52p6ZnZufnUQnpxaXllNbO2fqNlrDCpYMmkqgVIE0YFqRhqGKlFiiAeMFINuqcDv3pLlKZSlE0vIg2O2oKGFCNjpWbmzL+i7Y5BSsk7fxeWm8e2To5sDbjPA3mfwFAqiBiDfSvtWsunIvEVh9cX/Vxrz9vJNzNZN+8OASeJNyZZMEapmXn2WxLHnAiDGdK67rmRaSRIGYoZ6af9WJMI4S5qk7qlAnGiG8nw3T7ctkpreFQohYFD9edEgrjWPR7YTo5MR//1BuJ/Xj024WEjoSKKDRF4tCiMGTQSDrKDLaoINqxnCcKK2lsh7iCFsLEJp20I3t+XJ0l1P+8V8p53WcgWi+M8UmATbIEc8MABKIJzUAIVgMEDeAJv4N15dF6cD+dz1DrljGc2wC84X98Qe6Z4</latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.



Constraints	from	relaSvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg=">AAACL3icbVDLSgNBEJz1GeMr6tHLYBAiaNiVgF6EqAjejJqYQDaE2clsMmQey8ysGpZ8kRd/RQ+CCuLVv3DyOKixoKGo6qa7K4gY1cZ1X52p6ZnZufnUQnpxaXllNbO2fqNlrDCpYMmkqgVIE0YFqRhqGKlFiiAeMFINuqcDv3pLlKZSlE0vIg2O2oKGFCNjpWbmzL+i7Y5BSsk7fxeWm8e2To5sDbjPA3mfwFAqiBiDfSvtWsunIvEVh9cX/Vxrz9vJNzNZN+8OASeJNyZZMEapmXn2WxLHnAiDGdK67rmRaSRIGYoZ6af9WJMI4S5qk7qlAnGiG8nw3T7ctkpreFQohYFD9edEgrjWPR7YTo5MR//1BuJ/Xj024WEjoSKKDRF4tCiMGTQSDrKDLaoINqxnCcKK2lsh7iCFsLEJp20I3t+XJ0l1P+8V8p53WcgWi+M8UmATbIEc8MABKIJzUAIVgMEDeAJv4N15dF6cD+dz1DrljGc2wC84X98Qe6Z4</latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.



Constraints	from	relaSvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaKve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.



Constraints	from	relaSvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaKve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.

Wait	a	second…	this	is	the	same	mathemaScal	reason	as	in	the	
																													informaKon-theoreKc	reconstrucSon!



Constraints	from	relaSvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaKve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.

Wait	a	second…	this	is	the	same	mathemaScal	reason	as	in	the	
																													informaKon-theoreKc	reconstrucSon!
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Constraints	from	relaSvity

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpSon	of	relaKonality!
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Constraints	from	relaSvity

Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

-1

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpSon	of	relaKonality!
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Constraints	from	relaSvity

Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpSon	of	relaKonality!

TB

Let’s	relax	this	assumpSon	to
<latexit sha1_base64="B5Ghei3UmFhwECnKT94DgDhmfnw=">AAACC3icbVBNS8NAEN34WetX1KOX1SJ4CokU9FjrQY8VrC00IWy223bp7ibuboQSevbiX/HiQUG8+ge8+W/ctDnU1gcDj/dmmJkXJYwq7bo/1tLyyuraemmjvLm1vbNr7+3fqziVmDRxzGLZjpAijArS1FQz0k4kQTxipBUNr3K/9UikorG406OEBBz1Be1RjLSRQvvI50gPMGLZ9Ti89BXl5GFWqjuhXXEddwK4SLyCVECBRmh/+90Yp5wIjRlSquO5iQ4yJDXFjIzLfqpIgvAQ9UnHUIE4UUE2eWUMT4zShb1YmhIaTtTZiQxxpUY8Mp35lWrey8X/vE6qexdBRkWSaiLwdFEvZVDHMM8FdqkkWLORIQhLam6FeIAkwtqkVzYhePMvL5LWmeNVHc+7rVZq9SKPEjgEx+AUeOAc1MANaIAmwOAJvIA38G49W6/Wh/U5bV2yipkD8AfW1y8yQJsC</latexit>
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Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

So	far,	we	assumed:
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GA = GB . AssumpSon	of	relaKonality!

TB

Let’s	relax	this	assumpSon	to
<latexit sha1_base64="B5Ghei3UmFhwECnKT94DgDhmfnw=">AAACC3icbVBNS8NAEN34WetX1KOX1SJ4CokU9FjrQY8VrC00IWy223bp7ibuboQSevbiX/HiQUG8+ge8+W/ctDnU1gcDj/dmmJkXJYwq7bo/1tLyyuraemmjvLm1vbNr7+3fqziVmDRxzGLZjpAijArS1FQz0k4kQTxipBUNr3K/9UikorG406OEBBz1Be1RjLSRQvvI50gPMGLZ9Ti89BXl5GFWqjuhXXEddwK4SLyCVECBRmh/+90Yp5wIjRlSquO5iQ4yJDXFjIzLfqpIgvAQ9UnHUIE4UUE2eWUMT4zShb1YmhIaTtTZiQxxpUY8Mp35lWrey8X/vE6qexdBRkWSaiLwdFEvZVDHMM8FdqkkWLORIQhLam6FeIAkwtqkVzYhePMvL5LWmeNVHc+7rVZq9SKPEjgEx+AUeOAc1MANaIAmwOAJvIA38G49W6/Wh/U5bV2yipkD8AfW1y8yQJsC</latexit>
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) d  5. Quaternionic	QM	survives!
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Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is

0

0

...

�

...

0

�

ENCODER

IN
P
U
T

O
U
T
P
U
T

...
...
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which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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QT	is	a	theory	of	probability	(belief,	knowledge	or	informaSon).

The	complete	Hilbert	space	formalism	—	including	the	use	of	complex	
numbers,	operators,	and	state	update	rules	—	follows	from	a	few	
simple	informaSon-theoreSc	/	probabilisSc	principles.

What	does	this	tell	us	now?



QT	is	a	theory	of	probability	(belief,	knowledge	or	informaSon).

The	complete	Hilbert	space	formalism	—	including	the	use	of	complex	
numbers,	operators,	and	state	update	rules	—	follows	from	a	few	
simple	informaSon-theoreSc	/	probabilisSc	principles.

• Collapse:	Bayesian	updaSng.	
• Unitary	evoluKon:	correlaSon	with	idealized	clock	variables.	
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Challenge	to	Evere\ans:	start	with	a	landscape	of	“theories	of	many	
worlds”,	write	down	a	few	simple	principles	of	some	kind,	and	prove	
that	QT	is	the	unique	many-worlds-like	theory	that	saSsfies	those.

A.	Koberinski	and	MM,	arXiv:1707.05602

What	does	this	tell	us	now?

https://arxiv.org/abs/1707.05602
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2

<latexit sha1_base64="fOVDUWOXAQC6E/K1ZGiJ3S7ebd0=">AAAB7nicbVC7SgNBFL0bXzG+opY2g0GwCrtB1DJoY2ERwTwgWcLd2dlkyOzsMjMrhJCPsLFQxNbvsfNvnCRbaOKBgcM55zL3niAVXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWTTFHWpIlIVCdAzQSXrGm4EayTKoZxIFg7GN3O/PYTU5on8tGMU+bHOJA84hSNldq9exsNsV+uuFV3DrJKvJxUIEejX/7qhQnNYiYNFah113NT409QGU4Fm5Z6mWYp0hEOWNdSiTHT/mS+7pScWSUkUaLsk4bM1d8TE4y1HseBTcZohnrZm4n/ed3MRNf+hMs0M0zSxUdRJohJyOx2EnLFqBFjS5AqbncldIgKqbENlWwJ3vLJq6RVq3qX1drDRaV+k9dRhBM4hXPw4ArqcAcNaAKFETzDK7w5qfPivDsfi2jByWeO4Q+czx8N749k</latexit>

⇤<latexit sha1_base64="07ISr+7SCwwdZd5RDmW4VFVO87c=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaSIuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veVa3+cFlt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPw+PhA==</latexit>

�

From	data	table																					and	this	assumption,	
one	can	infer	that																																					

<latexit sha1_base64="ptkw970nXDyixd9BXtz6FuK1q48=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0SNQjiRePmAiY0IZsly1s2G6b3a0RG36JFw8a49Wf4s1/4wI9KPiSSV7em8nMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T447Kg4lYS2ScxjeR9gRTkTtK2Z5vQ+kRRHAafdYHw987sPVCoWizs9Sagf4aFgISNYG6lvlx89JrzMrdar59WGN+3bFafmzIFWiZuTCuRo9e0vbxCTNK JCE46V6rlOov0MS80Ip9OSlyqaYDLGQ9ozVOCIKj+bHz5Fp0YZoDCWpoRGc/X3RIYjpSZRYDojrEdq2ZuJ/3m9VIdXfsZEkmoqyGJRmHKkYzRLAQ2YpETziSGYSGZuRWSEJSbaZFUyIbjLL6+STr3mXtTqt41Ks5nHUYRjOIEzcOESmnADLWgDgRSe4RXerCfrxXq3PhatBSufOYI/sD5/AOM8ke8=</latexit>

x 2 {1, 2, 3, 4}

<latexit sha1_base64="lbgqN3mE87GS0M5xm9Ki4bgJAAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY8FLx4r2A9IQtlsN+3SzW7Y3Qgh9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777aytb2xubVd2qrt7+weHtaPjrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140uZv5vSeqNJPi0eQpDRM8EixmBBsr+XnARFB4l81gOqjV3YY7B1olXknqUKI9qH0FQ0myhApDONba99zUhAVWhhFOp9Ug0zTFZIJH1LdU4ITqsJifPEXnVhmiWCpbwqC5+nuiwInWeRLZzgSbsV72ZuJ/np+Z+DYsmEgzQwVZLIozjoxEs//RkClKDM8twUQxeysiY6wwMTalqg3BW355lXSbDe+60Xy4qrdaZRwVOIUzuAAPbqAF99CGDhCQ8Ayv8OYY58V5dz4WrWtOOXMCf+B8/gCot5DY</latexit>

y 2 {1, 2}

<latexit sha1_base64="Tpctxd3a/fKkBsZsovtKqS3VJEM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkiHosePFYwX5AG8pmu2mXbjZxdyOG2D/hxYMiXv073vw3btMctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k+uZ33mgUrFQ3Okkom6AR4L5jGBtpG5UxU+PZ8npoFyxa3YGtEycnFQgR3NQ/uoPQxIHVGjCsVI9x460m2KpGeF0WurHikaYTPCI9gwVOKDKTbN7p+jEKEPkh9KU0ChTf0+kOFAqCTzTGWA9VoveTPzP68Xav3JTJqJYU0Hmi/yYIx2i2fNoyCQlmieGYCKZuRWRMZaYaBNRyYTgLL68TNr1mnNRq9+eVxqNPI4iHMExVMGBS2jADTShBQQ4PMMrvFn31ov1bn3MWwtWPnMIf2B9/gBiNI+K</latexit>

p(a|x, y)
<latexit sha1_base64="VW+Z4ScW3b2bpOmITOv6uiKhOaU=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahQglJEXUlFTdduKhgH9KEMplM2qGThzMTocQu3fgrblwo4tZPcOffOG2z0NYDA4dz7uHOPW7MqJCm+a3lFhaXllfyq4W19Y3NLX17pymihGPSwBGLeNtFgjAakoakkpF2zAkKXEZa7uBy7LfuCRc0Cm/kMCZOgHoh9SlGUkldfb9Wunhol2/L9pUKeejI7pE7aDMvkgKem0ZXL5qGOQGcJ1ZGiiBDvat/2V6Ek4CEEjMkRMcyY+mkiEuKGRkV7ESQGOEB6pGOoiEKiHDSySEjeKgUD/oRVy+UcKL+TqQoEGIYuGoyQLIvZr2x+J/XSaR/5qQ0jBNJQjxd5CcMygiOW4Ee5QRLNlQEYU7VXyHuI46wVN0VVAnW7MnzpFkxrBOjcn1crFazOvJgDxyAErDAKaiCGqiDBsDgETyDV/CmPWkv2rv2MR3NaVlmF/yB9vkDq+qX2Q==</latexit>

H(A|X,Y,⇤) � . . . > 0.

<latexit sha1_base64="aNorDOmAidKoouklcefdsIAKqCc=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqswUUTdC0U2XFewDOkPJZDJtaJIZkoxSxn6KGxeKuPVL3Pk3ZtpZaOuBwOGce7knJ0gYVdpxvq3S2vrG5lZ5u7Kzu7d/YFcPuypOJSYdHLNY9gOkCKOCdDTVjPQTSRAPGOkFk9vc7z0QqWgs7vU0IT5HI0EjipE20tCueiHlHkd6jBHLWrPrxtCuOXVnDrhK3ILUQIH20P7ywhinnAiNGVJq4DqJ9jMkNcWMzCpeqkiC8ASNyMBQgThRfjaPPoOnRglhFEvzhIZz9fdGhrhSUx6YyTykWvZy8T9vkOroys+oSFJNBF4cilIGdQzzHmBIJcGaTQ1BWFKTFeIxkghr01bFlOAuf3mVdBt196LeuDuvNW+KOsrgGJyAM+CCS9AELdAGHYDBI3gGr+DNerJerHfrYzFasoqdI/AH1ucPAweT1w==</latexit>

dimH = 2

staSsScal	response	to	
spaceSme	symmetries



Summary

• to	the	habilitaSon	commi_ee	and	all	reviewers,	
• Časlav	Brukner,	Markus	Aspelmeyer,	ÖAW,	
• my	family	for	their	support,	
• my	collaborators,	in	parScular	Lluís	Masanes,

Quantum	theory	can	be	derived	from	simple	principles,	
and	this	improves	our	understanding	of	its	structure	in	several	ways.
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• my	group	at	IQOQI.


