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P(a,blz,y) = »  Pa(alz,\)Pp(bly, A)Pa (M)
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e |n quantum physics:
P(a,blx,y) = tr [,OAB(E;’ X F;)}

Quantum admits more general P’s due to the violation of Bell inequalities.
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3 examples of a “generalized probabilistic theory”.
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Generalized probabilistic theories

Example: classical coin toss.

e The preparation device prepares a physical system
In a state w.

® Transformation: T( P ) — ( L=p )
1 —p p

Maps states to states and is linear.
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Generalized probabilistic theories

Example: classical coin toss.

® Every measurement outcome has a probability,
depending linearly on the state:

Prob(heads|w) = p = ( é)( 12]9 > =e-w.
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Example: quantum spin-1/2 particle. (‘

* Unitary transformation of the density matrix:
w i UwUT.

* Measurement in arbitrary spin direction d-
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® \What is a state?
It is the thing that allows us to determine, for all possible
measurements, the probabilities of the possible outcomes.

QT: Density matrix p.
Measure whether spin is up or down: P(up) = tr(p| T)(1).

® \What is a state space?
It is the collection of all states that a system could
possibly be in, closed under statistical mixtures.

Qr: Q ={p < Hy(C) | tr(p) =1, p>0}.

cPT: Q= {(p1,....pn) [ pi >0, » pi=1}
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Generalized probabilistic theories

® What is a transformation? T'(w) = ¢
Maps an incoming state to an outgoing state, must be linear.
T is reversible if 7! is also a transformation.

QT: Completely positive, trace-non-increasing maps.
Reversible transformations: unitary maps, p UpUT.

® How to describe measurements?
By a collection of linear functionals €1,€2,...,€n
such that the probability of outcomeiis e;(w).

QT: POVMs (positive operator-valued measures),
e;(w) = tr(F;w).
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Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections
of allowed state spaces):

@ |
Qr CPT

“boxworld”

Goal: Find a small set of simple physical / information-theoretic
principles that singles out QT uniquely.

Role model: Einstein’s Relativity Principle and Light Postulate

determine Minkowski spacetime. .
physically realized ’3@0’6@’
%
| | iy
Euclidean Minkowski ‘
hyperbolic
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A reconstruction of quantum theory

® Prehistory:
Birkhoff & von Neumann (1936); quantum logic (Piron, ...),

Ludwig (1954); Alfsen&Shultz (x1980); .....

e Quantum information revolution:

L. Hardy 2001: Quantum Theory From Five
Reasonable Axioms. But needs "simplicity axiom"...

e Clifton, Bub, and Halvorson 2002.
But assumed C*-algebras.

Daki¢+Brukner 2009; Masanes+MM 2009
Chiribella, d'Ariano, Perinotti 2010; Hardy 2011
the one I'll present now 2013;

Barnum, MM, Ududec 2014; Hoehn 2015;

Wilce 2016, ...
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e Postulate 1: Continuous reversibility.
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A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-Garcia, PNAS 110(4), 16373 (2013).

e Postulate 1: Continuous reversibility.

e Postulate 2: Tomographic locality.
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The state of a composite system is “boxworlt

completely characterized by the
correlations of measurements on the
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e Postulate 1: Continuous reversibility. —— -
e Postulate 2: Tomographic locality. D~ = ol
X ol |
T — W l
e Postulate 3: Existence of an 3 | |

information unit.

There is a type of system (the "ubit") such that every
system can be encoded into a sufficiently large number of ubits.
Pairs of ubits can continuously reversibly interact.

(00—
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LI. Masanes, MM, R. Augusiak, and D. Pérez-Garcia, PNAS 110(4), 16373 (2013).

e Postulate 1: Continuous reversibility. ENCODER

e Postulate 2: Tomographic locality.
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e Postulate 3: Existence of an
information unit.

e Postulate 4: No simultaneous
encoding.

If a ubit is used to perfectly encode one
classical bit, it cannot simultaneously
encode any further information.



A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-Garcia, PNAS 110(4), 16373 (2013).

e Postulate 1: Continuous reversibility. ENCODER

e Postulate 2: Tomographic locality.

e Postulate 3: Existence of an
information unit.

e Postulate 4: No simultaneous
encoding.

Theorem. If Postulates 1-4 hold, then the state space of n ubits is
(1= {p € Ha2~(C) | tr(p) =1,p = 0},

and the reversible transformations are the unitaries, p +— UpUT.
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Example: why are ubits balls?

e Postulate 1: Continuous reversibility.

e Postulate 4: No simultaneous
encoding.

Group rep. theory: can reparametrize space such that transformations are
rotations. Then, pure states lie on unit sphere (of some dim. d).

W1

If full ball: can encode one bit by preparing
state or antipodal state. That’s all.

o

If not full ball: can encode one bit and a little more by
W} preparing state or one of antipodal states.

W1 Violates Postulate 4.
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Why is the ubit “Bloch ball” 3-dimensional?

Two ubits: some composite state space
of two d-balls, G4 = Gp transitive on OB.

Tomographic locality < dap = d? + 2d

Theorem. Among all dimensions d and all groups G4, there are
only the following possibilities:

e The trivial solution: Gap = Ga R Gg.

e d=3,G4 =S0(3) (i.e. the quantum bit), Gag ~ PU(4), and
() Ap 18 equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible
for d = 3, in standard complex two-qubit quantum theory.

LI. Masanes, MM, R. Augusiak, and D. Pérez-Garcia, J. Math. Phys. 55, 122203 (2014).
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Proof idea

Generator X of global @

reversible transformation @
(no idea what it is...) 2

€

X

We must obtain valid probabilities. For example,

0< (e_g, ® 652)65X(w51 R wgz,) < 1.

For € = ( this gives probability zero, which must be a local minimum.

A lot more work...

;Hf fd#43: X=X+ Xp

\

no interaction.

iftd=3: exp(eX) — UAB(??) ® ULB(e) unitary conjugation!

Main reason: SO(d — 1) is only non-trivial and commutative for d = 3.
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Classical probability theory: P12 = P1 T P2.
Quantum theory: P12 7 p1 + pa. (2nd order) interference!
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The qubit revisited

We have seen: simple assumptions tell us that a bit should have
a Euclidean ball state space.
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d=3
classical guantum
bit bit

R, C,H, O -qubits would have d =2,3,5,9. Why d = 37

We have already seen an information-theoretic reason.
But there is also a “spacetime” reason!
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= T\Tg =TT, for all T'A, 1T € SO(d — 1)
= d < 3.

We obtain d=3 because

SO(d — 1) is only non-trivial and commutative for d = 3.

Wait a second... this is the same mathematical reason as in the
information-theoretic reconstruction!

Information theory ?l
! 0!

Spacetime



Constraints from relativity

» N

/ up T_@ / - Q \ 5 |
B

e (@

So far, we assumed: Ga = 0UpR. Assumption of relationality!

~—
o




Constraints from relativity

» N

/ Up.—@ / p— Q R

e (@

So far, we assumed: Ga = 0UpR. Assumption of relationality!

Whatever happens in one arm can be undone in the other arm.



Constraints from relativity

Let’s relax this assumptionto G4 ~ Gg.

ALe{m-A— QU |°

e (@

So far, we assumed: Ga = 0UpR. Assumption of relationality!

» N

| 1

Whatever happens in one arm can be undone in the other arm.



Constraints from relativity

Let’s relax this assumptionto G4 ~ Gg.
= d < 5. Quaternionic QM survives!
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Al) Beam splitter can prepare any upper-branch probability p.

A2) Every pure state with the same p can be prepared by
reversible operations applied locally on the two arms.

A3) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions Al, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d =1 (the classical bit), with Ga = G = {1} (i.e. without any non-trivial local transformations),

— d =2 (the quantum bit over the real numbers), with Gp = Gp = Zo,

— d = 3 (the standard quantum bit over the complex numbers), with G = Gg = SO(2) = U(1),
— d =5 (the quaternionic quantum bit), with Gag = SO(4), Ga the left- and Gp the right-isoclinic
rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and G N Gg = {+1, —I}.

Relativity constrains the state spaceto d =1,2,3,5!
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simple information-theoretic / probabilistic principles.

e Collapse: Bayesian updating.
e Unitary evolution: correlation with idealized clock variables.
e Superposition principle: not a principle, but a mathematical accident

V) (W] = Ul) (U,

Challenge to Everettians: start with a landscape of “theories of many
worlds”, write down a few simple principles of some kind, and prove
that QT is the unigue many-worlds-like theory that satisfies those.

A. Koberinski and MM, arXiv:1707.05602


https://arxiv.org/abs/1707.05602
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Summary

Quantum theory can be derived from simple principles,
and this improves our understanding of its structure in several ways.
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