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Context

New paradigm in the last few years: 
understand spacetime structure via quantum information.
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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T represents the "information gap" between A & B

Collaboration: make this gap "as small as possible".
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Alice Bob

Example: Sending a spinning billard ball in classical mechanics.

Stupid strategy:

uses arbitrary

curvilinear


coordinate system

uses arbitrary

curvilinear


coordinate system
'A 'B

T = 'B � '�1
A

Can be arbitrary homeomorphism!

The minimal group    Gmin
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Alice Bob

Example: Sending a spinning billard ball in classical mechanics.

Better strategy:

uses inertial frame 
coordinate system

uses inertial frame 
coordinate system

'A 'B

T = 'B � '�1
A

Is a Galilei transformation!

The minimal group    Gmin
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General strategy: A & B agree to use encoding from a small set of 
"physically distinguished" encodings:

'A,'B 2 �.

Theorem: This set of possible encodings has the property 
 
                 otherwise it would be unnecessarily large. 
                 Hence the set of possible transformations 
                                                                           is a group.

'1,'2,'3 2 � ) '3 � '�1
2 � '1 2 �,

G = {'B � '�1
A }

Given any physical background assumptions, is there 
always a "best" strategy? Yes!

Theorem: Up to isomorphism, there is always a unique smallest 
                 group             that A & B can agree upon.Gmin

The minimal group    Gmin
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Alice Bob
T

Summary: Given any physical background assumptions, and

choice of objects to send, there is a unique smallest group

that relates A and B.

Gmin

Example: Spinning/moving billard balls in class. mech.: Galilei group.

T 2 Gmin

The minimal group    Gmin
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 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

Apriori, every physical object has its own group Gmin.

However, often different objects "hang together":

Then A & B need to negotiate common description only for 
one of the objects. If this is true for many (all?) objects,

then we get an operational definition of "reference frames".

object 1
T 2 Gmin

object 2
T ⇥ T ⇥ T

The minimal group    Gmin
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• Spacetime interpretation: 
relativistic Stern-Gerlach 
measurements
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3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

• Spacetime interpretation: 
relativistic Stern-Gerlach 
measurements



Communicating quantum states

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

In what follows, we are not assuming

any specific background space(time).!
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3. Quantum states
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Alice Bob

Bob, please send me the 
following quantum state: 

                       

T

⇢ =

0

@
0.6 0 0.1i
0 0.3 0

�0.1i 0 0.1

1

A

Problem: A & B have not agreed on a Hilbert space basis.
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⇢A = 'A(!), ⇢B = 'B(!)
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Communicating quantum states

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

For every Hilbert space H, there is a unitary
U 2 SU(N) with N = dimH such that

⇢B = U⇢AU
†.

But this would mean: for every Hilbert space     , A & B have

to establish a separate transformation 
Highly impractical! Can they do better? Yes!

H

) Gmin = PU(N)

Situation looks like the following:

• A & B agree to choose encodings of quantum states      as usual 

into density matrices                                          (convex-linear).

• But cannot agree on basis over the telephone.

!
⇢A = 'A(!), ⇢B = 'B(!)

(maybe smaller for some systems)

T 2 Gmin(H).
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�S or S' M̂

"universal measurement device":

Measures "the same observable" on different 
quantum systems S, S' (with maybe                          ).dimS 6= dimS0

Example: Stern-Gerlach device,     =spin in z-direction,

                 S=electron spin, S'=Z-Boson spin

M̂

M̂(S) =

✓
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3. Quantum states
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�S or S' M̂

"universal measurement device":

Measures "the same observable" on different 
quantum systems S, S' (with maybe                          ).dimS 6= dimS0

Example: Stern-Gerlach device,     =spin in z-direction,

                 S=electron spin, S'=Z-Boson spin

M̂

M̂(S) =

✓
1 0
0 �1

◆
, M̂(S0) =

0

@
1 0 0
0 0 0
0 0 �1

1

A .

This will relate S and S'. But how to define this abstractly?

s1

s2

s01

s02

s03

Not necessarily a "geometric" observable.

There could be all kinds of reasons 

to have such devices...



How to define "universal meas. devices"?

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).



How to define "universal meas. devices"?

3. Quantum states
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�̂M

3. SO(3,1)

S or S'

Call S and S' equivalent if all their observables are

(S,S')-co-measurable. Equivalence classes: S.

Same observable on different quantum systems S

Theorem: Then dim S=dim S', and 

invertible

M̂(S) = XM̂(S0)TX†.

possibly

transpose

 Quantum theory and spacetime: strange allies                                                                                     Markus P. Müller
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s = 1

Ŝz

Ŝ
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Ŝ
x

s?

s1

s2

s01

s02

s03

How to define "universal meas. devices"?



3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

�̂M

3. SO(3,1)

S or S'

Call S and S' equivalent if all their observables are

(S,S')-co-measurable. Equivalence classes: S.

Same observable on different quantum systems S

Theorem: Then dim S=dim S', and 

invertible

M̂(S) = XM̂(S0)TX†.

possibly

transpose

 Quantum theory and spacetime: strange allies                                                                                     Markus P. Müller
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Consistency conditions on the set of universal devices:

• ˆM(S) $ ˆM(S0
) continuous,

• ˆM1(S)  ˆM2(S) ) ˆM1(S0
)  ˆM2(S0

),

• ˆM(S) = 0 ) ˆM(S0
) = 0.
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(S,S')-co-measurable. Equivalence classes: S.

Same observable on different quantum systems S
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possibly

transpose
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• ˆM(S) $ ˆM(S0
) continuous,

• ˆM1(S)  ˆM2(S) ) ˆM1(S0
)  ˆM2(S0

),

• ˆM(S) = 0 ) ˆM(S0
) = 0.

If "enough" observables      are universally measurable on S and S',

we say that S and S' hang together.
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s03

M̂
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Consequence: if all quantum systems hang together, then
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Consequence: if all quantum systems hang together, then
Gmin = symmetry group of smallest-dim. quantum system.

Recall consistency conditions for "universal devices"

• ˆM(S) $ ˆM(S0
) continuous,

• ˆM1(S)  ˆM2(S) ) ˆM1(S0
)  ˆM2(S0

),

• ˆM(S) = 0 ) ˆM(S0
) = 0.

dimS = dimS0 = N ) M̂(S0) = XM̂(S)(T )X†, detX 6= 0.

Further assumption: N=2 (maybe redundant)

Gmin =
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⇢ 7! X⇢X†

or X⇢TX† | detX 6= 0
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What if different Hilbert spaces "hang together"?

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

Consequence: if all quantum systems hang together, then
Gmin = symmetry group of smallest-dim. quantum system.

orthochronous Lorentz group

'A 'B

T = 'B � '�1
A

Interpretation of       -factor: 
Conversion factor for different

choices of units (for eigenvalues)

R+

N = 2 ) Gmin = R+ ⇥O+(3, 1)



What if different Hilbert spaces "hang together"?

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

Consequence: if all quantum systems hang together, then
Gmin = symmetry group of smallest-dim. quantum system.

orthochronous Lorentz group

'A 'B

T = 'B � '�1
A

Translates between observers'

descriptions of local quantum physics.

spacetime interpretation?

Interpretation of       -factor: 
Conversion factor for different

choices of units (for eigenvalues)

R+

N = 2 ) Gmin = R+ ⇥O+(3, 1)



What if different Hilbert spaces "hang together"?

3. Quantum states

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

In an analogousmanner, we can generalize definition 3.4 and define universalmeasurability graphs in this
setting.

Assumptions 4.11 (Universalmeasurability graph).Consider the set of allfinite-dimensional equivalence
classes of quantum systems ¢ ´ ¼S S S, , , ; we regard them as vertices of a graph. Draw a directed edge from S to
¢S if and only if the situation of lemma 4.10 holds, i.e. if there is a set of observables { ˆ }ÎMi i I which is universally
measurable on S and ¢S and tomographically complete on ¢S .

We assume that there exists a two-level system S that is a ‘root’ of this graph, in the sense that every vertex can
be reached from S by following directed edges. Furthermore, we assume that no quantum systemwith a partially
preferred choice of encoding is a root of this graph.

It is unclear whether it is even possible that the smallest-dimensional root of the universalmeasurability
graph has dimension d=3 ormore19.We leave it openwhether one can show that this is impossible, which
would imply that the assumption of a ‘qubit root’ can be dropped.

We can argue further along the lines of section 3.3 if we keep our notation in the Schrödinger picture. Ifj is
an arbitrary fixed encoding of the qubit equivalence class S, then every other encoding j̃ is related to this by a
map of the form †X X• or †X X•T , withX an invertible complex 2×2-matrix. That is, for every encodingjS,
there is some ( )ÎT PLA 2 (the ‘projective linear antilinear group’ ofmaps as above) such that ◦j j= TS . In
this case, wewritej j= T

S S .
All further steps of the proof of theorem 3.6 hold also in thismore general case, if every occurrence of
( )PUA 2 is replaced by ( )PLA 2 (and the reference to the special observables ·l 1with �l Î is removed),

yielding that ( )� = PLA 2min . Similarly as in the proof of theorem 3.6, we also have to ‘bundle together’ those
quantum systems ¢S and ´S which differ only by the set of observables that are universallymeasurable on them
and on S (if those sets are related by conjugation and possibly transposition); Alice andBobwill then not be able
to tell them apart by sending classical information only. This is the subtlety that wasmentioned in assumptions
4.8. A paradigmatic physical example would again be given by the polarization of photons in different directions
of propagation.

The group ( )PLA 2 has a simpler description. First, every conjugation †X X• withX an invertible complex
matrix can also bewritten in the form †lZ Z• , with l > 0 and =Zdet 1.Writing 2×2Hermitianmatrices

formally as four-vectors, r =
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, it is well-known that the conjugation †6r rZ Z acts like an

element of the proper orthochronous Lorentz group [5]. Furthermore, the transposition acts as a space
inversion. Therefore, we obtain the following:

Theorem4.12. In the scenario above, theminimal group is the orthochronous Lorentz group, together with a scaling
factor, ( )� �= ´+ +O 3, 1min . The subgroup of implementable transformations is ( )� ´+ +SO 3, 1 , the group of
proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if S is the ‘root qubit’ of assumptions 4.11, and ¢S any other quantum system such that all
observables of S are universallymeasurable on S and ¢S , then ¢S carries a projective representation of ( )+SO 3, 1 ; the
group elements act as isometries between differentHilbert spaces. All other quantum systems ¢S carry a projective
representation of the subgroup of ( )+SO 3, 1 which preserves the observables that are universallymeasurable on S
and ¢S .

In particular, we have again obtained the relation betweenAlice’s and Bob’s laboratories from the relation
between their qubit descriptions. In this regard qubits assume the role of fundamental building blocks of their
physical world.

It remains to briefly discuss howAlice andBob can actually agree on the description of qubits. A possible
procedure is completely analogous to the one described in section 3.2 for the simpler scenario. As before, its
temporal stability requires the inertial frame condition to hold. The sole difference, however, is that Alice and Bob
will also have to determine the type of the qubits (in addition to the state).

In the following subsections, we discuss and interpret this result.

19
Thismight be impossible for the following reason: if the universallymeasurable observables correspond to the Lie algebra of the

implementable symmetry group ( )� �´+ dPSL , , see lemma 4.9 (in fact, we conjecture this to follow fromour postulates), then this could
only be true if therewere ‘enough’ positivity-preserving (due to (4.1)) Lie algebra representations in higher dimensions. For d=2 this is
shown to be possible in lemma 4.2.
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and of SO+(3,1), acting via ⇢ 7! X⇢X†, detX 6= 0.

But wait a minute - this is not unitary?!

This is fine – the map | i 7! X| i is an isometry between
the two Hilbert spaces
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(Though very suggestive.)
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qubits in nature with
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Work in progress w/ 
Sylvain Carrozza:

relate this to Wigner

representation.
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| i 7! X| i
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where                                is        with

momentum-dependent inner product.

Hp =
�
C2, h·, ·ip
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Have not at all "derived

relativity" (no manifold

etc.!), and spacetime

interpretation is not

necessary -- but quite

suggestive.

(WKB approximation)



Summary

 P. Höhn and M. P. Müller, An operational approach to spacetime symmetries: L.T. from Q.C., New J. Phys. 18, 063026 (2016).

Usual line of reasoning:

Relativistic (3+1)-spacetime)
• symmetry group SO(3,1)

• rep's of SO(3) on quantum 

systems; spin

• existence of Stern-Gerlach 

measurement devices

Our arguments:

Existence of "enough" universal 
quantum measurement devices; 
auxiliary assumptions (e.g. N=2)

)

• operational "symmetry" 
group SO(3,1)


• rep's of SO(3) on quantum 
systems ("spin")
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