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Wolfram’s computational irreducibility

Some systems in nature are comp. reducible:
we can predict their future behavior with simple
equations / theories / algorithms.

Examples:

Position of Jupiter } ,
onJan. 31,2520; &
some cellular automata.
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A cellular automaton with a slightly different rule. The rule
makes a particular cell black if either of its neighbors was black
on the step before, and makes the cell white if both its
neighbors were white. Starting from a single black cell, this rule
leads to a checkerboard pattern. In the numbering scheme of
Chapter 3, this is cellular automaton rule 250.
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e Happens as soon as computational universality is reached.
e Wolfram’s claim: except for the simplest systems, this is the typical behavior.



Wolfram’s computational irreducibility

Some systems admit no such shortcuts: computationally irreducible.

Cells/sec:

e To predict the behavior of a Cl system, we have to emulate it exactly.
e Happens as soon as computational universality is reached.
e Wolfram’s claim: except for the simplest systems, this is the typical behavior.

Problem: there is no formal definition of computational irreducibility!
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Computational irreducibility # chaos

What is the relation of your theory with chaos and complexity

theory. When I try to explain what you discover in your book to
someone else they say, "Ah, chaos theory."

Chaos theory is really about a very specific phenomenon: that sensitive
dependence on initial conditions can lead to randomness. And what one
finds in the end is that the only way to get randomness out of this phenomenon
is just to put randomness in, in the initial conditions. What I've found is that
simple programs can actually produce randomness—and complexity—without it
ever being put it. It's a much more powerful phenomenon.
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Wolfram (2002):
“And it is this, | believe, that is the ultimate origin of the apparent freedom
of human will. For even though all the components of our brains
presumably follow definite laws, | strongly suspect that their overall
behavior corresponds to an irreducible computation whose outcome

can never in effect be found by reasonable laws.”



Computational irreducibility and free will?

Wolfram (2002): L
“And it is this, | believe, that is the ultlmate origin of the apparent freedom
of human will. For even though all the components of our brains
presumably follow definite laws, | strongly suspect that their overall
behavior corresponds to an irreducible computation whose outcome

can never in effect be found by reasonable laws.”

S. Bringsjord, Free will and a new kind of science (2013):

“If someone’s will is apparently free, it hardly follows that that will is in fact
free. Nowhere in ANKS [his book] does Wolfram even intimate that he
maintains that our decisions are in fact free.”

—’Wolfram is “epistemologically correct”, but “metaphysically wrong”.
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Free will, compatibilism, and sourcehood

Philosophers argue for (one of) the following underpinnings of free will:

e The freedom to do otherwise.
But what does that exactly mean?

¢ Sourcehood.
What matters for an agent’s freedom and responsibility
is the source of her action—how her action was brought about.




Free will, compatibilism, and sourcehood

Philosophers argue for (one of) the following underpinnings of free will:

¢ Sourcehood.
What matters for an agent’s freedom and responsibility
is the source of her action—how her action was brought about.

‘A serious hook with a brilliant message’ Matt Ridley

DANlEL C Like the compatibilists, | will focus on sourcehood:
DEN N ETT it is a notion of free will that is compatible even with
a fully deterministic and digital world.

However, | will argue that computational irreducibility
is not the correct notion to study.
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e Every morning, John prepares one of N
breakfasts, where N is large.

e E.g., he thinks of his late Canadian wife, and
then prepares omelette with Maple syrup.
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Worst-case assumptions: fully deterministic and digital world.

e Every morning, John prepares one of N
breakfasts, where N is large.

e E.g., he thinks of his late Canadian wife, and
then prepares omelette with Maple syrup.

Let’s try to convince John that he doesn’t have free will:
scan him + apartment in the evening =% computer.

&

Computation time T might be small enough /; /“Q\
to finish before breakfast, or it might finish >
later. =% Put computer in a secure safe. :
Confront John with result after the breakfast. [:)

\: U
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e |f Tis small enough (shortcut):

&

See, John? You have decided to prepare the Canadian omelette. Ha,
this is exactly what our computer has predicted half an hour earlier,

as several witnesses can testify — well before you have thought
about your Canadian wife!”
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&
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as several witnesses can testify — well before you have thought
about your Canadian wife!”

e |f Tis large (no shortcut):
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See, John? You think your emotions have decided to prepare the
Canadian omelette, but what happened in the safe was only
determined by your physical state and apartment yesterday night.

Your thoughts of your late wife this morning had no impact on
the decision whatsoever!”




John the (emotional) cook

e |f Tis small enough (shortcut):

See, John? You have decided to prepare the Canadian omelette. Ha,
this is exactly what our computer has predicted half an hour earlier,

as several witnesses can testify — well before you have thought
about your Canadian wife!”

e |f Tis large (no shortcut):

See, John? You think your emotions have decided to prepare the
Canadian omelette, but what happened in the safe was only
determined by your physical state and apartment yesterday night.

Your thoughts of your late wife this morning had no impact on
the decision whatsoever!”

In both cases, sourcefulness of John’s emotions is equally contested.
“Shortcut or not” is an irrelevant question. Insofar as computational
irreducibility is understood as “no shortcut”, it is not the relevant notion.



John argues back

But look at your computer: it has performed an
exact simulation of my thought processes. In
particular, there have been algorithmic correlates
of my emotions in the safe!
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Clearly, John would be very worried if the computation inside the safe
had nothing to do with the processes in his brain.



John argues back

But look at your computer: it has performed an
exact simulation of my thought processes. In
particular, there have been algorithmic correlates
of my emotions in the safe!

AL | am not that material body, but

the computational process that is represented a
by it. You have just manufactured another ,E:?L,_ |
representation of the same process in the safe. |

Hence, it was me who has made the decision!

Clearly, John would be very worried if the computation inside the safe
had nothing to do with the processes in his brain.

Computational sourcehood: To predict John’s decision, the simulation has
to contain representations of all of John’s instantaneous states.
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re€{0,1}* ={¢,0,1,00,01,10,11,000,...}
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Computational sourcehood and Turing machines

universal
T™ U

“output” T(x):

actual choice of breakfast

e x: description of John’s (+apartment’s) state the evening before
re€{0,1}* ={¢,0,1,00,01,10,11,000,...}

e pr: description of T (i.e. of “John as a process”)

U(prz) = T(x)
Same outputs, but
does that mean that U must simulate T step by step?
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A conjecture on universal Turing machines

Conjecture. Suppose that a TM U is universal in the sense that it
reproduces the outputs of any other TM: that is,

U(prz) =T(x)

for every TM T and every input x on which T halts. Then, for “most” T,
the universal TM U will generate its output by means of some form of
step-by-step simulation of T's computation.

In this sense, T is the “source” of its outputs (computational sourcehood).
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A conjecture on universal Turing machines

Textbook universal TMs do this too...
... and motivate attempts to
formalize the conjecture rigorously. Introduction tc

HENNI]

Goal: find a rigorous formulation of the
conjecture that has a chance to be true.
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A conjecture on universal Turing machines

Introduction to

HENNIE

(a) Initial Pattern
(b) Phase 1
(c) Phase 2
(d) Phase 3
(e) Phase 4
(f) Phase 5
(g) Phase 6

(h) Phase 7

Buffer
A

Hennie: encode the tape contents of T on the tape

of the universal machine U.

Machine description
A

Tape description
A

14 N

A000000L10101

|
A140000010101

|
A141100010101

A101100810101
A1A41100010101
APOOOOOFIOIO]

AGCQ00000C10101

A000000010101

101
101
101
101
101
101
101

101

101
101
101
101
101
101
101

101

1
1
1
1
1
1
1

1

100101101011071
10010110101101
10010110101101
100101101011071
10018110101101
10010118101101
10010110101101

10010110101181

100-

100--
100---0101101000C11011011000000-

AT

--0101101000C11011011000000-

|
+0101101000C11011011000000 -
I

L3

100---0101101000C11011011000000- -

100---0101101000C11011011000000-~ - -

100---0101101000C11011011000000- -+

100--

!
-0101101000C10110110000000- - -

100---010110100001€C110110000000 -



A conjecture on universal Turing machines

Hennie: encode the tape contents of T on the tape

y | dntroductionto of the universal machine U.
' HENNIE
Buf;fer Machine discription Tape dci:zcription

e Ve

4

(a) Initial Pattern 4A000000810101101101110010110101101100---0101101000C11011011000000Q°- - -

|

(b) Phase 1 A[1A000001010110110111001011010110]100"'0101101000§11011011000000-'-
(c¢) Phase 2 A:IAIIO(}lOlOlOlIOIlOll10010]10101101100"'0101101000|C11011011000000"'
(d) Phase 3 _4l101100[8101011011011}0010110101101100“-0101lOIOOOlCIIOI1011000000“
(e) Phase 4 AIIAIIOOOIOIOIIOIIO]I10013110101101100"'010110100016’11011011000000'“
(f) Phase 5 A|000000:01010110110111001011§101]01100---0101101000[C11011011000000-"
(g) Phase 6 AIOOOOOOIOIOIOIIO]101l10010110191]01100"‘0101101000lC101]0110000000"'
(h) Phase 7 AOOOOOOIOIOIOIIOI1011100101101011_BllOO"°0101101000’01C110110000000---

Instantaneous configuration of U (tape contents, head position, state)
contains a complete image of the instantaneous configuration of T.

One step for T corresponds to several steps for U.



A conjecture on universal Turing machines

Cr(z,t) := configuration of TM T on input x after t steps.

Let S be a set of “simple functions”, containing the identity (just which
set to choose best will be the main question in the following).

Definition. Let Tand T’ be TMs, and suppose there is some simple
function ¢ € & that maps the sequence of configurations

CT’ (337 O),CT’ ($, 1)7CT’ (337 2)7 R 7CT’ (le,t/[_[)

to
CT(:Ev O),CT(.??, 1)7CT($7 2)7 U 7CT(x7tH)°

Then we write T <5 7" (“simulation preorder”).
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Textbook universal TMs U satisfy T <s U(pre)
if S contains a function that decodes T's configuration from U’s.

Can this be true for all U? No.

Counterexample: Modify a textbook universal TM U such that it
begins its operation with “bullshit detection”.
It detects codes for a subclass of “bullshit TMs” T that
perform a complicated calculation and then output O.
U then just outputs O and halts, without simulating T.



A conjecture on universal Turing machines

Textbook universal TMs U satisfy T =<s U(pre)
if S contains a function that decodes T's configuration from U’s.

Can this be true for all U? No.

Counterexample: Modify a textbook universal TM U such that it
oegins its operation with “bullshit detection”.
t detects codes for a subclass of “bullshit TMs” T that
oerform a complicated calculation and then output O.
U then just outputs 0 and halts, without simulating T.
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That is, the clock TM C will formally be considered to
simulate all other TMs step by step. :-(
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) WL 45
: 2. Definition. A clock TM is a TM that ignores its input

P <

= . and counts integer time steps t € N

4 v on its work tape indefinitely.
","lll|‘\‘

Lemma. Let C be a clock TM. If we define S to be the set of all
total computable functions on the configurations, then

T <¢ C forall TMs T.

That is, the clock TM C will formally be considered to
simulate all other TMs step by step. :-(

Proof idea. There will be a function ¢ € & thatreads xand t
from Cc(z,t) and simply recomputes Cr(z,1).
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How not to choose the set of simple functions &

Clearly, the total computable functions are not intuitively “simple”.
We need a much smaller set of much simpler functions. But wait:

Lemma. Let C be a clock TM. If we define S to be the set of all
functions on the configurations with linear run time, then

T <g C forallTMs T.

That is, the clock TM C will formally be considered to
simulate all other TMs step by step. :-(

Proof idea. Recomputation takes only linear time. :-(

Shall we go even simpler than linear time?
Wait a minute...
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Start with a textbook universal TM U, and modify it as follows:
After every step, U makes a brute-force encryption of all the
tape cells that are not relevant for the next computation step,
and decrypts the cells that are relevant.

Then U will be extremely slow, but still universal.
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The set of simple functions & must contain very complex functions

Start with a textbook universal TM U, and modify it as follows:
After every step, U makes a brute-force encryption of all the
tape cells that are not relevant for the next computation step,
and decrypts the cells that are relevant.

Then U will be extremely slow, but still universal.

To decode the simulated TM configuration, ¥ € S
must perform an immensely complex decryption.

To have any chance that our conjecture is true,

the set § must be characterized by something else than simplicity.
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Attempt of Definition: A function ¢© on TM configurations is
structure-preserving if for every pair of configurations ¢, ¢’ such that

D(c, ') is small,
there is a pair of configurations C,C’ with ¢(C) =¢, ¢(C') =
such that

D(C,C") is not too large.
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This assumes the choice of some distance function D(c, ),
e.g. the sum of the Hamming distances of the tape contents.



From simplicity to preservation of structure

Attempt of Definition: A function ¢© on TM configurations is
structure-preserving if for every pair of configurations ¢, ¢’ such that

D(c, ') is small,
there is a pair of configurations C,C’ with ¢(C) =¢, ¢(C") =
such that

D(C,C") is not too large.

This assumes the choice of some distance function D(c, ),
e.g. the sum of the Hamming distances of the tape contents.

Decoding functions for standard textbook universal TMs ’
are structure-preserving in this sense!



Hennie’s U and structure-preserving decoding

U Buffer Machine description Tape description
’ A A \ A

(a) Initial Pattern /1{)00000,,510101101101110010110101101100-~0101101000l
(b) Phase 1 A1A0000I010101101101_110010110101101100"'0101IOIOOOIQIIOIIOI1000000--'
(c) Phase 2 A|141100’010101101101110010110101101100---0101101000'011011011000000--
(d) Phase 3 _41011003}0101101101110010110101101100---0101101000‘011011011000000--
(¢) Phase 4 A141100010101101101110013110101101IOO"‘OIO]IOIOOO'CI1011011000000"'
(f) Phase 5 AOOOOOOOIOIOIIOI10111001011§101101100---0101101000IC11011011000000---
() Phase 6 A|00000001010110110111001011019_1101100---0101101000(:10110110000000~-
(h) Phase 7 A4000000010101101101110010110101181100---010110100001C110110000000 - -

¥
T



Hennie’s U and structure-preserving decoding

U Buffer Machine description Tape description
’ A A N A

(a) Initial Pattern AOOOOOOﬁ]OlO}}OI101I10010110101101100'°'010110100J4:ZEZZEZETE§E§§:::]
(b) Phase 1 A1A0000%10101101101110010110101101100"'0101101000Q11011011 10000~ - -
(c) Phase 2 A“AIIOO%IOIOIIOI101110010]10101101100---010110100JC11011011!30000--
(d) Phase 3 41011003}0101101101110010110101101100---010110100Jc11011011000000--
(¢) Phase 4 A141100010101101101110013110101101100--'010110100JC11011011000000"'
(f) Phase 5 AOOOOOOOIOIOIIOI10111001011§101101100---010110100JC11011011000000---
() Phase 6 A%OOOOOOIOIOIIO]101110010110191IOIIOO"'OIOIIOIOOOC]OI]OllOOOOOOO*-
(h) Phase 7 A4000000010101101101110010110101181100---010110100001C110110000000 - -

¥

T 11011011100000...
|



Hennie’s U and structure-preserving decoding

U

(a) Initial Pattern

{(b) Phase 1
(c) Phase 2
(d) Phase 3
(¢) Phase 4
(f) Phase 5
(g) Phase 6

(h) Phase 7

¥

T

Buffer
A,

Machine description
A

Tape description
A

f N

AOOOOOOIWQIOIOE

A1A0000010101101101

|
A141100010101

A101100810101
ATA1100010101
A|000000I010101

AGC00000010101

A000000010101

101

101
101
101
101
101

101

101

101
101
101
101
101

101

1

1

I

1

1

10010110101101100-

10010110101101100- -

10010110101101100-+

10010110101101100- -

10018110101101100- -

10010118101101100-

10010110101101100~ -

10010110101181100-+

11011011100000...

*

N

-0101101000

-0101101000

|
0101101000

|
-0101101000

|
+0101101000

411011011100000---'

g11011011'30000---

*

C11011011 g30000-

C11011011000000-

¢c11011011000000- - -

-0101101000C11011011000000-- -

l
©0101101000€10110110000000 -

-0101101000

01€¢110110000000-

For these two configurations ¢7, ¢y with D(cr,cf) = 1,
we find Cyr, Cy; with ©(Cy) = cr, ¢(Cyr) = ¢ and

D(Cy,ClL) = 1.
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Clock TMs violate this condition

Q“ ’,

N %  Recall the clock TM C and the “cheating” function ¥-
= ltreads x and t from Cc(z,t) and recomputes Cr(x,t).

*\\
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Recall the clock TM C and the “cheating” function ¥.
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our definition would claim that C simulates T step-by-step.
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Conclusions

e Wolfram’s Computational Irreducibility and apparent free will

e Computational sourcehood as an attempt at defining an aspect
of actual free will. Motivation: thought experiment of John the cook

M. Krumm and M. P. Muller, arXiv:2101.12033

(To be updated soon)

Thank you!



