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"Why does the qubit have 3 degrees of freedom?" 

• Take 1: continuous-reversible interaction

• Take 2: relativity of simultaneity on interferometer
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1. Quantum theory from simple principles

John A. Wheeler, NY Times, 2000:

„Quantum physics [...] has explained the structure of 
atoms and molecules, [...] the behavior of semiconductors […] 
and the comings and goings of 
particles from neutrinos to quarks. 

Successful, yes, but mysterious, too. 
Why does the quantum exist?“
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1. Quantum theory from simple principles

QT CPT

PR boxes
All probabilistic theoriesGoal: 

Simple principles

that yield exactly QT.

I. Sketch how to describe those theories;

II. give a set of principles for QT.

Now:

Analogy: 
Lorentz transformations from

• relativity principle,

• light speed invariance.
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no-cloning, entanglement, …



How to describe a "general probabilistic theory"

1. QT from principles

Essentially by an arbitrary convex state space.

And here's why & how.
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How to describe a "general probabilistic theory"

Preparation,

transformation,

measurement.

�

Example: classical coin toss.

• On every push of button, the preparation device performs 
    a biased coin toss.

• The transformation device, for example, inverts the coin 
    (if heads then tails, and vice versa).

• The measurement outcome is "heads" or "tails".
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How to describe a "general probabilistic theory"

�

Example: classical coin toss.

• The preparation device prepares a physical system

• in a state ω. Here

� =

✓
Prob(heads)

Prob(tails)

◆
=

✓
p

1� p

◆
.
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� =

✓
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How to describe a "general probabilistic theory"

�

Example: classical coin toss.

?

• The preparation device prepares a physical system

• in a state ω.

T

✓
p

1� p

◆
=

✓
1� p
p

◆

✓
1
0

◆

✓
0
1

◆

✓
1/2
1/2

◆

• Transformation:
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How to describe a "general probabilistic theory"

�

Example: classical coin toss.

?

• The preparation device prepares a physical system

• in a state ω.

✓
0
1

◆

✓
1/2
1/2

◆

• Transformation: T

✓
p

1� p

◆
=

✓
1� p
p

◆

Maps states to states and is linear.

✓
1
0

◆
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How to describe a "general probabilistic theory"

�

Example: classical coin toss.

✓
0
1

◆

✓
1/2
1/2

◆

✓
1
0

◆
• Every measurement outcome has a probability,

   depending linearly on the state:
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How to describe a "general probabilistic theory"

�

Example: classical coin toss.

✓
0
1

◆

✓
1/2
1/2

◆

✓
1
0

◆
• Every measurement outcome has a probability,

   depending linearly on the state:

Prob(heads|!) = p =

✓
1

0

◆
·
✓

p
1� p

◆
= e · !.
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How to describe a "general probabilistic theory"
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Example: quantum spin-1/2 particle.
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How to describe a "general probabilistic theory"

�

Example: quantum spin-1/2 particle.Example: quantum spin-1/2 particle.

• The preparation device prepares a spin-1/2

• particle in quantum state ω.

More generally: ω is 2x2 density matrix.

↵| �⇤+ �| ⇥⇤
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�

Example: quantum spin-1/2 particle.

• The preparation device prepares a spin-1/2

• particle in quantum state ω.

More generally: ω is 2x2 density matrix.

| �⇥
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�

Example: quantum spin-1/2 particle.

• Unitary transformation of the density matrix:
� 7! U�U†.
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How to describe a "general probabilistic theory"

�

Example: quantum spin-1/2 particle.

• Unitary transformation of the density matrix:
� 7! U�U†.

• Measurement in arbitrary spin direction d:
Prob(� |�) = Tr(Pd �)
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The set of all possible states of a given physical system

is called the state space Ω.

Ω
!1

!2

! = �!1 + (1� �)!2Preparation of statistical mixtures:3.1 The state space 12

w
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w
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result even

result odd

roll die

1

2

w

1

+

1

2

w

2

push button

Figure 3.1: An example for the mixing procedure described in the text: Pushing the green
button activates a random number generator (here, a die) and depending on
the outcome (here: odd or even), one of several states is prepared.

As everything happens within the black box, we never learn the result of the random
number generator. Thus we only know that in pj of the cases, the system wj is
obtained. We wish to describe the states the box outputs by something that says
“with probability pj you get the results expected for wj”, i.e. a statistical mixture.
If we consider the representation with fiducial probability vectors,

wj =

Q

ccccca

...
P (j)(o

1

|mk)
P (j)(o

2

|mk)
...

R

dddddb
(3.2)

we now show that it is meaningful to assume that the new state can be written as

w =
nÿ

j=1

pjwj =

Q

ccccca

...qn
j=1

pj · P (j)(o
1

|mk)
qn

j=1

pj · P (j)(o
2

|mk)
...

R

dddddb
(3.3)

With probability pj, the state is wj. In case the state is wj, for measurement mk

the outcome oi occurs with probability P (j)(oi|mk). Thus the total probability for
the outcome oi of measurement mk is given by qn

j=1

pj · P (j)(oi|mk). So the list of
probabilities of the state w should be of the form qn

j=1

pj · P (j)(oi|mk), i.e. exactly
of the form w = qn

j=1

pjwj as suggested above. This result suggests that the set
of states should be embedded into a real vector space, and that statistical mixtures
are described by convex linear combinations.
The black-box-random preparation device is an operational abstraction for a source
or preparation device whose rules are not known. For example, for a random photon
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Thus Ω is a convex set.
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The set of all possible states of a given physical system

is called the state space Ω.

Ω
!1

!2

! = �!1 + (1� �)!2Preparation of statistical mixtures:

Thus Ω is a convex set.

QT:    ΩN = set of N×N density matrices 
CPT:  ΩN = set of prob. distributions

(p1, . . . , pN ).



How to describe a "general probabilistic theory"

(Almost) everything can be inferred from shape of state space.

classical

bit

quantum

bit

"gbit"

Arbitrary convex

state space

Classical trit

(3-level-system)

6

FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular

Quantum trit:

8D "orbitope"
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2. Quantum theory from simple principles

QT CPT

PR boxes
All probabilistic theoriesGoal: 

Simple principles

that yield exactly QT.

Starting with Lucien 
Hardy 2001, lots of 
recent activity:

• L. Hardy, Quantum theory from five reasonable axioms, arXiv:quant-ph/0101012

• B. Dakic and C. Brukner, Quantum Theory and Beyond: Is Entanglement 

Special?, arXiv:0911.0695 (also "Deep Beauty"-book)

• Ll. Masanes and MM, A derivation of quantum theory from physical requirements, 

New J. Phys. 13, 063001 (2011) 
• G. Chiribella, G. M. D'Ariano, and P. Perinotto, Informational derivation of 

quantum theory, Phys. Rev. A 84, 012311 (2011)

• L. Hardy, Reformulating and reconstructing quantum theory, arXiv:1104.2066

• ….

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller



2. Quantum theory from simple principles

QT CPT

PR boxes
All probabilistic theoriesGoal: 

Simple principles

that yield exactly QT.

Starting with Lucien 
Hardy 2001, lots of 
recent activity.

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

However, all these used assumptions on composition 
of systems in a crucial way. Disadvantages:
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However, all these used assumptions on composition 
of systems in a crucial way. Disadvantages:

• QT has already shown: we have bad intuition on composition!

• Very hard to modify postulates to get to "QT's closest cousins"
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem: If a state space satisfies

then it is a quantum state space.

i.e. the states are the           

complex density matrices, reversible

transformations are 

with U unitary or antiunitary, and

the measurements are the POVMs.
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1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem: If a state space satisfies

then it is a quantum state space,

i.e. the states are the           

complex density matrices, reversible

transformations are 

with U unitary or antiunitary, and

the measurements are the POVMs.

N ⇥N

⇢ 7! U⇢U†
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1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Generalizes the observation that in QT, we have

i[H, ·] �! H
generator of time evolution conserved observable
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem: If a state space satisfies

then it is one of the following:

• N-level quantum theory over            or 

• 3-level quantum theory over the octonions,

• 2-level "Bloch balls" with any number of degrees 

of freedom (not necessarily 3 as in the qubit),

• N-level discrete classical probability distributions (CPT).

R,C H,
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

Most fascinating question will be: 
     What if we drop Postulate 3?


But for now, let's understand Postulates 1 and 2...
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of perfectly distinguishable pure states !1, . . . ,!n:

! =
P

i �i!i.
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If !1, . . . ,!n are pure and perfectly distinguishable,

and so are '1, . . . ,'n, then there is a reversible

transformation T such that

T!i = 'i.

In QT, this is true because all orthonormal bases are

related by unitaries.

Strong symmetry for qubit easy to see

in the Bloch ball representation:

!1

!2

'1

'2
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Classical probability theory: 
Quantum theory: 

p1,2 = p1 + p2.

p1,2 6= p1 + p2. Interference!
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Sorkin:

In any case, the important thing from the standpoint of interpretation is that

the electron follows one and only one path, not somehow two at once. If probabilities

are involved, it is only because the path is not determined in advance, just as it is

initially undetermined in a classical stochastic process.

Given the failure of the sum rule I(A, B) = 0, it is clear that quantum prob-

abilities cannot be interpreted in the same manner that classical ones are wont to

be interpreted, in terms of (actual or fictitious) ensemble frequencies. How they

should be interpreted is a question to which I will return briefly below, and more

at length in another place [8]. Here, my main purpose is to discuss the sum-rules

themselves.

Quantum measure theory and its generalizations

What ordinarily makes it difficult to regard quantum mechanics as in essence a

modified form of probability theory, is the peculiar fact that it works with complex

“amplitudes” rather than directly with probabilities, the former being more like

square roots of the latter. To put this peculiarity in context, consider the following

series of symmetric set-functions, which generalize the interference term I(A, B)

introduced above. (Notice that all the sets A, B, C · · · which occur here are mutually

disjoint.)

I1(A) ≡ |A|

I2(A, B) ≡ |A ⨿ B|− |A|− |B|

I3(A, B, C) ≡ |A ⨿ B ⨿ C|− |A ⨿ B|− |B ⨿ C|− |A ⨿ C| + |A| + |B| + |C|,

or in general,

In(A1, A2, · · · , An) ≡ |A1 ⨿ A2 ⨿ · · ·An|

−
∑

|(n − 1)sets| +
∑

|(n − 2)sets| · · ·

±
n∑

j=1

|Aj| (1)

5
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(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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⇤ = I3 � zerocount;

⇥ :=

⇤

�
;

� = |I12|+ |I13|+ |I23|,
I12 = p12 � p1 � p2 etc.
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Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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⇤ = I3 � zerocount;

⇥ :=

⇤

�
;

� = |I12|+ |I13|+ |I23|,
I12 = p12 � p1 � p2 etc.

Result: �  10�2.
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Which natural GPTs have 3rd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

pure states of the model. The three edges of the triangle (which we denote by �ij) are the
other faces, and are analogous to two-level classical systems. We also have that for each
face F̃ of �A, there is a face F of the cone S+(A) such that F̃ = F ⇥H.

Now define three projections Pi (i = 1, 2, 3) onto the faces Fi (which are generated by
the vertices �i), with positive kernels Fjk (j, k �= i), and further take P123 = IR4. These
four projections are in fact filters, and the Pi form a size three mask. Finally, the filters
defined by Pjk = Pj +Pk will be projections onto the faces Fjk. Since lin{F̃12, F̃13, F̃23} just
gives the plane defined by (x, y, t = 0, z = 1) (in which the central triangle is embedded),
it is clear that S+(A) � lin{F12, F13, F23}; the linear span of these faces is missing the t
dimension. Therefore, any normalized state which is not in the central triangle will exhibit
third order interference with respect to the generalized slit system generated by {Pi}3i=1.

Figure 4.4: The triangular pillow state space discussed above, and in Chapter 8 of [7]. Pure
states on the smooth top or bottom parts of the pillow will display third-order interference
with respect to a 3-slit mask defined by the pure states of the central embedded triangle.

It is possible to construct many more similar examples simply by replacing the central
triangle embedded in R2 with a direct sum of an n-ball and an m-ball embedded in Rn+m

(see Chapter 8 of [7] for more detail). For example, for n = m = 3, the resulting state
space can roughly be considered as a direct sum of two qubits (or a four-level system with
a kind of super-selection rule) with an extra degree of freedom (t in the example above).
The subset of states which are in the ‘quantum’ sector all have t = 0.

One important point about the above type of construction is that the pure states of
the initial state space (the triangle of the triangular pillow) are of a di⇥erent type than the
pure states on the top and bottom of the smooth part of the pillow. In particular, these
theories display a high degree of asymmetry. In particular, it is not di⌅cult to convince
oneself that the filters, Pjk, defined on the triangular pillow are in fact mixing, and further,
the triagular pillow is not bit-symmetric.

88

C. Ududec, Perspectives on the Formalism of Quantum Theory,

PhD thesis, University of Waterloo, 2012.

But what natural generalizations of QT 
could we test for in experiments?
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).
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3. No Third-Order Interference
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Theorem:

Jordan

Theorem:



A single-system reconstruction of QT

QT CPT

boxworld

(with "gbit")

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:



A single-system reconstruction of QT

QT CPT

boxworld

(with "gbit")

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

What if we drop Postulate 3?



A single-system reconstruction of QT

QT CPT

boxworld

(with "gbit")

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

What if we drop Postulate 3?
Do new solutions show up?

?



A single-system reconstruction of QT

QT CPT

boxworld

(with "gbit")

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

What if we drop Postulate 3?
Do new solutions show up?

?

If so, these are natural models for higher-order interference!



A single-system reconstruction of QT

QT CPT

boxworld

(with "gbit")

1. QT from principles
Interference, spacetime, and the structure of quantum information                                                      Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

What if we drop Postulate 3?
Do new solutions show up?

?

If so, these are natural models for higher-order interference!

OPEN QUESTION!
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1. Classical decomposability

2. Strong Symmetry

3. No Third-Order Interference

4. Energy Observability

Theorem:

Jordan

Theorem:

?

We know that 1+2 alone imply many things quantum:

• Analogues of orthogonal projectors, eigenvalues, and eigenspaces,

• their face lattice is an orthomodular lattice (→ quantum logic),

• they satisfy Specker's Principle  (contextuality),

• all bit subsystems are Bloch balls,

• their state cones are strongly self-dual.
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On the other hand, the new solutions violate some things quantum:

• They admit higher-order interference,

• the covering law of quantum logic is violated,

• the image of a pure state under a projection can be mixed,

• they have two inequivalent versions of min-entropy.
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FIND AT LEAST ONE EXAMPLE!



• Quantum theory from principles


"Why does the qubit have 3 degrees of freedom?" 

• Take 1: continuous-reversible interaction

• Take 2: relativity of simultaneity on interferometer
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The quantum bit Bloch ball

satisfies these postulates:
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satisfy 1+2.

Why d = 3?
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3D of the Bloch ball: continuous interaction

Suppose we want to combine two d-dim. Ball state spaces

into a composite state space AB.
A B

⌦
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3D of the Bloch ball: continuous interaction

Suppose we want to combine two d-dim. Ball state spaces

into a composite state space AB, according to:
A B

⌦

• No-signalling;

• local tomography: joint states are uniquely determined by 

the statistics and correlations of local measurements;

• AB contains all product states ("independent preparations"), 

product transformations, and product measurements.
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Then, for any             there are infinitely many possibilities!d � 2,
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Ll. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the 
three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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3D of the Bloch ball: continuous interaction

A B

⌦

Ll. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the 
three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

There exists at least one continuous reversible transformation 
                            ("interaction").TAB 6= TA ⌦ TB

Theorem: Assume in addition:

Then only d=3 is possible, and only one possible composite,

namely the quantum state space of two qubits.
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Proof sketch:

11

for all x, y 2 Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a long list of constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
!A

x

!B

y

, apply the transformation exp(tX), and perform a
product measurement MA

x

MB

y

. Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [54], if
d 6= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d 6= 3, HAB contains only product transformations,
and Postulate 4 cannot be satisfied.

Theorem 2. From Postulates 1–4 it follows that
the spatial dimension must be d = 3.

The main reason why d = 3 is special becomes visible
by inspection of the proof in [54]. It boils down to the
group-theoretic fact that (at least for d � 3) the subgroup
of SO(d) which fixes a given vector (that is, SO(d� 1))
is Abelian only if d = 3. In other words, the fact that
rotations commute in two dimensions, but not in higher
dimensions is the main reason why d = 3 survives. The
cases d = 1 and d = 2 are special as well, but are ruled
out in the proof for other reasons.

It remains to show that we actually get quantum the-
ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dim⌦AB =
(d+1)(d+1)� 1 = 15, which agrees with the number of
real parameters in a complex 4⇥4 density matrix. Thus,
we can embed ⌦AB in the real space of Hermitian 4⇥ 4-
matrices of unit trace. Now we have global Lie algebra
elements X 2 hAB that are not just sums of local genera-
tors, i.e. X 6= XA+XB . However, as shown in [55], these
elements are still highly restricted: they generate unitary
conjugations, i.e. transformations of the form ⇢ 7! U⇢U†.

By Postulate 4, at least one of these unitaries must be
entangling. Moreover, all local unitary transformations
are possible (in the ball representation, these are the ro-
tations in SO(3)). It is a well-known fact from quantum
computation [56] that a set of unitaries of this kind gen-
erates the set of all unitaries – that is, every map of the

form ⇢ 7! U⇢U † must be contained in the global trans-
formation group HAB ✓ GAB .
The orbit of this group on pure product states gen-

erates all pure quantum states, and one can show [55]
that there cannot be any additional non-quantum states.
Thus, we have recovered the state space of quantum the-
ory on two qubits. Due to positivity, all e↵ects must be
quantum e↵ects; in the noisy case (i.e. c 6= 1/2 or a < 1),
not all quantum e↵ects may actually be implementable –
that is, we might have a restricted set of measurements.
We have thus proven:

Theorem 3. From Postulates 1–4, it follows that
the state space of two direction bits is two-qubit
quantum state space (i.e. the set of 4 ⇥ 4 density
matrices), and time evolution is given by a one-
parameter group of unitaries, ⇢ 7! U(t)⇢U(t)†.

As a simple consequence, there exists some 4⇥4 Hermi-
tian matrix H such that U(t) = exp(�iHt), i.e. a Hamil-
tonian which generates time evolution according to the
Schrödinger equation.

VII. CONCLUSIONS

We have derived two facts about physics
from information-theoretic postulates: the three-
dimensionality of space [57], and the fact that proba-
bilities of measurement outcomes for some systems are
described by quantum theory. In order to do this, we
assumed that there exist “reasonable” physical systems
which, in a certain sense, carry minimal amounts of
directional information.
Our result supports and clarifies the point of view that

the geometric structure of spacetime and the probabilis-
tic structure of quantum theory are closely intertwined,
similar in spirit to [1–4, 58–60]. As one can see in Fig. 3,
this conclusion becomes particularly obvious in the con-
text of convex state spaces. This interrelation is not only
axiomatic, but also operational: as we have shown in
Sec. V, observers can measure – or even define – physical
angles by measuring probabilities.
Furthermore, these findings suggest exploring possible

generalizations: the approach to construct state spaces
from physical symmetry properties [70], together with
minimality assumptions, might reproduce quantum sys-
tems of higher spin, or even physically interesting non-
quantum state spaces that have so far remained unex-
plored.
In summary, there seem to be two possible interpreta-

tions of the results in this paper. First, the results might
simply be mathematical coincidence, without any deep
physical reason underlying them. This is perfectly con-
ceivable; in this case, the main contribution of this paper
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global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
!A

x

!B

y

, apply the transformation exp(tX), and perform a
product measurement MA

x

MB

y

. Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
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and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [54], if
d 6= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
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Theorem 2. From Postulates 1–4 it follows that
the spatial dimension must be d = 3.

The main reason why d = 3 is special becomes visible
by inspection of the proof in [54]. It boils down to the
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of SO(d) which fixes a given vector (that is, SO(d� 1))
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erates the set of all unitaries – that is, every map of the

form ⇢ 7! U⇢U † must be contained in the global trans-
formation group HAB ✓ GAB .
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Thus, we have recovered the state space of quantum the-
ory on two qubits. Due to positivity, all e↵ects must be
quantum e↵ects; in the noisy case (i.e. c 6= 1/2 or a < 1),
not all quantum e↵ects may actually be implementable –
that is, we might have a restricted set of measurements.
We have thus proven:

Theorem 3. From Postulates 1–4, it follows that
the state space of two direction bits is two-qubit
quantum state space (i.e. the set of 4 ⇥ 4 density
matrices), and time evolution is given by a one-
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As a simple consequence, there exists some 4⇥4 Hermi-
tian matrix H such that U(t) = exp(�iHt), i.e. a Hamil-
tonian which generates time evolution according to the
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bilities of measurement outcomes for some systems are
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which, in a certain sense, carry minimal amounts of
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Sec. V, observers can measure – or even define – physical
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from physical symmetry properties [70], together with
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tian matrix H such that U(t) = exp(�iHt), i.e. a Hamil-
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from information-theoretic postulates: the three-
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bilities of measurement outcomes for some systems are
described by quantum theory. In order to do this, we
assumed that there exist “reasonable” physical systems
which, in a certain sense, carry minimal amounts of
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tic structure of quantum theory are closely intertwined,
similar in spirit to [1–4, 58–60]. As one can see in Fig. 3,
this conclusion becomes particularly obvious in the con-
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axiomatic, but also operational: as we have shown in
Sec. V, observers can measure – or even define – physical
angles by measuring probabilities.
Furthermore, these findings suggest exploring possible

generalizations: the approach to construct state spaces
from physical symmetry properties [70], together with
minimality assumptions, might reproduce quantum sys-
tems of higher spin, or even physically interesting non-
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For a while, we thought that there is an additional 
7-dimensional solution, with Lie group G2 acting locally...

... but in the end we

showed that this is

not the case,

unfortunately.

and the blanks are zeros. Note that the right-hand side of (42) commutes with H. The

element

1

2

⇣

W 0 � (1̂⌦ Ĥ)W 0(1̂⌦ Ĥ)�1
⌘

=
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7

7

7

5

2 g̃ ,

has the same structure as (41); therefore, arguing in the same way one obtains X1 = X
d/2 =

0. Repeating this argument with the stabilizer of the vectors e2, . . . , e
d/2�1 gives X

i

= 0

for all i, and analogously for Y
i

. Therefore, all elements of G are block-diagonal and non-

interacting as in (23).

I. G2

In this section we consider the case H = G2 and show that all the corresponding groups G
are non-interacting. Since H is irreducible, M has the form (21). Schur’s Lemma32 together

with irreducibility imply that any W 2 g̃, which a priori has the generic structure (36),

satisfies

Z

H
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In addition, and according to Section IVC, the above element must satisfy V = Y0. This

implies that for any element W 2 g̃, there is another one

W 0 = W �
Z
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with identical non-diagonal blocks, and null second and third diagonal blocks. (The fourth

diagonal block might get modified, but we do not care.)

27
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d=3 is different for a group-theoretic reason. Namely:

There are d=3 independent measurements on a qubit because

SO(d-1) is commutative and non-trivial only for d=3.


Surprisingly, this shows up in a completely different context:

in special relativity!



• Quantum theory from principles


"Why does the qubit have 3 degrees of freedom?" 

• Take 1: continuous-reversible interaction 
• Take 2: relativity of simultaneity on interferometer
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• Take 1: continuous-reversible interaction
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T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p(up), i.e. preserve the z-axis.

Assumption: GA = GB ' SO(d� 1).
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TA happens first, and then TB...
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Relativistic constraints on the state space

GA = GB ' SO(d� 1).
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) TATB = TBTA for all TA, TB 2 SO(d� 1).
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(In fact, d=3, otherwise these 
transformations are all trivial.)

Relativistic constraints on the state space

Recall: "SO(d-1) commutative and non-trivial" 
was main math. reason for d=3 in "interaction

derivation", too → physical interpretation!
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Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

4

theory but very well motivated in general, since reversible
time evolution should be able to exhaust the set of all
pure states. For a d-ball, this admits G = O(d) (not con-
nected) or G = SO(d). There are also proper subgroups
G of SO(d) which are still transitive on the surface of the
ball, such as SU(d/2) for even d � 4 [35]. It is possible
to exhaustively list these groups [36], and the respective
phase groups G� ⇢ G formed by fixing an axis.

Using this, and knowledge about the maximality of
closed subgroups [37] of SO(d) and automorphisms [38] of
U(2), one finds the following generalization of Theorem 1:

Theorem 2. Suppose that (i) GA and GB are isomor-

phic; (ii) they generate the full phase group; (iii) every

pure state can be mapped to every other by a reversible

transformation. Then relativity of simultaneity allows for

the following possibilities and no more:

• d = 2 (the quantum bit over the real numbers), with

G = O(2) and GA = GB = Z2;

• d = 3 (the standard complex quantum bit), with

G = SO(3) and GA = GB = SO(2) = U(1);

• d = 4, with G ' U(2) and GA = GB = SO(2) =
U(1),

• d = 5 (the quaternionic quantum bit), with G =
SO(5), GA the left- and GB the right-isoclinic rota-

tions in SO(4) (or vice versa), such that both are

isomorphic to SU(2) and GA \ GB = {+ ,� }.

[Details of d = 4, 5 are given in the technical appendix.]
In addition to the d = 3 case of standard complex

quantum theory, there are now three more exotic possi-
bilities that are consistent with relativity of simultaneity.

The d = 2 case encounters problems with continuous
time evolution, since it is not connected (as discussed
above).

The d = 4 case is more interesting and quite unex-
pected. It has recently appeared in totally di↵erent con-
text in [39]. This group will act on a three-dimensional
subspace of the sphere in the same way as phase plates
on a standard complex quantum bit (see appendix for
details). The group of transformations that can be ap-
plied locally on the interferometer arms is isomorphic to
the group of standard qubit transformations, which sug-
gests that this theory would behave very similarly to the
standard quantum bit for experiments of this kind.

For d = 5, the transformation groups GA and GB are
merely isomorphic (for d = 2, 3, 4, the strong assump-
tion (i) is obeyed such that GA = GB). The two groups
in this case can be explicitly constructed [40] by con-
sidering the quaternionic phase matrices UA =

�
qA 0
0 1

�

and UB =
�
1 0
0 qB

�
, with unit quaternions qA, qB 2 H,

|qA| = |qB | = 1. The only elements in common between
the two branches are { ,� }. Thus, there is some non-
trivial interference behaviour, but unlike complex quan-
tum theory, an arbitrary phase induced on one branch
cannot in general be cancelled out by an operation on
the other. This would amount to a “non-relational”
physics which is completely di↵erent to the other cases,
and which could be falsified by an experiment in where
one incrementally changes the phase plate on one branch
(altering the output statistics), and then finds a suitable
transformation on the second branch that cancels out this
change.

Conclusion.— We have shown that within a natural
family of generalisations of quantum theory, the quantum
case is singled out by essentially demanding relativity
of simultaneity. Is quantum theory the only probabilis-
tic theory consistent with relativistic spacetime, or more
concretely is the quantum path integral rule for summing
up complex phases a direct consequence of the structure
of spacetime? Our results suggest this may well be the
case. However, a more detailed analysis would have to
look at more involved physical situations, in particular
interferometers with more than two arms.

Given the results above, it seems particularly tempt-
ing to test experimentally for a d = 4 Bloch ball, which
has one degree of freedom more than the standard com-
plex quantum bit, but still one less than the quaternionic
quantum bit (d = 5). While Peres’ proposal is in princi-
ple suitable to test for this, our results show that the ac-
tual experimental implementation has to be chosen very
carefully: as long as the state space will be probed only
by applying di↵erent, spatially separated phase plates on
identical input states (which has been proposed for some
setups [24]), relativity of simultaneity is likely to prevent
any detectable di↵erence in behaviour to the standard
complex quantum bit.
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Consequences for actual interference experiments:

VOLUME 42- 12 MARCH 1979 NUMBER 11

Proposed Test for Complex versus Quaternion Quantum Theory
Asher Peres

DePartment of Hsysics, Technion-Israel Institgte of Technology, Haifa, Israel
(Received 7 December 1978)

If scattering amplitudes are ordinary complex numbers (not quaternions) then there is
a universal algebraic relationship between the six coherent cross sections of any three
scatterers (taken singly and pairwise). A violation of this relationship would indicate
either that scattering amplitudes are quaternions, or that the superposition principle
fails. Some experimental tests are proposed, involving neutron diffraction by crystals
made of three different isotopes, neutron interferometry, and X&-meson regeneration.

Quantum theory rests on the superposition prin-
ciple' which asserts that the states of a physical
system can be represented as the elements of a
linear manifold. That is, if g, and P, are two
possible states of a system and c, and c2 are ar-
bitrary numbers, then c,(,+c,g, is also a pos-
sible state of that system. It is usually taken for
granted that the coefficients c, and c, are com-
plex numbers. However, it is possible to imag-
ine a real quantum theory' or one based on qua-
ternions. ' ' In this article, I show how it is pos-
sible to distinguish experimentally between real,
complex, and quaternion quantum theories.
Real quantum theory, although logically con-

sistent, can be easily ruled out for our world'.
e.g. , complex coefficients are needed in order
to combine linearly polarized photons into cir-
cularly polarized ones. ' More generally, cor-
respondence with classical physics leads to the
commutation relations [p,q] =i@. A formal test,
which will later be extended to distinguish be-
tween complex and quaternion quantum theories,
is the following.
Consider a beam of particles impinging on a

scatterer. Let g, represent the state of the scat-
tered particles, i.e., g, is the difference between
the actual state g and the state (, which we would
have if the scatterer were absent. Assume that

g, is normalized to unit flux. Now, set a detector
at a distance R from the scatterer and let y/R
represent the state for a unit Qux of particles
passing through that detector. Then the cross
section for scattering into our detector is defined
as

where (X, g,) denotes the scalar product of the
states y and P, . If this scalar product is a com-
plex number, we can write

(X, g, )=a, exp(iq, ),
so that

Similar formulas hold for quaternion quantum
theory, with exp(iy, ) replaced by unimodular
quaternion.
Consider now a different scatterer, with scat-

tering amplitude

(X, q, )=a, exp(~, ).
We have likewise

202=a2 .
Finally, if both scatterers are present, we have
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THE 5-PATH INTERFEROMETER  G. Weihs (2013)

BEYOND THREE PATHS 

| Measure 4 and 5 path terms 

| Born’s rule modification 
y Power series: 𝑃 = 𝜓 2 + 𝑐4 𝜓 4 + 𝑐6 𝜓 6 +⋯ 
y Modified exponent: 𝑃 = 𝜓 𝑝 

| Test explicit models 
y Khrennikov 
y Brukner 

| Generalized Peres Test 
y Quaternion quantum mechanics? 
y Octonion quantum mechanics? 

 

8/1/2013 
Higher-order interference of single photons - M
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Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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• Structure of quantum theory is closely related to the 
structure of spacetime.


• Is QT and the path integral the only possible theory 
describing detector click probabilities in relativistic spacetime?


• Can we learn something about quantum gravity by 
studying this relationship? 
Is the structure of QT modified in regimes where the 
structure of spacetime is modified?
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• Open Problem: are there natural 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• The Bloch ball is 3D because otherwise bits could not interact.
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• The bloch ball is 3D (or maybe 5D) 
due to relativity of simultaneity.

QT          spacetime


