Reversible computing and the resource-theoretic approach to thermodynamics

Markus P. Müller

¹ Institute for Quantum Optics and Quantum Information, Vienna ² Perimeter Institute for Theoretical Physics, Waterloo, Canada

Recall thermodynamics at **fixed background temperature** *T*.

Recall thermodynamics at **fixed background temperature** *T*.

Folklore: spontaneous processes have

$$\Delta F \leq 0$$
 (2nd law),

where F = U - TS.

If this is negative, then we can extract $|\Delta F|$ of work from the system.

Recall thermodynamics at **fixed background temperature** *T*.

Folklore: spontaneous processes have

$$\Delta F \leq 0$$
 (2nd law),

where F = U - TS.

If this is negative, then we can extract $|\Delta F|$ of work from the system.

But this is a statement on average, since "work" is

a random variable.

Work is a random variable (for fixed process):

Work is a **random variable** (for fixed process):

Work is a **random variable** (for fixed process):

Extractable work "is" (optimally) ΔF : only true in the thermodynamic limit $\,n\to\infty$.

Work is a **random variable** (for fixed process):

Extractable work "is" (optimally) ΔF : only true in the thermodynamic limit $n\to\infty$.

What can we say for "small" or strongly correlated systems? Work \approx its fluctuations \longrightarrow reliability?

The rules of the game:

- It is "free" to bring in any "bath" B in its thermal state $\gamma_B = \exp(-H_B/(k_BT))$,
- strictly energy-preserving unitaries are free,
- and it is free to trace over (ignore) systems.

The rules of the game:

- It is "free" to bring in any "bath" B in its thermal state $\gamma_B = \exp(-H_B/(k_BT))$,
- strictly energy-preserving unitaries are free,
- and it is free to trace over (ignore) systems.

Def.: A thermal operation \mathcal{T} is a map of the form

$$\mathcal{T}(
ho_A) = \mathrm{Tr}_B \left[U_{AB} \left(
ho_A \otimes \gamma_B \right) U_{AB}^\dagger \right]$$
 where $\left[U_{AB}, H_A + H_B \right] = 0.$

The rules of the game:

- It is "free" to bring in any "bath" B in its thermal state $\gamma_B = \exp(-H_B/(k_BT))$,
- strictly energy-preserving unitaries are free,
- and it is free to trace over (ignore) systems.

Def.: A thermal operation \mathcal{T} is a map of the form

$$\mathcal{T}(\rho_A) = \operatorname{Tr}_B \left[U_{AB} \left(\rho_A \otimes \gamma_B \right) U_{AB}^{\dagger} \right]$$
 where $\left[U_{AB}, H_A + H_B \right] = 0.$

Question: Which transitions (work extraction etc.) are possible via thermal operations?

Thermodynamics as a resource theory

Def.: A thermal operation \mathcal{T} is a map of the form

$$\mathcal{T}(
ho_A) = \mathrm{Tr}_B \left[U_{AB} \left(
ho_A \otimes \gamma_B \right) U_{AB}^\dagger \right]$$
 where $\left[U_{AB}, H_A + H_B \right] = 0.$

Thermodynamics as a resource theory

Def.: A thermal operation \mathcal{T} is a map of the form

$$\mathcal{T}(
ho_A) = \mathrm{Tr}_B \left[U_{AB} \left(
ho_A \otimes \gamma_B \right) U_{AB}^\dagger
ight]$$
 where $\left[U_{AB}, H_A + H_B \right] = 0.$

Theorem (Horodecki, Oppenheim, Nat. Comm. 4 (2013)): For **block-diagonal** states, $\rho_A \mapsto \rho'_A$ is possible via some thermal operation iff ρ_A thermo-majorizes ρ'_A .

Thermodynamics as a resource theory

Def.: A thermal operation \mathcal{T} is a map of the form

$$\mathcal{T}(
ho_A) = \mathrm{Tr}_B \left[U_{AB} \left(
ho_A \otimes \gamma_B \right) U_{AB}^\dagger
ight]$$
 where $\left[U_{AB}, H_A + H_B \right] = 0.$

Theorem (Horodecki, Oppenheim, Nat. Comm. 4 (2013)): For **block-diagonal** states, $\rho_A \mapsto \rho'_A$ is possible via some thermal operation iff ρ_A thermo-majorizes ρ'_A .

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Wanted: largest possible Δ such that LHS thermo-maj. RHS.

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Wanted: largest possible Δ such that LHS thermo-maj. RHS.

Result: *extractable work* is $F_0(\sigma_A) - F(\gamma_A)$,

where
$$F_0(\sigma) = k_B T \log \sum_{p_i \neq 0} e^{-\beta E_i}$$
.

Similarly, work cost is $F_{\infty}(\sigma_A) - F(\gamma_A)$

$$= k_B T \log \min\{\lambda : \sigma_A \le \lambda \gamma_A\}.$$

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Wanted: largest possible Δ such that LHS thermo-maj. RHS.

Result: *extractable work* is $F_0(\sigma_A) - F(\gamma_A)$,

where
$$F_0(\sigma) = k_B T \log \sum_{p_i \neq 0} e^{-\beta E_i}$$
.

Similarly, work cost is $F_{\infty}(\sigma_A) - F(\gamma_A)$

$$= k_B T \log \min\{\lambda : \sigma_A \le \lambda \gamma_A\}.$$

Fundamental irreversibility: $F_0 \ll F \ll F_{\infty}$.

Thermodynamic limit

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Brandão et al., Phys. Rev. Lett. 111, 250404 (2013):

Allowing small errors ε , we have

$$\frac{1}{n}F_{0/\infty}^{(\varepsilon)}(\rho^{\otimes n}) \stackrel{n \to \infty}{\longrightarrow} F(\rho).$$

Thermodynamic limit

Work extraction: $\sigma_A \otimes |g\rangle\langle g|_W \mapsto \sigma_A' \otimes |e\rangle\langle e|_W$

Brandão et al., Phys. Rev. Lett. 111, 250404 (2013):

Allowing small errors ε , we have

$$\frac{1}{n}F_{0/\infty}^{(\varepsilon)}(\rho^{\otimes n}) \stackrel{n \to \infty}{\longrightarrow} F(\rho).$$

(Rates of) work cost and extractable work become *F*. **Reversibility is restored** in the thermodynamic limit!

Allow for additional system C that is involved but doesn't change.

Brandão et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Allow for additional system C that is involved but doesn't change.

Brandão et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

Allow for additional system C that is involved but doesn't change.

Brandão et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

$$\operatorname{Tr}_{R}\left[U_{SRC}\left(\rho_{S}\otimes\sigma_{C}\otimes\sigma_{C}\otimes\tau_{R}\right)U_{SRC}^{\dagger}\right]=\rho_{S}'\otimes\sigma_{C}.$$

Allow for additional system C that is involved but doesn't change.

Brandão et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

When is a transition $\rho_S \to \rho_S'$ possible?

$$\operatorname{Tr}_{R}\left[U_{SRC}\left(\rho_{S}\otimes\sigma_{C}\otimes\sigma_{C}\otimes\tau_{R}\right)U_{SRC}^{\dagger}\right]=\rho_{S}'\otimes\sigma_{C}.$$

Theorem: Possible if and only if $F_{\alpha}(\rho_S) \geq F_{\alpha}(\rho_S')$ for all $\alpha \geq 0$. "Second laws" of thermodynamics. Note: $F_{\alpha=1} = F$.

$$\frac{\tau_R}{T} = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

Own work: allow correlations between catalyst and system.

[1] MM, Phys. Rev. X 8, 041051 (2018).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

Own work: allow correlations between catalyst and system.

[1] MM, Phys. Rev. X 8, 041051 (2018).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

Own work: allow correlations between catalyst and system.

[1] MM, Phys. Rev. X 8, 041051 (2018).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

$$\operatorname{Tr}_{R}\left[U_{SRC}\left(\rho_{S}\otimes\sigma_{C}\otimes\tau_{R}\right)U_{SRC}^{\dagger}\right]=\rho_{S}^{\prime}\sigma_{C}.$$

Own work: allow correlations between catalyst and system.

[1] MM, Phys. Rev. X 8, 041051 (2018).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

When is a transition $\rho_S \to \rho_S'$ possible?

$$\operatorname{Tr}_{R}\left[U_{SRC}\left(\rho_{S}\otimes\sigma_{C}\otimes\sigma_{C}\right)U_{SRC}^{\dagger}\right]=\rho_{S}^{\prime}\sigma_{C}.$$

Theorem [1]: Possible if and only if $F(\rho_S) \ge F(\rho_S')$. **One-shot** interpretation of the free energy F.

Own work: allow correlations between catalyst and system.

[1] MM, Phys. Rev. X 8, 041051 (2018).

$$\tau_R = \exp(-k_B T H_R)/Z$$

$$[U_{SRC}, H_S + H_R + H_C] = 0$$

- Fluctuation-free work cost: If then transition possible while work bit $|e\rangle_W \mapsto |g\rangle_W$.
- *Almost* fluct.-free work extraction: If $F(\rho_A) F(\rho_A') > \Delta > 0$, then transition possible while work bit (for arbitrary $\delta > 0$) $|g\rangle\langle g|_W \mapsto (1-\delta)|e\rangle\langle e|_W + \delta \mathbf{1}/d$.

Questions

 Can the resource-theoretic approach be applied to "one-shot regime" of classical reversible computation?

E.g. if irreversibility cannot be completely avoided, can it at least be implemented in the "least costly" way?

- Can it be suitably modified to incorporate realistic constraints arising in classical reversible computation?
 - C. Perry, P. Ćwikliński, J. Anders, M. Horodecki, and J. Oppenheim, A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems, Phys. Rev. X 8, 041049 (2018).

Thank you!