An operational approach to spacetime symmetries:

 Lorentz transformations from quantum communicationMarkus P. Müller

Departments of Applied Mathematics and Philosophy, UWO
Perimeter Institute for Theoretical Physics, Waterloo
joint work with Philipp Höhn

Context

New paradigm in the last few years: understand spacetime structure via quantum information.

(a)

(b)

FIG. 1: (a) AdS_{3} space and CFT_{2} living on its boundary and (b) a geodesics γ_{A} as a holographic screen.
S. Ryu and T. Takayanagi, PRL 96, 181602 (2006)

Context

New paradigm in the last few years:

 understand spacetime structure via quantum information.(a)

(b)

Our question: Can we understand the symmetry group of spacetime from a quantum information perspective?

FIG. 1: (a) AdS_{3} space and CFT_{2} living on its boundary and (b) a geodesics γ_{A} as a holographic screen.
S. Ryu and T. Takayanagi, PRL 96, 181602 (2006)

1. Context

Context

New paradigm in the last few years:

 understand spacetime structure via quantum information.(a)

FIG. 1: (a) AdS_{3} space and CFT_{2} living on its boundary and (b) a geodesics γ_{A} as a holographic screen.

Our question: Can we understand the symmetry group of spacetime from a quantum information perspective?

Yes, under certain conditions+assumptions.

S. Ryu and T. Takayanagi, PRL 96, 181602 (2006)

1. Context

Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

- Spacetime interpretation: relativistic Stern-Gerlach measurements

1. Context

Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

- Spacetime interpretation: relativistic Stern-Gerlach measurements

2. General setup

2. General setup

Two observers

Alice

Bob

	2. General setup		

2. General setup

Two observers in their local laboratories. They have never met,

2. General setup

Two observers in their local laboratories. They have never met, but can communicate.

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

"Bob, please send me the following physical object: [description]"

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

"Bob, please send me the following physical object: [description]"

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

"Bob, please send me the following physical object: [description]"

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

"Bob, please send me the following physical object: [description]"

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

2. General setup

Two observers in their local laboratories. They have never met, but can communicate. Task/game:

Goal: send the correct physical object (under cooperation).

2. General setup

Problem: A \& B will not share a common frame of reference.

Goal: send the correct physical object (under cooperation).

2. General setup

Problem: A \& B will not share a common frame of reference.

"Bob, please send me the following physical object: [description]"

Goal: send the correct physical object (under cooperation).

2. General setup

D. oblem: A \& B will not share a common frame of reference.

"Bob, please send me the following physical object: [description]"

Goal: send the correct physical object (under cooperation).

2. General setup

D. oblem: A \& B will not share a common frame of reference.

"Bob, please send me the following physical object: [description]"

Goal: send the correct physical object (under cooperation).

2. General setup

n. oblem: A \& B will not share a common frame of reference.

Goal: send the correct physical object (under cooperation).

2. General setup

D. oblem: A \& B will not share a common frame of reference.

Goal: send the correct physical object (under cooperation).

2. General setup

Reason: A \& B choose different encodings into math. descriptions

Alice

Bob

2. General setup

Reason: A \& B choose different encodings into math. descriptions

2. General setup

Reason: A \& B choose different encodings into math. descriptions

[^0]
2. General setup

Reason: A \& B choose different encodings into math. descriptions
Can use this as a "correcting transformation".

2. General setup

2. General setup

"Bob, please send me the following physical object: [description]"

2. General setup

"Bob, please send me the following physical object: [description]"

2. General setup

"Bob, please send me the following physical object:

2. General setup

"Bob, please send me the following physical object: [description]"

2. General setup

2. General setup

2. General setup

T represents the "information gap" between A \& B

"Bob, please send me the following physical object: [description]"

2. General setup

T represents the "information gap" between A \& B
"Bob, please send me the

Alice

following physical object: [description]"

Collaboration: make this gap "as small as possible".

Example: Sending a spinning billard ball in classical mechanics.

Alice

Bob

Example: Sending a spinning billard ball in classical mechanics.

Stupid strategy:

Alice

Bob

The minimal group $\mathcal{G}_{\text {min }}$

Example: Sending a spinning billard ball in classical mechanics.

Stupid strategy:

The minimal group $\mathcal{G}_{\text {min }}$

Example: Sending a spinning billard ball in classical mechanics.

Stupid strategy:

[^1]
Example: Sending a spinning billard ball in classical mechanics.

Better strategy:

Alice

Bob

The minimal group $\mathcal{G}_{\text {min }}$

Example: Sending a spinning billard ball in classical mechanics.

Better strategy:

Alice
uses inertial frame
coordinate system

Bob

uses inertial frame coordinate system

The minimal group $\mathcal{G}_{\text {min }}$

Example: Sending a spinning billard ball in classical mechanics.
Better strategy:

The minimal group $\mathcal{G}_{\text {min }}$

Example: Sending a spinning billard ball in classical mechanics.
Better strategy:

General strategy: A \& B agree to use encoding from a small set of "physically distinguished" encodings:

$$
\varphi_{A}, \varphi_{B} \in \Phi
$$

General strategy: A \& B agree to use encoding from a small set of "physically distinguished" encodings:

$$
\varphi_{A}, \varphi_{B} \in \Phi
$$

Theorem: This set of possible encodings has the property

$$
\varphi_{1}, \varphi_{2}, \varphi_{3} \in \Phi \Rightarrow \varphi_{3} \circ \varphi_{2}^{-1} \circ \varphi_{1} \in \Phi
$$

otherwise it would be unnecessarily large. Hence the set of possible transformations

$$
\mathcal{G}=\left\{\varphi_{B} \circ \varphi_{A}^{-1}\right\} \quad \text { is a group. }
$$

General strategy: A \& B agree to use encoding from a small set of "physically distinguished" encodings:

$$
\varphi_{A}, \varphi_{B} \in \Phi
$$

Theorem: This set of possible encodings has the property

$$
\varphi_{1}, \varphi_{2}, \varphi_{3} \in \Phi \Rightarrow \varphi_{3} \circ \varphi_{2}^{-1} \circ \varphi_{1} \in \Phi
$$

otherwise it would be unnecessarily large. Hence the set of possible transformations

$$
\mathcal{G}=\left\{\varphi_{B} \circ \varphi_{A}^{-1}\right\} \quad \text { is a group. }
$$

Given any physical background assumptions, is there always a "best" strategy? Yes!

The minimal group $\mathcal{G}_{\text {min }}$

General strategy: A \& B agree to use encoding from a small set of "physically distinguished" encodings:

$$
\varphi_{A}, \varphi_{B} \in \Phi
$$

Theorem: This set of possible encodings has the property

$$
\varphi_{1}, \varphi_{2}, \varphi_{3} \in \Phi \Rightarrow \varphi_{3} \circ \varphi_{2}^{-1} \circ \varphi_{1} \in \Phi
$$

otherwise it would be unnecessarily large. Hence the set of possible transformations

$$
\mathcal{G}=\left\{\varphi_{B} \circ \varphi_{A}^{-1}\right\} \quad \text { is a group }
$$

Given any physical background assumptions, is there always a "best" strategy? Yes!

Theorem: Up to isomorphism, there is always a unique smallest group $\mathcal{G}_{\text {min }}$ that A \& B can agree upon.

The minimal group $\mathcal{G}_{\text {min }}$

Summary: Given any physical background assumptions, and choice of objects to send, there is a unique smallest group $\mathcal{G}_{\text {min }}$ that relates A and B .

The minimal group $\mathcal{G}_{\text {min }}$

Summary: Given any physical background assumptions, and choice of objects to send, there is a unique smallest group $\mathcal{G}_{\text {min }}$ that relates A and B.

Example: Spinning/moving billard balls in class. mech.: Galilei group.

The minimal group $\mathcal{G}_{\text {min }}$

Apriori, every physical object has its own group $\mathcal{G}_{\text {min }}$. However, often different objects "hang together":

The minimal group $\mathcal{G}_{\text {min }}$

Apriori, every physical object has its own group $\mathcal{G}_{\text {min }}$.
However, often different objects "hang together":

object 1
$T \in \mathcal{G}_{\text {min }}$

object 2
$T \times T \times T$

The minimal group $\mathcal{G}_{\text {min }}$

Apriori, every physical object has its own group $\mathcal{G}_{\text {min }}$.
However, often different objects "hang together":

object 1
$T \in \mathcal{G}_{\text {min }}$

object 2
$T \times T \times T$

Then A \& B need to negotiate common description only for one of the objects. If this is true for many (all?) objects, then we get an operational definition of "reference frames".

[^2]
Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

- Spacetime interpretation: relativistic Stern-Gerlach measurements

Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

- Spacetime interpretation: relativistic Stern-Gerlach measurements

3. Quantum states

Communicating quantum states

| In what follows, we are not assuming

Communicating quantum states

Communicating quantum states

Communicating quantum states

Problem: A \& B have not agreed on a Hilbert space basis.

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

$$
\begin{aligned}
& \text { For every Hilbert space } \mathcal{H} \text {, there is a unitary } \\
& U \in \operatorname{SU}(N) \text { with } N=\operatorname{dim} \mathcal{H} \text { such that } \\
& \qquad \rho_{B}=U \rho_{A} U^{\dagger}
\end{aligned}
$$

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

$$
\begin{aligned}
& \text { For every Hilbert space } \mathcal{H} \text {, there is a unitary } \\
& U \in \mathrm{SU}(N) \text { with } N=\operatorname{dim} \mathcal{H} \text { such that } \\
& \qquad \rho_{B}=U \rho_{A} U^{\dagger} \text { or } \rho_{B}=U \rho_{A}^{T} U^{\dagger}
\end{aligned}
$$

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

$$
\begin{aligned}
& \text { For every Hilbert space } \mathcal{H} \text {, there is a unitary } \\
& U \in \operatorname{SU}(N) \text { with } N=\operatorname{dim} \mathcal{H} \text { such that } \\
& \qquad \rho_{B}=U \rho_{A} U^{\dagger}
\end{aligned}
$$

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

$$
\begin{aligned}
& \text { For every Hilbert space } \mathcal{H} \text {, there is a unitary } \\
& U \in \operatorname{SU}(N) \text { with } N=\operatorname{dim} \mathcal{H} \text { such that } \\
& \qquad \rho_{B}=U \rho_{A} U^{\dagger} . \\
& \Rightarrow \quad \mathcal{G}_{\min }=\operatorname{PU}(N) \quad \text { (maybe smaller for some systems) }
\end{aligned}
$$

Communicating quantum states

Situation looks like the following:

- A \& B agree to choose encodings of quantum states ω as usual into density matrices $\rho_{A}=\varphi_{A}(\omega), \rho_{B}=\varphi_{B}(\omega)$ (convex-linear).
- But cannot agree on basis over the telephone.

$$
\begin{aligned}
& \text { For every Hilbert space } \mathcal{H} \text {, there is a unitary } \\
& U \in \operatorname{SU}(N) \text { with } N=\operatorname{dim} \mathcal{H} \text { such that } \\
& \qquad \rho_{B}=U \rho_{A} U^{\dagger} . \\
& \Rightarrow \quad \mathcal{G}_{\min }=\operatorname{PU}(N) \quad \text { (maybe smaller for some systems) }
\end{aligned}
$$

But this would mean: for every Hilbert space $\mathcal{H}, \mathrm{A} \& \mathrm{~B}$ have to establish a separate transformation $T \in \mathcal{G}_{\text {min }}(\mathcal{H})$. Highly impractical! Can they do better? Yes!

How do different Hilbert spaces "hang together"?

"universal measurement device":

How do different Hilbert spaces "hang together"?

"universal measurement device":

"universal measurement device":

Measures "the same observable" on different quantum systems S, S^{\prime} (with maybe $\operatorname{dim} S \neq \operatorname{dim} S^{\prime}$).

How do different Hilbert spaces "hang together"?

"universal measurement device":

Measures "the same observable" on different quantum systems $\mathrm{S}, \mathrm{S}^{\prime}$ (with maybe $\operatorname{dim} S \neq \operatorname{dim} S^{\prime}$).

Example: Stern-Gerlach device, $\hat{M}=$ spin in z-direction, S=electron spin, $\mathrm{S}^{\prime}=Z$-Boson spin

$$
\hat{M}(S)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \hat{M}\left(S^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

How do different Hilbert spaces "hang together"?

"universal measurement device":

Measures "the same observable" on different quantum systems $\mathrm{S}, \mathrm{S}^{\prime}$ (with maybe $\operatorname{dim} S \neq \operatorname{dim} S^{\prime}$).

Example: Stern-Gerlach device, $\hat{M}=$ spin in z-direction, ‘Not necessarily a "geometric" observable.

There could be all kinds of reasons to have such devices...

How do different Hilbert spaces "hang together"?

"universal measurement device":

Measures "the same observable" on different quantum systems $\mathrm{S}, \mathrm{S}^{\prime}$ (with maybe $\operatorname{dim} S \neq \operatorname{dim} S^{\prime}$).

Example: Stern-Gerlach device, $\hat{M}=$ spin in z-direction, ‘Not necessarily a "geometric" observable.

There could be all kinds of reasons to have such devices...

This will relate \mathbf{S} and \mathbf{S}^{\prime}. But how to define this abstractly?

How to define "universal meas. devices"?

How to define "universal meas. devices"?

How to define "universal meas. devices"?

Consistency conditions on the set of universal devices:

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.

Consistency conditions on the set of universal devices:

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.

If "enough" observables \hat{M} are universally measurable on S and S^{\prime}, we say that S and S^{\prime} hang together.

3. Quantum states

What if different Hilbert spaces "hang together"?

If "enough" observables \hat{M} are universally measurable on S and S^{\prime}, we say that S and S^{\prime} hang together.

3. Quantum states

What if different Hilbert spaces "hang together"?

Main benefit: A \& B can "lift" their synchronization of S to a synchronization of S^{\prime}.

If "enough" observables \hat{M} are universally measurable on S and S^{\prime}, we say that S and S^{\prime} hang together.

What if different Hilbert spaces "hang together"?

Main benefit: A \& B can "lift" their synchronization of S to a synchronization of S^{\prime}.

If "enough" observables \hat{M} are universally measurable on S and S^{\prime}, we say that S and S^{\prime} hang together.

3. Quantum states

What if different Hilbert spaces "hang together"?

Main benefit: A \& B can "lift" their synchronization of S to a synchronization of S^{\prime}.

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

[^3]
What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

Recall consistency conditions for "universal devices"

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

Recall consistency conditions for "universal devices"

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.
$\operatorname{dim} S=\operatorname{dim} S^{\prime}=N \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=X \hat{M}(S)^{(T)} X^{\dagger}, \quad \operatorname{det} X \neq 0$.

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

Recall consistency conditions for "universal devices"

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.
$\operatorname{dim} S=\operatorname{dim} S^{\prime}=N \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=X \hat{M}(S)^{(T)} X^{\dagger}, \quad \operatorname{det} X \neq 0$.

$$
\mathcal{G}_{\text {min }}=\left\{\rho \mapsto X \rho X^{\dagger} \text { or } X \rho^{T} X^{\dagger} \mid \operatorname{det} X \neq 0\right\} .
$$

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

Recall consistency conditions for "universal devices"

- $\hat{M}(S) \leftrightarrow \hat{M}\left(S^{\prime}\right)$ continuous,
- $\hat{M}_{1}(S) \leq \hat{M}_{2}(S) \quad \Rightarrow \quad \hat{M}_{1}\left(S^{\prime}\right) \leq \hat{M}_{2}\left(S^{\prime}\right)$,
- $\hat{M}(S)=0 \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=0$.
$\operatorname{dim} S=\operatorname{dim} S^{\prime}=N \quad \Rightarrow \quad \hat{M}\left(S^{\prime}\right)=X \hat{M}(S)^{(T)} X^{\dagger}, \quad \operatorname{det} X \neq 0$.

$$
\mathcal{G}_{\text {min }}=\left\{\rho \mapsto X \rho X^{\dagger} \text { or } X \rho^{T} X^{\dagger} \mid \operatorname{det} X \neq 0\right\} .
$$

Further assumption: $\mathbf{N = \mathbf { 2 }}$ (maybe redundant)

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

$$
\begin{aligned}
N=2 \Rightarrow & \mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1) \\
& \text { orthochronous Lorentz group }
\end{aligned}
$$

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

$$
\begin{aligned}
N=2 \Rightarrow & \mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1) \\
& \text { orthochronous Lorentz group }
\end{aligned}
$$

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

$$
\begin{aligned}
N=2 \Rightarrow & \mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1) \\
& \text { orthochronous Lorentz group }
\end{aligned}
$$

Interpretation of \mathbb{R}^{+}-factor: Conversion factor for different choices of units (for eigenvalues)

What if different Hilbert spaces "hang together"?

Consequence: if all quantum systems hang together, then $\mathcal{G}_{\text {min }}=$ symmetry group of smallest-dim. quantum system.

$$
\begin{array}{ll}
N=2 \Rightarrow & \mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1) \\
& \text { orthochronous Lorentz group }
\end{array}
$$

Interpretation of \mathbb{R}^{+}-factor: Conversion factor for different choices of units (for eigenvalues)

Translates between observers' descriptions of local quantum physics.
spacetime interpretation?
3. Quantum states

What if different Hilbert spaces "hang together"?

Theorem 4.12. In the scenario above, the minimal group is the orthochronous Lorentz group, together with a scaling factor, $\mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1)$. The subgroup of implementable transformations is $\mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)$, the group of proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if \mathbf{S} is the 'root qubit' of assumptions 4.11, and \mathbf{S} ' any other quantum system such that all observables of \mathbf{S} are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}, then \mathbf{S}^{\prime} carries a projective representation of $\mathrm{SO}^{+}(3,1)$; the group elements act as isometries between different Hilbert spaces. All other quantum systems \mathbf{S}^{\prime} carry a projective representation of the subgroup of $\mathrm{SO}^{+}(3,1)$ which preserves the observables that are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}.

3. Quantum states

What if different Hilbert spaces "hang together"?

Theorem 4.12. In the scenario above, the minimal group is the orthochronous Lorentz group, together with a scaling factor, $\mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1)$. The subgroup of implementable transformations is $\mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)$, the group of proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if \mathbf{S} is the 'root qubit' of assumptions 4.11, and \mathbf{S} ' any other quantum system such that all observables of \mathbf{S} are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}, then \mathbf{S}^{\prime} carries a projective representation of $\mathrm{SO}^{+}(3,1)$; the group elements act as isometries between different Hilbert spaces. All other quantum systems \mathbf{S}^{\prime} carry a projective representation of the subgroup of $\mathrm{SO}^{+}(3,1)$ which preserves the observables that are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}.

We get projective rep's of SO(3) \longrightarrow different spin.

3. Quantum states

What if different Hilbert spaces "hang together"?

Theorem 4.12. In the scenario above, the minimal group is the orthochronous Lorentz group, together with a scaling factor, $\mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1)$. The subgroup of implementable transformations is $\mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)$, the group of proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if \mathbf{S} is the 'root qubit' of assumptions 4.11, and \mathbf{S} ' any other quantum system such that all observables of \mathbf{S} are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}, then \mathbf{S}^{\prime} carries a projective representation of $\mathrm{SO}^{+}(3,1)$; the group elements act as isometries between different Hilbert spaces. All other quantum systems \mathbf{S}^{\prime} carry a projective representation of the subgroup of $\mathrm{SO}^{+}(3,1)$ which preserves the observables that are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}.

We get projective rep's of $\mathrm{SO}(3) \longrightarrow$ different spin. and of $\mathrm{SO}^{+}(3,1)$, acting via $\rho \mapsto X \rho X^{\dagger}, \operatorname{det} X \neq 0$.

3. Quantum states

What if different Hilbert spaces "hang together"?

Theorem 4.12. In the scenario above, the minimal group is the orthochronous Lorentz group, together with a scaling factor, $\mathcal{G}_{\min }=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1)$. The subgroup of implementable transformations is $\mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)$, the group of proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if \mathbf{S} is the 'root qubit' of assumptions 4.11, and \mathbf{S} ' any other quantum system such that all observables of \mathbf{S} are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}, then \mathbf{S}^{\prime} carries a projective representation of $\mathrm{SO}^{+}(3,1)$; the group elements act as isometries between different Hilbert spaces. All other quantum systems \mathbf{S}^{\prime} carry a projective representation of the subgroup of $\mathrm{SO}^{+}(3,1)$ which preserves the observables that are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}.

We get projective rep's of $\mathrm{SO}(3) \longrightarrow$ different spin. and of $\mathrm{SO}^{+}(3,1)$, acting via $\rho \mapsto X \rho X^{\dagger}, \operatorname{det} X \neq 0$.

But wait a minute - this is not unitary?!

3. Quantum states

What if different Hilbert spaces "hang together"?

Theorem 4.12. In the scenario above, the minimal group is the orthochronous Lorentz group, together with a scaling factor, $\mathcal{G}_{\text {min }}=\mathbb{R}^{+} \times \mathrm{O}^{+}(3,1)$. The subgroup of implementable transformations is $\mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)$, the group of proper orthochronous Lorentz transformations, times a scaling factor.

Furthermore, if \mathbf{S} is the 'root qubit' of assumptions 4.11, and \mathbf{S} ' any other quantum system such that all observables of \mathbf{S} are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}, then \mathbf{S}^{\prime} carries a projective representation of $\mathrm{SO}^{+}(3,1)$; the group elements act as isometries between different Hilbert spaces. All other quantum systems \mathbf{S}^{\prime} carry a projective representation of the subgroup of $\mathrm{SO}^{+}(3,1)$ which preserves the observables that are universally measurable on \mathbf{S} and \mathbf{S}^{\prime}.

We get projective rep's of $\mathrm{SO}(3) \longrightarrow$ different spin. and of $\mathrm{SO}^{+}(3,1)$, acting via $\rho \mapsto X \rho X^{\dagger}, \operatorname{det} X \neq 0$.

But wait a minute - this is not unitary?!

This is fine - the map $|\psi\rangle \mapsto X|\psi\rangle$ is an isometry between the two Hilbert spaces $\left(\mathbb{C}^{N},\langle\cdot, \cdot\rangle\right)$ and $\left(\mathbb{C}^{N},(\cdot, \cdot)\right)$.

3. Quantum states

Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

- Spacetime interpretation: relativistic Stern-Gerlach measurements

3. Quantum states

Outline

- General setup: two observers and $\mathcal{G}_{\text {min }}$

- Communicating quantum states: emergence of the Lorentz group

Spacetime interpretation

We have not assumed any underlying spacetime structure;

- thus, we do not know apriori if this result has a spacetime interpretation. (Though very suggestive.)

$$
T \in \mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)
$$

Spacetime interpretation

We have not assumed any underlying spacetime structure;

- thus, we do not know apriori if this result has a spacetime interpretation. (Though very suggestive.)
- But if it has, then there should be qubits in nature with

$$
T \in \mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)
$$

$$
\hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \mathrm{SL}(2, \mathbb{C}) .
$$

Spacetime interpretation

We have not assumed any underlying spacetime structure;

- thus, we do not know apriori if this result has a spacetime interpretation. (Though very suggestive.)
- But if it has, then there should be qubits in nature with

$$
T \in \mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)
$$

$$
\hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \operatorname{SL}(2, \mathbb{C}) .
$$

- And here we go: spinors.

cf. Palmer et al., Ann. Phys. 336, 505-516 (2013)

Spacetime interpretation

We have not assumed any underlying spacetime structure;

- thus, we do not know apriori if this result has a spacetime interpretation. (Though very suggestive.)
- But if it has, then there should be qubits in nature with

$$
T \in \mathbb{R}^{+} \times \mathrm{SO}^{+}(3,1)
$$

$\hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \operatorname{SL}(2, \mathbb{C})$.

- And here we go: spinors.

> Boosted observers see different "deflection eigenvalues" in SternGerlach device.

(WKB approximation)

cf. Palmer et al., Ann. Phys. 336, 505-516 (2013)

Spacetime interpretation

$$
\begin{aligned}
& \hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \\
& \text { Boosted observers see } \\
& \text { different "deflection } \\
& \text { eigenvalues" in Stern- } \\
& \text { Gerlach device. }
\end{aligned}
$$

(WKB approximation)
$X \in \operatorname{SL}(2, \mathbb{C})$.

cf. Palmer et al., Ann. Phys. 336, 505-516 (2013)

Spacetime interpretation

$$
\hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \mathrm{SL}(2, \mathbb{C})
$$

> Boosted observers see different "deflection eigenvalues" in SternGerlach device.
(WKB approximation)

cf. Palmer et al., Ann. Phys. 336, 505-516 (2013)

Lorentz boosts Λ act as isometries

$$
\begin{array}{rll}
|\psi\rangle & \mapsto & X|\psi\rangle \\
\mathcal{H}_{p} & \rightarrow & \mathcal{H}_{\Lambda p}
\end{array}
$$

where $\mathcal{H}_{p}=\left(\mathbb{C}^{2},\langle\cdot, \cdot\rangle_{p}\right)$ is \mathbb{C}^{2} with momentum-dependent inner product.

Spacetime interpretation

$$
\hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \mathrm{SL}(2, \mathbb{C})
$$

> Boosted observers see different "deflection eigenvalues" in SternGerlach device.
(WKB approximation)

cf. Palmer et al., Ann. Phys. 336, 505-516 (2013)

Lorentz boosts Λ act as isometries

$$
\begin{array}{ll}
|\psi\rangle & \mapsto X|\psi\rangle \\
\mathcal{H}_{p} & \rightarrow \mathcal{H}_{\Lambda p}
\end{array}
$$

where $\mathcal{H}_{p}=\left(\mathbb{C}^{2},\langle\cdot, \cdot\rangle_{p}\right)$ is \mathbb{C}^{2} with momentum-dependent inner product.

Work in progress w/ Sylvain Carrozza: relate this to Wigner representation.

Spacetime interpretation

$$
\begin{aligned}
& \hat{M}_{B}=X \hat{M}_{A} X^{\dagger}, \quad X \in \mathrm{SL}(2, \mathbb{C}) \\
& \begin{array}{l}
\text { Boosted observers see } \\
\text { different "deflection } \\
\text { eigenvalues" in Stern- } \\
\text { Gerlach device. }
\end{array} \\
& \begin{array}{l}
(\nabla|B|)_{\mathbf{A}} \\
\text { (WKB approximation) }
\end{array} \\
& \mathfrak{S}_{\mathrm{B}} \mathfrak{S}_{\mathbf{A}}
\end{aligned}
$$

Lorentz boosts Λ act as isometries

$$
\begin{array}{rll}
|\psi\rangle & \mapsto & X|\psi\rangle \\
\mathcal{H}_{p} & \rightarrow & \mathcal{H}_{\Lambda p}
\end{array}
$$

where $\mathcal{H}_{p}=\left(\mathbb{C}^{2},\langle\cdot, \cdot\rangle_{p}\right)$ is \mathbb{C}^{2} with momentum-dependent inner product.

Have not at all "derived relativity" (no manifold etc.!), and spacetime interpretation is not necessary -- but quite suggestive.

Summary

Usual line of reasoning:
Relativistic (3+1)-spacetime

- symmetry group $\mathrm{SO}(3,1)$
- rep's of SO(3) on quantum systems; spin
- existence of Stern-Gerlach measurement devices

Our arguments:

- operational "symmetry" group SO $(3,1)$
- rep's of SO(3) on quantum systems ("spin")

Existence of "enough" universal quantum measurement devices; auxiliary assumptions (e.g. $N=2$)

[^0]: 2. General setup
[^1]: 2. General setup
[^2]: 2. General setup
[^3]: 3. Quantum states
