Quantum theory from simple principles

Markus P. Müller

Institute for Quantum Optics and Quantum Information (IQOQI), Vienna
Perimeter Institute for Theoretical Physics (PI), Waterloo, Canada

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Overview

1. Probabilistic theories beyond quantum theory

2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

More general than quantum?

- In classical physics / prob. theory:

$$
P(a, b \mid x, y)=\sum_{\lambda \in \Lambda} P_{A}(a \mid x, \lambda) P_{B}(b \mid y, \lambda) P_{\Lambda}(\lambda)
$$

More general than quantum?

- In classical physics / prob. theory:

$$
P(a, b \mid x, y)=\sum_{\lambda \in \Lambda} P_{A}(a \mid x, \lambda) P_{B}(b \mid y, \lambda) P_{\Lambda}(\lambda)
$$

- In quantum physics:

$$
P(a, b \mid x, y)=\operatorname{tr}\left[\rho_{A B}\left(E_{x}^{a} \otimes F_{y}^{b}\right)\right]
$$

More general than quantum?

No-signalling conditions:

$P(a \mid x, y)$ is independent of y, $P(b \mid x, y)$ is independent of x.

- In classical physics / prob. theory:

$$
P(a, b \mid x, y)=\sum_{\lambda \in \Lambda} P_{A}(a \mid x, \lambda) P_{B}(b \mid y, \lambda) P_{\Lambda}(\lambda)
$$

- In quantum physics:
$P(a, b \mid x, y)=\operatorname{tr}\left[\rho_{A B}\left(E_{x}^{a} \otimes F_{y}^{b}\right)\right]$

More general than quantum?

No-signalling conditions:

$P(a \mid x, y)$ is independent of y, $P(b \mid x, y)$ is independent of x.

- In classical physics / prob. theory:

$$
P(a, b \mid x, y)=\sum_{\lambda \in \Lambda} P_{A}(a \mid x, \lambda) P_{B}(b \mid y, \lambda) P_{\Lambda}(\lambda)
$$

- In quantum physics:
$P(a, b \mid x, y)=\operatorname{tr}\left[\rho_{A B}\left(E_{x}^{a} \otimes F_{y}^{b}\right)\right]$
Quantum admits more general P's due to the violation of Bell inequalities.

The Bell-CHSH inequality

Classical probability distributions satisfy Bell inequality: $\mathrm{CHSH}:=\left|C_{00}+C_{01}+C_{10}-C_{11}\right| \leq 2$ where $C_{x y}:=\mathbb{E}(a \cdot b \mid x, y)$.

The Bell-CHSH inequality

Classical probability distributions satisfy Bell inequality:
$\mathrm{CHSH}:=\left|C_{00}+C_{01}+C_{10}-C_{11}\right| \leq 2$ where $C_{x y}:=\mathbb{E}(a \cdot b \mid x, y)$.

Quantum: Bell inequality violation. $\mathrm{CHSH} \leq 2 \sqrt{2}$.

The Bell-CHSH inequality

Classical probability distributions satisfy Bell inequality:

$$
\mathrm{CHSH}:=\left|C_{00}+C_{01}+C_{10}-C_{11}\right| \leq 2 \text { where } C_{x y}:=\mathbb{E}(a \cdot b \mid x, y)
$$

Quantum: Bell inequality violation. CHSH $\leq 2 \sqrt{2}$.
S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994):

Are quantum correlations the most general $P(a, b \mid x, y)$ that satisfy the no-signalling principle?

The Bell-CHSH inequality

Classical probability distributions satisfy Bell inequality:
$\mathrm{CHSH}:=\left|C_{00}+C_{01}+C_{10}-C_{11}\right| \leq 2$ where $C_{x y}:=\mathbb{E}(a \cdot b \mid x, y)$.
classical QM

Quantum: Bell inequality violation. CHSH $\leq 2 \sqrt{2}$.
S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994):

Are quantum correlations the most general $P(a, b \mid x, y)$ that satisfy the no-signalling principle?

No! Counterexample: the PR-box correlations

$$
\begin{aligned}
P(+1,+1 \mid x, y)= & P(-1,-1 \mid x, y)=\frac{1}{2} \\
& \text { if }(x, y) \in\{(0,0),(0,1),(1,0)\} \quad \text { CHSH }=4 \\
P(+1,-1 \mid 1,1)= & P(-1,+1 \mid 1,1)=\frac{1}{2}
\end{aligned}
$$

The Bell-CHSH inequality

Classical probability distributions satisfy Bell inequality:
$\mathrm{CHSH}:=\left|C_{00}+C_{01}+C_{10}-C_{11}\right| \leq 2$ where $C_{x y}:=\mathbb{E}(a \cdot b \mid x, y)$.
classical QM no-signalling

Quantum: Bell inequality violation. $\mathrm{CHSH} \leq 2 \sqrt{2}$.
S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994):

Are quantum correlations the most general $P(a, b \mid x, y)$ that satisfy the no-signalling principle?

No! Counterexample: the PR-box correlations

$$
\begin{aligned}
P(+1,+1 \mid x, y)= & P(-1,-1 \mid x, y)=\frac{1}{2} \\
& \text { if }(x, y) \in\{(0,0),(0,1),(1,0)\} \quad \text { CHSH }=4 \\
P(+1,-1 \mid 1,1)= & P(-1,+1 \mid 1,1)=\frac{1}{2}
\end{aligned}
$$

Physics beyond quantum?

No-signalling conditions:

$P(a \mid x, y)$ is independent of y,
$P(b \mid x, y)$ is independent of x.

Physics beyond quantum?

No-signalling conditions:
$P(a \mid x, y)$ is independent of y,
$P(b \mid x, y)$ is independent of x.

Correlations in C come from classical prob. theory, correlations in \mathbf{Q} from quantum theory, correlations in NS from a theory called "boxworld".

Physics beyond quantum?

> No-signalling conditions:
> $P(a \mid x, y)$ is independent of y,
> $P(b \mid x, y)$ is independent of x.

Correlations in C come from classical prob. theory, correlations in \mathbf{Q} from quantum theory, correlations in NS from a theory called "boxworld".

3 examples of a "generalized probabilistic theory".

Generalized probabilistic theories

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- On every push of button, the preparation device performs a biased coin toss.

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- On every push of button, the preparation device performs a biased coin toss.
- The transformation device, for example, inverts the coin (if heads then tails, and vice versa).

Preparation
transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- On every push of button, the preparation device produces a biased coin toss.
- The transformation device, for example, inverts the coin (if heads then tails, and vice versa).
- The measurement outcome is "heads" or "tails".

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob }(\text { tails })}=\binom{p}{1-p}
$$

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob(tails) }}=\binom{p}{1-p}
$$

State space Ω : the set of all possible states

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob(tails) }}=\binom{p}{1-p}
$$

State space Ω : the set of all possible states

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω.
- Transformation: $\quad T\binom{p}{1-p}=\binom{1-p}{p}$

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω.

Maps states to states and is linear.

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- Every measurement outcome has a probability, depending linearly on the state:

Preparation

transformation

measurement

Generalized probabilistic theories

Example: classical coin toss.

- Every measurement outcome has a probability, depending linearly on the state:

$$
\operatorname{Prob}(\text { heads } \mid \omega)=p=\binom{1}{0} \cdot\binom{p}{1-p}=e \cdot \omega
$$

Preparation

transformation

measurement

Generalized probabilistic theories

Example: quantum spin-1/2 particle.

Preparation

transformation

measurement

Generalized probabilistic theories

Example: quantum spin-1/2 particle.

- The preparation device prepares a spin-1/2 particle in quantum state ω.

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

More generally: ω is 2×2 density matrix.

Preparation

transformation

measurement

Generalized probabilistic theories

Example: quantum spin-1/2 particle.

- The preparation device prepares a spin-1/2 particle in quantum state ω.

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

More generally: ω is 2×2 density matrix.

Generalized probabilistic theories

Example: quantum spin-1/2 particle.

- Unitary transformation of the density matrix:

$$
\omega \mapsto U \omega U^{\dagger}
$$

Preparation

transformation

measurement

Generalized probabilistic theories

Example: quantum spin-1/2 particle.

- Unitary transformation of the density matrix:

$$
\omega \mapsto U \omega U^{\dagger}
$$

- Measurement in arbitrary spin direction d:

$$
\operatorname{Prob}(\uparrow \mid \omega)=\operatorname{Tr}\left(P_{d} \omega\right)
$$

Preparation

transformation

measurement

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

- What is a state space?

It is the collection of all states that a system could possibly be in, closed under statistical mixtures.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

- What is a state space?

It is the collection of all states that a system could possibly be in, closed under statistical mixtures.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

- What is a state space?

It is the collection of all states that a system could possibly be in, closed under statistical mixtures.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

- What is a state space?

It is the collection of all states that a system could possibly be in, closed under statistical mixtures.

QT: $\Omega=\left\{\rho \in \mathbf{H}_{N}(\mathbb{C}) \mid \operatorname{tr}(\rho)=1, \quad \rho \geq 0\right\}$.

Generalized probabilistic theories

- What is a state?

It is the thing that allows us to determine, for all possible measurements, the probabilities of the possible outcomes.

QT: Density matrix ρ.
Measure whether spin is up or down: $P($ up $)=\operatorname{tr}(\rho|\uparrow\rangle\langle\uparrow)$.

- What is a state space?

It is the collection of all states that a system could possibly be in, closed under statistical mixtures.

QT: $\Omega=\left\{\rho \in \mathbf{H}_{N}(\mathbb{C}) \mid \operatorname{tr}(\rho)=1, \quad \rho \geq 0\right\}$.

Generalized probabilistic theories

- What is a transformation? $\quad T(\omega)=\varphi$ Maps an incoming state to an outgoing state, must be linear. T is reversible if T^{-1} is also a transformation.

Generalized probabilistic theories

- What is a transformation? $\quad T(\omega)=\varphi$

Maps an incoming state to an outgoing state, must be linear. T is reversible if T^{-1} is also a transformation.

QT: Completely positive, trace-non-increasing maps. Reversible transformations: unitary maps, $\rho \mapsto U \rho U^{\dagger}$.

Generalized probabilistic theories

- What is a transformation? $\quad T(\omega)=\varphi$

Maps an incoming state to an outgoing state, must be linear. T is reversible if T^{-1} is also a transformation.

QT: Completely positive, trace-non-increasing maps. Reversible transformations: unitary maps, $\rho \mapsto U \rho U^{\dagger}$.

- How to describe measurements?

By a collection of linear functionals $e_{1}, e_{2}, \ldots, e_{n}$ such that the probability of outcome i is $e_{i}(\omega)$.

Generalized probabilistic theories

- What is a transformation? $\quad T(\omega)=\varphi$

Maps an incoming state to an outgoing state, must be linear. T is reversible if T^{-1} is also a transformation.

QT: Completely positive, trace-non-increasing maps. Reversible transformations: unitary maps, $\rho \mapsto U \rho U^{\dagger}$.

- How to describe measurements?

By a collection of linear functionals $e_{1}, e_{2}, \ldots, e_{n}$ such that the probability of outcome i is $e_{i}(\omega)$.

QT: POVMs (positive operator-valued measures),

$$
e_{i}(\omega)=\operatorname{tr}\left(E_{i} \omega\right)
$$

Generalized probabilistic theories

classical bit

Classical trit (3-level-system)

quantum bit

Quantum trit:
8D and complicated!

"gbit"

Arbitrary convex state space

Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections of allowed state spaces):

Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections

Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections of allowed state spaces):

Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections of allowed state spaces):

Goal: Find a small set of simple physical / information-theoretic principles that singles out QT uniquely.

Generalized probabilistic theories

There is a large landscape of state spaces, or theories (collections of allowed state spaces):

Goal: Find a small set of simple physical / information-theoretic principles that singles out QT uniquely.

Role model: Einstein's Relativity Principle and Light Postulate determine Minkowski spacetime.

Overview

1. Probabilistic theories beyond quantum theory

2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

A reconstruction of quantum theory

- Prehistory:

Birkhoff \& von Neumann (1936); quantum logic (Piron, ...), Ludwig (1954); Alfsen\&Shultz (≈ 1980);

- Quantum information revolution:
L. Hardy 2001: Quantum Theory From Five Reasonable Axioms. But needs "simplicity axiom"...

- Clifton, Bub, and Halvorson 2002.

But assumed C*-algebras.
Dakić+Brukner 2009; Masanes+MM 2009 Chiribella, d'Ariano, Perinotti 2010; Hardy 2011 the one I'll present now 2013;
Barnum, MM, Ududec 2014; Hoehn 2015; Wilce 2016, ...

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.

Reversible transformations can (in principle) map every pure state continuously to every other.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.

The state of a composite system is completely characterized by the correlations of measurements on the individual components.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.
- Postulate 3: Existence of an information unit.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.
- Postulate 3: Existence of an information unit.

There is a type of system (the "ubit") such that every system can be encoded into a sufficiently large number of ubits.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.
- Postulate 3: Existence of an information unit.

There is a type of system (the "ubit") such that every system can be encoded into a sufficiently large number of ubits. Pairs of ubits can continuously reversibly interact.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.
- Postulate 3: Existence of an information unit.
- Postulate 4: No simultaneous encoding.

If a ubit is used to perfectly encode one classical bit, it cannot simultaneously encode any further information.

A reconstruction of quantum theory

LI. Masanes, MM, R. Augusiak, and D. Pérez-García, PNAS 110(4), 16373 (2013).

- Postulate 1: Continuous reversibility.
- Postulate 2: Tomographic locality.
- Postulate 3: Existence of an information unit.
- Postulate 4: No simultaneous encoding.

Theorem. If Postulates 1-4 hold, then the state space of n ubits is

$$
\Omega=\left\{\rho \in \mathbf{H}_{2^{n}}(\mathbb{C}) \mid \operatorname{tr}(\rho)=1, \rho \geq 0\right\}
$$

and the reversible transformations are the unitaries, $\rho \mapsto U \rho U^{\dagger}$.

Example: why are ubits balls?

- Postulate 1: Continuous reversibility.
- Postulate 4: No simultaneous encoding.

Example: why are ubits balls?

- Postulate 1: Continuous reversibility.
- Postulate 4: No simultaneous encoding.

Group rep. theory: can reparametrize space such that transformations are rotations. Then, pure states lie on unit sphere (of some dim. d).

Example: why are ubits balls?

- Postulate 1: Continuous reversibility.
- Postulate 4: No simultaneous encoding.

Group rep. theory: can reparametrize space such that transformations are rotations. Then, pure states lie on unit sphere (of some dim. d).

If full ball: can encode one bit by preparing state or antipodal state. That's all.

Example: why are ubits balls?

- Postulate 1: Continuous reversibility.
- Postulate 4: No simultaneous encoding.

Group rep. theory: can reparametrize space such that transformations are rotations. Then, pure states lie on unit sphere (of some dim. d).

If not full ball: can encode one bit and a little more by
 preparing state or one of antipodal states.

Example: why are ubits balls?

- Postulate 1: Continuous reversibility.
- Postulate 4: No simultaneous encoding.

Group rep. theory: can reparametrize space such that transformations are rotations. Then, pure states lie on unit sphere (of some dim. d).

If not full ball: can encode one bit and a little more by
 preparing state or one of antipodal states.

Violates Postulate 4.

Two ubits: some composite state space of two d-balls, $\mathcal{G}_{A}=\mathcal{G}_{B}$ transitive on ∂B^{d}.
Tomographic locality $\Leftrightarrow d_{A B}=d^{2}+2 d$

Two ubits: some composite state space of two d-balls, $\mathcal{G}_{A}=\mathcal{G}_{B}$ transitive on ∂B^{d}. Tomographic locality $\Leftrightarrow d_{A B}=d^{2}+2 d$

Theorem. Among all dimensions d and all groups \mathcal{G}_{A}, there are only the following possibilities:

- The trivial solution: $\mathcal{G}_{A B}=\mathcal{G}_{A} \otimes \mathcal{G}_{B}$.
- $d=3, \mathcal{G}_{A}=\mathrm{SO}(3)$ (i.e. the quantum bit), $\mathcal{G}_{A B} \simeq \mathrm{PU}(4)$, and $\Omega_{A B}$ is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible for $d=3$, in standard complex two-qubit quantum theory.
LI. Masanes, MM, R. Augusiak, and D. Pérez-García, J. Math. Phys. 55, 122203 (2014).

Proof idea

Proof idea

Generator X of global reversible transformation (no idea what it is...)

Proof idea

Generator X of global reversible transformation (no idea what it is...)

We must obtain valid probabilities. For example,

$$
0 \leq\left(e_{-\vec{a}_{1}} \otimes e_{\vec{b}_{2}}\right) e^{\varepsilon X}\left(\omega_{\vec{a}_{1}} \otimes \omega_{\vec{a}_{2}}\right) \leq 1
$$

Proof idea

Generator X of global reversible transformation (no idea what it is...)

We must obtain valid probabilities. For example,

$$
0 \leq\left(e_{-\vec{a}_{1}} \otimes e_{\vec{b}_{2}}\right) e^{\varepsilon X}\left(\omega_{\vec{a}_{1}} \otimes \omega_{\vec{a}_{2}}\right) \leq 1
$$

For $\varepsilon=0$ this gives probability zero, which must be a local minimum.

Proof idea

Generator X of global reversible transformation (no idea what it is...)

We must obtain valid probabilities. For example,

$$
0 \leq\left(e_{-\vec{a}_{1}} \otimes e_{\vec{b}_{2}}\right) e^{\varepsilon X}\left(\omega_{\vec{a}_{1}} \otimes \omega_{\vec{a}_{2}}\right) \leq 1
$$

For $\varepsilon=0$ this gives probability zero, which must be a local minimum.
A lot more work...
$\Rightarrow\left\{\begin{array}{ll}\text { if } d \neq 3: & X=X_{A}+X_{B} \\ \text { if } d=3: & \exp (\varepsilon X)=U_{A B}(\varepsilon) \bullet U_{A B}^{\dagger}(\varepsilon)\end{array} \quad\right.$ no interaction.

Proof idea

Generator X of global reversible transformation (no idea what it is...)

We must obtain valid probabilities. For example,

$$
0 \leq\left(e_{-\vec{a}_{1}} \otimes e_{\vec{b}_{2}}\right) e^{\varepsilon X}\left(\omega_{\vec{a}_{1}} \otimes \omega_{\vec{a}_{2}}\right) \leq 1
$$

For $\varepsilon=0$ this gives probability zero, which must be a local minimum.
A lot more work...
$\Rightarrow\left\{\begin{array}{ll}\text { if } d \neq 3: & X=X_{A}+X_{B} \\ \text { if } d=3: & \exp (\varepsilon X)=U_{A B}(\varepsilon) \bullet U_{A B}^{\dagger}(\varepsilon)\end{array} \quad\right.$ no interaction.

Main reason: $\mathrm{SO}(d-1)$ is only non-trivial and commutative for $d=3$.

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles
3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$p_{i, j, \ldots}:=$ probability of event,

 if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Classical probability theory: $\quad p_{1,2}=p_{1}+p_{2}$.
Quantum theory: $\quad p_{1,2} \neq p_{1}+p_{2}$. (2nd order) interference!

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

QT satisfies (like CPT!)

$$
\begin{aligned}
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3}
\end{aligned}
$$

Higher-order interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

QT satisfies (like CPT!)

$$
\begin{aligned}
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3} .
\end{aligned}
$$

No 3rd-order interference in QT.

$$
\rho=\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right)
$$

Why does QT not have 3rd-order interference?

$$
\begin{aligned}
\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right) & \left(\begin{array}{lll}
\bullet & \bullet & 0 \\
\bullet & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
\bullet & 0 & \bullet \\
0 & 0 & 0 \\
\bullet & 0 & \bullet
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & \bullet \\
0 & \bullet & \bullet
\end{array}\right) \\
& -\left(\begin{array}{lll}
\bullet & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \bullet
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right)= & \left(\begin{array}{lll}
\bullet & \bullet & 0 \\
\bullet & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
\bullet & 0 & \bullet \\
0 & 0 & 0 \\
\bullet & 0 & \bullet
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & \bullet \\
0 & \bullet & \bullet
\end{array}\right) \\
& -\left(\begin{array}{lll}
\bullet & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \bullet
\end{array}\right) \\
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3}
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right)= & \left(\begin{array}{lll}
\bullet & \bullet & 0 \\
\bullet & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
\bullet & 0 & \bullet \\
0 & 0 & 0 \\
\bullet & 0 & \bullet
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & \bullet \\
0 & \bullet & \bullet
\end{array}\right) \\
& -\left(\begin{array}{lll}
\bullet & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \bullet
\end{array}\right) \\
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3}
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right) & =\left(\begin{array}{l}
\bullet \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
\bullet \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
\bullet
\end{array}\right) \\
p_{1,2,3} & =p_{1}+p_{2}+p_{3}
\end{aligned}
$$

Why does CPT not have 2nd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

C. Ududec, Perspectives on the Formalism of Quantum Theory, PhD thesis, University of Waterloo, 2012.

Why does CPT not have 2nd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

C. Ududec, Perspectives on the Formalism of Quantum Theory, PhD thesis, University of Waterloo, 2012.

Are there natural modifications of QT that do this? Possible "new physics"?

Why does CPT not have 2nd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

C. Ududec, Perspectives on the Formalism of Quantum Theory, PhD thesis, University of Waterloo, 2012.

Are there natural modifications of QT that do this? Possible "new physics"?

"1st-order" (trivial) interference

2nd-order interference

3rd-order interference?

A quantum detective story

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A collection of pure and perfectly distinguishable states is called a frame. (QM: orthonormal system)

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A collection of pure and perfectly distinguishable states is called a frame.
(QM: orthonormal system)
Postulate 1: Every state is a mixture of frame states,

$$
\omega=\sum_{i} \lambda_{i} \omega_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}=1
$$

(QM: spectral decomposition of the density matrix)

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A collection of pure and perfectly distinguishable states is called a frame.
(QM: orthonormal system)
Postulate 1: Every state is a mixture of frame states,

$$
\omega=\sum_{i} \lambda_{i} \omega_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}=1
$$

(QM: spectral decomposition of the density matrix)
Postulate 2: Every two frames are related by a reversible transformation. (QM: every two ONBs are related by a unitary.)

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A collection of pure and perfectly distinguishable states is called a frame.
(QM: orthonormal system)
Postulate 1: Every state is a mixture of frame states,

$$
\omega=\sum_{i} \lambda_{i} \omega_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}=1
$$

(QM: spectral decomposition of the density matrix)
Postulate 2: Every two frames are related by a reversible transformation. (QM: every two ONBs are related by a unitary.)

Postulate 3: No third-order interference.

A quantum detective story

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A collection of pure and perfectly distinguishable states is called a frame.
(QM: orthonormal system)
Postulate 1: Every state is a mixture of frame states,

$$
\omega=\sum_{i} \lambda_{i} \omega_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}=1
$$

(QM: spectral decomposition of the density matrix)
Postulate 2: Every two frames are related by a reversible transformation. (QM: every two ONBs are related by a unitary.)

Postulate 3: No third-order interference.
Theorem. The only GPTs satisfying these postulates are: CPT, n-level QT over $\mathbb{R}, \mathbb{C}, \mathbb{H}$, 3-level QT over \mathbb{O}, "qubits" of arbitrary ball dim.

A quantum detective story

Postulate 1: Every state is a convex combination of some frame states,
Postulate 2: Every two frames are related by a reversible transformation.
Postulate 3: No third-order interference.

Theorem. The only GPTs satisfying these postulates are: CPT, n-level QT over $\mathbb{R}, \mathbb{C}, \mathbb{H}$, 3-level QT over \mathbb{O}, "qubits" of arbitrary ball dim.

A quantum detective story

Postulate 1: Every state is a convex combination of some frame states.
Postulate 2: Every two frames are related by a reversible transformation.

Doctulato Donto

What if we drop Postulate 3? Do new theories show up?

A quantum detective story

Postulate 1: Every state is a convex combination of some frame states.
Postulate 2: Every two frames are related by a reversible transformation.

What if we drop Postulate 3? Do new theories show up?

- These would predict higher-order interference.
- Would admit "orthogonal projectors" similarly as QT.
- Faces would correspond to an orthomodular lattice (quantum logic).
- Would satisfy "consistent exclusivity"-principle.
- Some projections of pure states would give mixed states.

A quantum detective story

Postulate 1: Every state is a convex combination of some frame states.
Postulate 2: Every two frames are related by a reversible transformation.

What if we drop Postulate 3? Do new theories show up?

- These would predict higher-order interference.
- Would admit "orthogonal projectors" similarly as QT.
- Faces would correspond to an orthomodular lattice (quantum logic).
- Would satisfy "consistent exclusivity"-principle.
- Some projections of pure states would give mixed states.
H. Barnum and J. Hilgert, Strongly symmetric spectral convex bodies are Jordan algebra state spaces, arXiv:1904.03753

Nope.

A quantum detective story

Postulate 1: Every state is a convex combination of some frame states.
Postulate 2: Every two frames are related by a reversible transformation.

What if we drop Postulate 3? Do new theories show up?

- These would predict higher-order interference.
- Would admit "orthogonal projectors" similarly as QT.
- Faces would correspond to an orthomodular lattice (quantum logic).
- Would satisfy "consistent exclusivity"-principle.
- Some projections of pure states would give mixed states.
H. Barnum and J. Hilgert, Strongly symmetric spectral convex bodies are Jordan algebra state spaces, arXiv:1904.03753

Nope.

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles
3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

The qubit revisited

We have seen: simple assumptions tell us that a bit should have a Euclidean ball state space.

The qubit revisited

We have seen: simple assumptions tell us that a bit should have a Euclidean ball state space.

$\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$-qubits would have $d=2,3,5,9$.
Why $d=3 ?$

The qubit revisited

We have seen: simple assumptions tell us that a bit should have a Euclidean ball state space.

$\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$-qubits would have $d=2,3,5,9$.
Why $d=3 ?$
We have already seen an information-theoretic reason.
But there is also a "spacetime" reason!

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

North-pole state: particle definitely in upper branch.

Constraints from relativity

```
A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).
```


South-pole state: particle definitely in lower branch.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

State on equator $z=0$: probability $1 / 2$ for each.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

State on equator $z=0$: probability $1 / 2$ for each.
$p(u p)=\frac{1}{2}(z+1)$

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"

What transformations T can we perform locally in one arm...
... reversibly, i.e. without any information loss?

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Constraints from relativity

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

d-dim. "Bloch sphere"
T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

Constraints from relativity

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)
$$

Constraints from relativity

Relativity: there's a frame of reference in which T_{A} happens before $T_{B} \ldots$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)
$$

Constraints from relativity

$$
\Rightarrow T_{A} T_{B}=T_{B} T_{A} \text { for all } T_{A}, T_{B} \in \mathrm{SO}(d-1)
$$

d-dim. "Bloch sphere"

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

Constraints from relativity

$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \mathrm{SO}(d-1)$.
$\Rightarrow d \leq 3$.

d-dim. "Bloch sphere"

Relativity: there's a frame of reference in which T_{A} happens before $T_{B \ldots}$... and another frame where it's the other way around.

$$
\mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) .
$$

Constraints from relativity

$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \mathrm{SO}(d-1)$.
$\Rightarrow d \leq 3$.

Constraints from relativity

$$
\begin{aligned}
& \Rightarrow T_{A} T_{B}=T_{B} T_{A} \text { for all } T_{A}, T_{B} \in \mathrm{SO}(d-1) \\
& \quad \Rightarrow d \leq 3
\end{aligned}
$$

We obtain d=3 because
$\mathrm{SO}(d-1)$ is only non-trivial and commutative for $d=3$.

Constraints from relativity

$$
\begin{aligned}
& \Rightarrow T_{A} T_{B}=T_{B} T_{A} \text { for all } T_{A}, T_{B} \in \mathrm{SO}(d-1) \\
& \quad \Rightarrow d \leq 3
\end{aligned}
$$

We obtain d=3 because
$\mathrm{SO}(d-1)$ is only non-trivial and commutative for $d=3$.

Wait a second... this is the same mathematical reason as in the information-theoretic reconstruction!

Constraints from relativity

$$
\begin{aligned}
& \Rightarrow T_{A} T_{B}=T_{B} T_{A} \text { for all } T_{A}, T_{B} \in \mathrm{SO}(d-1) \\
& \quad \Rightarrow d \leq 3
\end{aligned}
$$

We obtain d=3 because

$$
\mathrm{SO}(d-1) \text { is only non-trivial and commutative for } d=3 .
$$

Wait a second... this is the same mathematical reason as in the information-theoretic reconstruction!

Information theory

spacetime

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality!

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality! Whatever happens in one arm can be undone in the other arm.

Constraints from relativity

Let's relax this assumption to $\mathcal{G}_{A} \simeq \mathcal{G}_{B}$.
$\Rightarrow d \leq 5$. Quaternionic QM survives!

So far, we assumed: $\mathcal{G}_{A}=\mathcal{G}_{B}$. Assumption of relationality!
Whatever happens in one arm can be undone in the other arm.

Classification of possibilities

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

Classification of possibilities

```
A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).
```

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Classification of possibilities

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:
$-d=1$ (the classical bit), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
$-d=2$ (the quantum bit over the real numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathbb{Z}_{2}$,
$-d=3$ (the standard quantum bit over the complex numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathrm{SO}(2)=\mathrm{U}(1)$,
$-d=5$ (the quaternionic quantum bit), with $\mathcal{G}_{\mathrm{AB}}=\mathrm{SO}(4), \mathcal{G}_{\mathrm{A}}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa) which are both isomorphic to $\mathrm{SU}(2)$, and $\mathcal{G}_{\mathrm{A}} \cap \mathcal{G}_{\mathrm{B}}=\{+\mathbb{I},-\mathbb{I}\}$.

Classification of possibilities

A. Garner, MM, O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).

A1) Beam splitter can prepare any upper-branch probability p.
A2) Every pure state with the same p can be prepared by reversible operations applied locally on the two arms.
$A 3$) The groups of operations of A and B are isomorphic.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the following possibilities and not more:
$-d=1$ (the classical bit), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\{\mathbf{1}\}$ (i.e. without any non-trivial local transformations),
$-d=2$ (the quantum bit over the real numbers), with $\mathcal{G}_{A}=\mathcal{G}_{\mathrm{B}}=\mathbb{Z}_{2}$,
$-d=3$ (the standard quantum bit over the complex numbers), with $\mathcal{G}_{\mathrm{A}}=\mathcal{G}_{\mathrm{B}}=\mathrm{SO}(2)=\mathrm{U}(1)$,
$-d=5$ (the quaternionic quantum bit), with $\mathcal{G}_{\mathrm{AB}}=\mathrm{SO}(4), \mathcal{G}_{\mathrm{A}}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa) which are both isomorphic to $\mathrm{SU}(2)$, and $\mathcal{G}_{\mathrm{A}} \cap \mathcal{G}_{\mathrm{B}}=\{+\mathbb{I},-\mathbb{I}\}$.

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime
5. Conclusion

Overview

1. Probabilistic theories beyond quantum theory
2. Quantum theory from simple principles

3. The quest for higher-order interference
4. QT and spacetime

5. Conclusion

What does this tell us now?

What does this tell us now?

QT is a theory of probability (belief, knowledge or information).

The complete Hilbert space formalism - including the use of complex numbers, operators, and state update rules - follows from a few simple information-theoretic / probabilistic principles.

What does this tell us now?

QT is a theory of probability (belief, knowledge or information).

The complete Hilbert space formalism - including the use of complex numbers, operators, and state update rules - follows from a few simple information-theoretic / probabilistic principles.

- Collapse: Bayesian updating.
- Unitary evolution: correlation with idealized clock variables.
- Superposition principle: not a principle, but a mathematical accident

$$
|\psi\rangle\langle\psi| \mapsto U|\psi\rangle\langle\psi| U^{\dagger}
$$

What does this tell us now?

QT is a theory of probability (belief, knowledge or information).

The complete Hilbert space formalism - including the use of complex numbers, operators, and state update rules - follows from a few simple information-theoretic / probabilistic principles.

- Collapse: Bayesian updating.
- Unitary evolution: correlation with idealized clock variables.
- Superposition principle: not a principle, but a mathematical accident

$$
|\psi\rangle\langle\psi| \mapsto U|\psi\rangle\langle\psi| U^{\dagger}
$$

Challenge to Everettians: start with a landscape of "theories of many worlds", write down a few simple principles of some kind, and prove that QT is the unique many-worlds-like theory that satisfies those.
A. Koberinski and MM, arXiv:1707.05602

Outlook

Outlook

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics: how do QT and spacetime constrain each other?

Outlook

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics: how do QT and spacetime constrain each other?
semi-device-independent randomness certification

From data table $p(a \mid x, y)$ and this assumption, one can infer that $H(A \mid X, Y, \Lambda) \geq \ldots>0$.

Outlook

Instead of jumping directly to Quantum Gravity, study the logical architecture of physics: how do QT and spacetime constrain each other?

In progress: semi-device-independent, theory-independent randomness certification.

From data table $p(a \mid x, y)$ and this assumption, one can infer that $H(A \mid X, Y, \Lambda) \geq \ldots>0$.

Summary

Quantum theory can be derived from simple principles,

 and this improves our understanding of its structure in several ways.
Thank you

- to the habilitation committee and all reviewers,
- Časlav Brukner, Markus Aspelmeyer, ÖAW,
- my family for their support,
- my collaborators, in particular Lluís Masanes,

- my group at IQOQI.

