Interference, spacetime, and the structure of quantum information

Markus P. Müller

Departments of Applied Mathematics and Philosophy, UWO Perimeter Institute for Theoretical Physics, Waterloo

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"

- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

1. Quantum theory from simple principles

John A. Wheeler, NY Times, 2000:
"Quantum physics [...] has explained the structure of atoms and molecules, [...] the behavior of semiconductors [...] and the comings and goings of particles from neutrinos to quarks.

Successful, yes, but mysterious, too. Why does the quantum exist?"

1. Quantum theory from simple principles

All probabilistic theories
PR boxes
QT
\bullet

CPT
QT
\bullet

CPT

- Some more non-local than QT;
- share some features with QT: no-cloning, entanglement, ...

Goal:
 Simple principles that yield exactly QT.

All probabilistic theories

CPT

- Some more non-local than QT;
- share some features with QT: no-cloning, entanglement, ...

1. Quantum theory from simple principles

Goal:
 Simple principles that yield exactly QT.

Analogy:

Lorentz transformations from

- relativity principle,
- light speed invariance.

All probabilistic theories

СРТ

- Some more non-local than QT;
- share some features with QT: no-cloning, entanglement, ...

1. Quantum theory from simple principles

Goal:
 Simple principles that yield exactly QT.

Analogy:

Lorentz transformations from

- relativity principle,
- light speed invariance.

All probabilistic theories
PR boxes

СРТ

- Some more non-local than QT;
- share some features with QT: no-cloning, entanglement, ...

Now: I. Sketch how to describe those theories;
II. give a set of principles for QT.

Essentially by an arbitrary convex state space.

 And here's why \& how.

Essentially by an arbitrary convex state space.
And here's why \& how.

Preparation, transformation, measurement.

How to describe a "general probabilistic theory"

Example: classical coin toss.

- On every push of button, the preparation device performs a biased coin toss.

Preparation, transformation, measurement.

How to describe a "general probabilistic theory"

Example: classical coin toss.

- On every push of button, the preparation device performs a biased coin toss.
- The transformation device, for example, inverts the coin (if heads then tails, and vice versa).

Preparation, transformation, measurement.

How to describe a "general probabilistic theory"

Example: classical coin toss.

- On every push of button, the preparation device produces a biased coin toss.
- The transformation device, for example, inverts the coin (if heads then tails, and vice versa).
- The measurement outcome is "heads" or "tails".

Preparation, transformation, measurement.

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob(tails) }}=\binom{p}{1-p}
$$

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob(tails) }}=\binom{p}{1-p}
$$

State space Ω : the set of all possible states

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω. Here

$$
\omega=\binom{\text { Prob(heads) }}{\text { Prob(tails) }}=\binom{p}{1-p} .
$$

State space Ω : the set of all possible states

How to describe a "general probabilistic theory"

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω.
- Transformation: $\quad T\binom{p}{1-p}=\binom{1-p}{p}$

How to describe a "general probabilistic theory"

Example: classical coin toss.

- The preparation device prepares a physical system in a state ω.

Maps states to states and is linear.

Example: classical coin toss.

- Every measurement outcome has a probability, depending linearly on the state:

Example: classical coin toss.

- Every measurement outcome has a probability, depending linearly on the state:

$$
\operatorname{Prob}(\text { heads } \mid \omega)=p=\binom{1}{0} \cdot\binom{p}{1-p}=e \cdot \omega
$$

How to describe a "general probabilistic theory"
Example: quantum spin-1/2 particle.

Example: quantum spin-1/2 particle.

- The preparation device prepares a spin-1/2 particle in quantum state ω.

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

More generally: ω is 2×2 density matrix.

Example: quantum spin-1/2 particle.

- The preparation device prepares a spin-1/2 particle in quantum state ω.

$$
\cos \frac{\theta}{2}|\uparrow\rangle+e^{i \phi} \sin \frac{\theta}{2}|\downarrow\rangle
$$

More generally: ω is $2 x 2$ density matrix.

Example: quantum spin-1/2 particle.

- Unitary transformation of the density matrix:

$$
\omega \mapsto U \omega U^{\dagger}
$$

Example: quantum spin-1/2 particle.

- Unitary transformation of the density matrix:

$$
\omega \mapsto U \omega U^{\dagger}
$$

- Measurement in arbitrary spin direction d :

$$
\operatorname{Prob}(\uparrow \mid \omega)=\operatorname{Tr}\left(P_{d} \omega\right)
$$

The set of all possible states of a given physical system is called the state space Ω.

How to describe a "general probabilistic theory"

The set of all possible states of a given physical system is called the state space Ω.

Preparation of statistical mixtures: $\omega=\lambda \omega_{1}+(1-\lambda) \omega_{2}$

How to describe a "general probabilistic theory"

The set of all possible states of a given physical system is called the state space Ω.

Preparation of statistical mixtures: $\omega=\lambda \omega_{1}+(1-\lambda) \omega_{2}$

Thus Ω is a convex set.

The set of all possible states of a given physical system is called the state space Ω.

Preparation of statistical mixtures: $\omega=\lambda \omega_{1}+(1-\lambda) \omega_{2}$

QT: $\Omega_{N}=$ set of $N \times N$ density matrices
CPT: $\Omega_{N}=$ set of prob. distributions

$$
\left(p_{1}, \ldots, p_{N}\right) .
$$

Thus Ω is a convex set.

How to describe a "general probabilistic theory"

(Almost) everything can be inferred from shape of state space.

1
classical
bit

Arbitrary convex state space

quantum bit

Classical trit
(3-level-system)

"gbit"

Quantum trit: 8D "orbitope"

2. Quantum theory from simple principles

Goal:
 Simple principles that yield exactly QT.

All probabilistic theories

CPT

2. Quantum theory from simple principles

Goal:

Simple principles that yield exactly QT.

Starting with Lucien Hardy 2001, lots of recent activity:

All probabilistic theories
PR boxes

CPT

- L. Hardy, Quantum theory from five reasonable axioms, arXiv:quant-ph/0101012
- B. Dakic and C. Brukner, Quantum Theory and Beyond: Is Entanglement Special?, arXiv:0911.0695 (also "Deep Beauty"-book)
- LI. Masanes and MM, A derivation of quantum theory from physical requirements, New J. Phys. 13, 063001 (2011)
- G. Chiribella, G. M. D'Ariano, and P. Perinotto, Informational derivation of quantum theory, Phys. Rev. A 84, 012311 (2011)
- L. Hardy, Reformulating and reconstructing quantum theory, arXiv:1104.2066

2. Quantum theory from simple principles

Goal:
 Simple principles that yield exactly QT.

Starting with Lucien Hardy 2001, lots of recent activity.

All probabilistic theories

СРТ

However, all these used assumptions on composition of systems in a crucial way. Disadvantages:

2. Quantum theory from simple principles

Goal:

Simple principles that yield exactly QT.

Starting with Lucien Hardy 2001, lots of recent activity.

However, all these used assumptions on composition of systems in a crucial way. Disadvantages:

- QT has already shown: we have bad intuition on composition!
- Very hard to modify postulates to get to "QT's closest cousins"

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem: If a state space satisfies

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Energy Observability
then it is a quantum state space.

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem: If a state space satisfies

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Energy Observability
then it is a quantum state space,
i.e. the states are the $N \times N$
complex density matrices, reversible transformations are $\rho \mapsto U \rho U^{\dagger}$ with U unitary or antiunitary, and
 the measurements are the POVMs.

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Energy Observability

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Energy Observability

Generalizes the observation that in QT, we have

$$
i[H, \cdot] \longrightarrow H
$$

generator of time evolution conserved observable

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Energy Observability

$$
i[H, \cdot] \longrightarrow H
$$

generator of time evolution conserved observable

Let's drop it!

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fnory

Generalizes the observation that in QT, we have

$$
i[H, \cdot] \longrightarrow H
$$

generator of time evolution conserved observable

Let's drop it!

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fnory

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem: If a state space satisfies

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fnory Obo raniliv
then it is one of the following:

- N-level quantum theory over \mathbb{R}, \mathbb{C} or \mathbb{H},
- 3-level quantum theory over the octonions,
- 2-level "Bloch balls" with any number of degrees of freedom (not necessarily 3 as in the qubit),
- N -level discrete classical probability distributions (CPT).

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fnory

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fno

Most fascinating question will be: What if we drop Postulate 3?

But for now, let's understand Postulates 1 and 2...

Classical decomposability

Classical decomposability

Every state $\omega \in \Omega$ can be written as a convex combination of perfectly distinguishable pure states $\omega_{1}, \ldots, \omega_{n}$:

$$
\omega=\sum_{i} \lambda_{i} \omega_{i} .
$$

Classical decomposability

Every state $\omega \in \Omega$ can be written as a convex combination of perfectly distinguishable pure states $\omega_{1}, \ldots, \omega_{n}$:

$$
\omega=\sum_{i} \lambda_{i} \omega_{i} .
$$

In QT, this is true due to the spectral decomposition.

Classical decomposability

Every state $\omega \in \Omega$ can be written as a convex combination of perfectly distinguishable pure states $\omega_{1}, \ldots, \omega_{n}$:

$$
\omega=\sum_{i} \lambda_{i} \omega_{i} .
$$

In QT, this is true due to the spectral decomposition.

Pure states are extremal in the convex set of states; all others are mixed states.

Classical decomposability

Every state $\omega \in \Omega$ can be written as a convex combination of perfectly distinguishable pure states $\omega_{1}, \ldots, \omega_{n}$:

$$
\omega=\sum_{i} \lambda_{i} \omega_{i} .
$$

In QT, this is true due to the spectral decomposition.
Pure states are extremal in the convex set of states; all others are mixed states.

They are perfectly distinguishable if there is a measurement e_{1}, \ldots, e_{n} such that $e_{i}\left(\omega_{j}\right)=\delta_{i j}$.

Classical decomposability

Every state $\omega \in \Omega$ can be written as a convex combination of perfectly distinguishable pure states $\omega_{1}, \ldots, \omega_{n}$:

$$
\omega=\sum_{i} \lambda_{i} \omega_{i} .
$$

In QT, this is true due to the spectral decomposition.

Pure states are extremal in the convex set of states; all others are mixed states.

They are perfectly distinguishable if there is a
 measurement e_{1}, \ldots, e_{n} such that $e_{i}\left(\omega_{j}\right)=\delta_{i j}$.

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference
4. Fnory

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

Strong symmetry

Strong symmetry

If $\omega_{1}, \ldots, \omega_{n}$ are pure and perfectly distinguishable, and so are $\varphi_{1}, \ldots, \varphi_{n}$, then there is a reversible transformation T such that

$$
T \omega_{i}=\varphi_{i} .
$$

Strong symmetry

If $\omega_{1}, \ldots, \omega_{n}$ are pure and perfectly distinguishable, and so are $\varphi_{1}, \ldots, \varphi_{n}$, then there is a reversible transformation T such that

$$
T \omega_{i}=\varphi_{i} .
$$

In QT, this is true because all orthonormal bases are related by unitaries.

Strong symmetry

If $\omega_{1}, \ldots, \omega_{n}$ are pure and perfectly distinguishable, and so are $\varphi_{1}, \ldots, \varphi_{n}$, then there is a reversible transformation T such that

$$
T \omega_{i}=\varphi_{i} .
$$

In QT, this is true because all orthonormal bases are related by unitaries.

Strong symmetry for qubit easy to see in the Bloch ball representation:

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

No Third-Order Interference

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$$
\begin{aligned}
p_{i, j, \ldots}:= & \text { probability of event, } \\
& \text { if slits } i, j, \ldots \text { are open }
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$$
\begin{aligned}
p_{i, j, \ldots}:= & \text { probability of event, } \\
& \text { if slits } i, j, \ldots \text { are open }
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$$
\begin{aligned}
p_{i, j, \ldots}:= & \text { probability of event, } \\
& \text { if slits } i, j, \ldots \text { are open }
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$$
\begin{aligned}
p_{i, j, \ldots}:= & \text { probability of event, } \\
& \text { if slits } i, j, \ldots \text { are open }
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Classical probability theory: $\quad p_{1,2}=p_{1}+p_{2}$.
Quantum theory: $\quad p_{1,2} \neq p_{1}+p_{2}$. Interference!

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

$$
\begin{aligned}
p_{i, j, \ldots}:= & \text { probability of event, } \\
& \text { if slits } i, j, \ldots \text { are open }
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Surprisingly (?),

 quantum theory satisfies$$
\begin{aligned}
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3}
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).
$p_{i, j, \ldots}:=$ probability of event, if slits i, j, \ldots are open

Surprisingly (?), quantum theory satisfies

$$
\begin{aligned}
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3} .
\end{aligned}
$$

No 3rd-order interference in QT!

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

Sorkin:

$$
\begin{aligned}
I_{2}(A, B) & \equiv|A \amalg B|-|A|-|B| \\
I_{3}(A, B, C) & \equiv|A \amalg B \amalg C|-|A \amalg B|-|B \amalg C|-|A \amalg C|+|A|+|B|+\mid C
\end{aligned}
$$

or in general,

$$
\begin{aligned}
I_{n}\left(A_{1}, A_{2}, \cdots, A_{n}\right) & \equiv\left|A_{1} \amalg A_{2} \amalg \cdots A_{n}\right| \\
& -\sum_{n}|(n-1) \operatorname{sets}|+\sum \mid(n-2) \text { sets } \mid \cdots \\
& \pm \sum_{j=1}^{n}\left|A_{j}\right|
\end{aligned}
$$

No Third-Order Interference

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994). C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, Found. Phys. 41, 396-405 (2011).

Sorkin:

$$
\begin{aligned}
I_{2}(A, B) & \equiv|A \amalg B|-|A|-|B| \\
I_{3}(A, B, C) & \equiv|A \amalg B \amalg C|-|A \amalg B|-|B \amalg C|-|A \amalg C|+|A|+|B|+\mid C
\end{aligned}
$$

or in general,

$$
\begin{aligned}
I_{n}\left(A_{1}, A_{2}, \cdots, A_{n}\right) & \equiv\left|A_{1} \amalg A_{2} \amalg \cdots A_{n}\right| \\
& -\sum_{n} \mid(n-1) \text { sets }\left|+\sum\right|(n-2) \text { sets } \mid \cdots \\
& \pm \sum_{j=1}^{n}\left|A_{j}\right|
\end{aligned}
$$

Classical probability theory: $I_{2}=I_{3}=I_{4}=\ldots=0$.

Quantum theory: $I_{2} \neq 0, \quad I_{3}=I_{4}=\ldots=0$.

Experimental tests for higher-order interference

stence M ${ }_{\text {AAAS }}$

Ruling Out Multi-Order Interference in Quantum Mechanics

 Urbasi Sinha et al.Science 329, 418 (2010);
DOI: 10.1126/science. 1190545
(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Experimental tests for higher-order interference

Science \IAAAS

Ruling Out Multi-Order Interference in Quantum Mechanics Urbasi Sinha et al.
Science 329, 418 (2010);
DOI: 10.1126/science. 1190545
(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Result: $\quad \kappa \leq 10^{-2}$.

Why does QT not have 3rd-order interference?

Why does QT not have 3rd-order interference?

Why does QT not have 3rd-order interference?

o-(: : :

Why does QT not have 3rd-order interference?

Why does QT not have 3rd-order interference?

$$
\begin{aligned}
\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)= & \left(\begin{array}{lll}
\bullet & \bullet & 0 \\
\bullet & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
\bullet & 0 & \bullet \\
0 & 0 & 0 \\
\bullet & 0 & \bullet
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & \bullet \\
0 & \bullet & \bullet
\end{array}\right) \\
& -\left(\begin{array}{lll}
\bullet & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \bullet & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \bullet
\end{array}\right) \\
p_{1,2,3}= & p_{1,2}+p_{1,3}+p_{2,3} \\
& -p_{1}-p_{2}-p_{3} .
\end{aligned}
$$

Why does CPT not have 2nd-order interference?

Why does CPT not have 2nd-order interference?

$$
\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right)=\left(\begin{array}{l}
\bullet \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
\bullet \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
\bullet
\end{array}\right)
$$

$$
p_{1,2,3}=p_{1}+p_{2}+p_{3}
$$

Which natural GPTs have 3rd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

C. Ududec, Perspectives on the Formalism of Quantum Theory, PhD thesis, University of Waterloo, 2012.

But what natural generalizations of QT could we test for in experiments?

Which natural GPTs have 3rd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

C. Ududec, Perspectives on the Formalism of Quantum Theory, PhD thesis, University of Waterloo, 2012.

But what natural generalizations of QT could we test for in experiments?

"1st-order" (trivial) interference

2nd-order interference

3rd-order interference?

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry
3. No Third-Order Interference

What if we drop Postulate 3 ?

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry

3 Non Ordornerance
4 Fnory

What if we drop Postulate 3?
Do new solutions show up?

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry

3 Non? Ordormarence
4 Fnory

What if we drop Postulate 3?
Do new solutions show up?
If so, these are natural models for higher-order interference!

A single-system reconstruction of QT

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Theorem:

1. Classical decomposability
2. Strong Symmetry

3 Noniniond minererence
4. Enoug Obe niniliv

What if we drop Postulate 3?
Do new solutions show up?

OPEN QUESTION!

If so, these are natural models for higher-order interference!

A single-system reconstruction of QT

Theorem:

1. Classical decomposability
2. Strong Symmetry

3 No Orimin minerforance
4. Fneryy Obocerainily

A single-system reconstruction of QT

Theorem:

We know that $1+2$ alone imply many things quantum:

A single-system reconstruction of QT

Theorem:

1. Classical decomposability
2. Strong Symmetry

4 Fnergy Oboc nainity

We know that $1+2$ alone imply many things quantum:

- Analogues of orthogonal projectors, eigenvalues, and eigenspaces,
- their face lattice is an orthomodular lattice (\rightarrow quantum logic),
- they satisfy Specker's Principle (contextuality),
- all bit subsystems are Bloch balls,
- their state cones are strongly self-dual.

A single-system reconstruction of QT

Theorem:

1. Classical decomposability
2. Strong Symmetry

On the other hand, the new solutions violate some things quantum:

- They admit higher-order interference,
- the covering law of quantum logic is violated,
- the image of a pure state under a projection can be mixed,
- they have two inequivalent versions of min-entropy.

A single-system reconstruction of QT

Theorem:

1. Classical decomposability
2. Strong Symmetry

4 Fnergy Oboc nainity

On the other hand, the new solutions violate some things quantum:

- They admit higher-order interference,
- the covering law of quantum logic is violated,
- the image of a pure state under a projection can be mixed,
- they have two inequivalent versions of min-entropy.

FIND AT LEAST ONE EXAMPLE!

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

3D of the Bloch ball: continuous interaction

1. Classical decomposability
2. Strong Symmetry

3 No Thin Ordo miertarence
4. Fneryy Oboen ainility

The quantum bit Bloch ball satisfies these postulates:

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

3D of the Bloch ball: continuous interaction

1. Classical decomposability
2. Strong Symmetry

3. Fnow, Ob

However,
Bloch ball bits of arbitrary dimension satisfy $1+2$.

classical
bit

quantum bit

3D of the Bloch ball: continuous interaction

1. Classical decomposability
2. Strong Symmetry

3. Fnow, Ob

However,
Bloch ball bits of arbitrary dimension satisfy $1+2$.

classical bit

quantum bit

3D of the Bloch ball: continuous interaction

Suppose we want to combine two d-dim. Ball state spaces

into a composite state space $\mathbf{A B}$.

3D of the Bloch ball: continuous interaction

Suppose we want to combine two d-dim. Ball state spaces

A

B
into a composite state space $\mathbf{A B}$, according to:

- No-signalling;
- local tomography: joint states are uniquely determined by the statistics and correlations of local measurements;
- AB contains all product states ("independent preparations"), product transformations, and product measurements.

3D of the Bloch ball: continuous interaction

Suppose we want to combine two d-dim. Ball state spaces

A

B
into a composite state space $\mathbf{A B}$, according to:

- No-signalling;
- local tomography: joint states are uniquely determined by the statistics and correlations of local measurements;
- AB contains all product states ("independent preparations"), product transformations, and product measurements.

Then, for any $d \geq 2$, there are infinitely many possibilities!

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

A

B

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

A

B

Theorem: Assume in addition:
There exists at least one continuous reversible transformation $T_{A B} \neq T_{A} \otimes T_{B} \quad$ ("interaction").

Then only $d=3$ is possible, and only one possible composite, namely the quantum state space of two qubits.

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

Proof sketch:

Product preparation; evolution for short time t; product measurement

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

Proof sketch:

Product preparation; evolution for short time t; product measurement

$$
\begin{aligned}
& \text { If } \mathcal{M}_{x}^{A}\left(\omega_{x}^{A}\right)=\mathcal{M}_{y}^{B}\left(\omega_{y}^{B}\right)=1 \text { then } \\
& \frac{d}{d t}\left(\mathcal{M}_{x}^{A} \otimes \mathcal{M}_{y}^{B}\right) e^{t X}\left(\omega_{x}^{A} \otimes \omega_{y}^{B}\right)=0 .
\end{aligned}
$$

(probabilities not larger than 1)

2. 3D Bloch ball: interaction

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

Proof sketch:

Product preparation; evolution for short time t; product measurement

$$
\begin{aligned}
& \text { If } \mathcal{M}_{x}^{A}\left(\omega_{x}^{A}\right)=\mathcal{M}_{y}^{B}\left(\omega_{y}^{B}\right)=1 \text { then } \\
& \frac{d}{d t}\left(\mathcal{M}_{x}^{A} \otimes \mathcal{M}_{y}^{B}\right) e^{t X}\left(\omega_{x}^{A} \otimes \omega_{y}^{B}\right)=0
\end{aligned}
$$

\Rightarrow Constraints on X.
If $d \neq 3$ then only
$X=X^{A}+X^{B}$ possible
\Rightarrow no interaction.
(probabilities not larger than 1)
LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

For a while, we thought that there is an additional 7-dimensional solution, with Lie group G_{2} acting locally...

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).

For a while, we thought that there is an additional 7-dimensional solution, with Lie group G_{2} acting locally...
... but in the end we showed that this is not the case, unfortunately.

$$
W^{\prime}=W-\int_{\mathcal{H}} d A(\hat{A} \otimes \hat{\mathbf{1}}) W(\hat{A} \otimes \hat{\mathbf{1}})^{-1}-\int_{\mathcal{H}} d B(\hat{\mathbf{1}} \otimes \hat{B}) W(\hat{\mathbf{1}} \otimes \hat{B})^{-1}
$$

$$
=\left[\begin{array}{cccc}
0 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \sum_{i} \mathbf{e}_{i}^{\mathrm{T}} \otimes Y_{i} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \sum_{i} X_{i} \otimes \mathbf{e}_{i}^{\mathrm{T}} \\
\mathbf{0} & -\sum_{i} \mathbf{e}_{i} \otimes Y_{i}^{\mathrm{T}} & -\sum_{i} X_{i}^{\mathrm{T}} \otimes \mathbf{e}_{i} & \sum_{j}\left(U_{j}^{\prime} \otimes S_{j}^{\prime}+R_{j}^{\prime} \otimes V_{j}^{\prime}\right)
\end{array}\right] \in \tilde{\mathfrak{g}},
$$

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
$d=3$ is different for a group-theoretic reason. Namely:

3D of the Bloch ball: continuous interaction

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
$d=3$ is different for a group-theoretic reason. Namely:
There are $d=3$ independent measurements on a qubit because SO($d-1$) is commutative and non-trivial only for $d=3$.
LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
$d=3$ is different for a group-theoretic reason. Namely:
There are $d=3$ independent measurements on a qubit because SO($d-1$) is commutative and non-trivial only for $d=3$.

Surprisingly, this shows up in a completely different context: in special relativity!

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

Outline

- Quantum theory from principles

"Why does the qubit have 3 degrees of freedom?"
- Take 1: continuous-reversible interaction
- Take 2: relativity of simultaneity on interferometer

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

North-pole state: particle definitely in upper branch.

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

South-pole state: particle definitely in lower branch.

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

State on equator $z=0$: probability $1 / 2$ for each.

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

d-dim. "Bloch sphere"

State on equator $z=0$: probability $1 / 2$ for each.
$p(u p)=\frac{1}{2}(z+1)$

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

What transformations T can we perform locally in one arm...
... without any information loss?

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Relativistic constraints on the state space

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Assumption: $\quad \mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)$.

T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Relativistic constraints on the state space

$$
\text { Assumption: } \quad \mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1) \text {. }
$$

Relativity: there is one frame of reference in which
T_{A} happens first, and then $T_{B} \ldots$

Assumption: $\quad \mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)$.

Relativity: ... and another one in which it's the other way around.

Assumption: $\quad \mathcal{G}_{A}=\mathcal{G}_{B} \simeq \operatorname{SO}(d-1)$.

Detector click statistics is Lorentz-invariant
$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \operatorname{SO}(d-1)$.

(In fact, $d=3$, otherwise these transformations are all trivial.)

Detector click statistics is Lorentz-invariant
$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \operatorname{SO}(d-1)$.
(In fact, $d=3$, otherwise these transformations are all trivial.)

Recall: "SO(d-1) commutative and non-trivial" was main math. reason for $d=3$ in "interaction derivation", too \rightarrow physical interpretation!

Detector click statistics is Lorentz-invariant
$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \operatorname{SO}(d-1)$.

Relativistic constraints on the state space

Weaker assumption: $\quad \mathcal{G}_{A}$ and \mathcal{G}_{B} isomorphic

Weaker assumption: $\quad \mathcal{G}_{A}$ and \mathcal{G}_{B} isomorphic

$\Rightarrow d \leq 5$. Quaternionic QM survives.

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

Theorem 2. Suppose that (i) \mathcal{G}_{A} and \mathcal{G}_{B} are isomorphic; (ii) they generate the full phase group; (iii) every pure state can be mapped to every other by a reversible transformation. Then relativity of simultaneity allows for the following possibilities and no more:

- $d=2$ (the quantum bit over the real numbers), with $\mathcal{G}=\mathrm{O}(2)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathbb{Z}_{2} ;$
- $d=3$ (the standard complex quantum bit), with $\mathcal{G}=\mathrm{SO}(3)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathrm{SO}(2)=\mathrm{U}(1)$;
- $d=4$, with $\mathcal{G} \simeq \mathrm{U}(2)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathrm{SO}(2)=$ $\mathrm{U}(1)$,
- $d=5$ (the quaternionic quantum bit), with $\mathcal{G}=$ $\mathrm{SO}(5), \mathcal{G}_{A}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa), such that both are isomorphic to $\mathrm{SU}(2)$ and $\mathcal{G}_{A} \cap \mathcal{G}_{B}=\{+\mathbb{1},-\mathbb{1}\}$.

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

Theorem 2. Suppose that (i) \mathcal{G}_{A} and \mathcal{G}_{B} are isomorphic; (ii) they generate the full phase group; (iii) every pure state can be mapped to every other by a reversible transformation. Then relativity of simultaneity allows for the following possibilities and no more:

- $d=2$ (the quantum bit over the real numbers), with $\mathcal{G}=\mathrm{O}(2)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathbb{Z}_{2} ;$
- $d=3$ (the standard complex quantum bit), with $\mathcal{G}=\mathrm{SO}(3)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathrm{SO}(2)=\mathrm{U}(1)$;
$\mathcal{G}_{A}=\mathcal{G}_{B}$
- $d=4$, with $\mathcal{G} \simeq \mathrm{U}(2)$ and $\mathcal{G}_{A}=\mathcal{G}_{B}=\mathrm{SO}(2)=$ $\mathrm{U}(1)$,
- $d=5$ (the quaternionic quantum bit), with $\mathcal{G}=$ $\mathrm{SO}(5), \mathcal{G}_{A}$ the left- and \mathcal{G}_{B} the right-isoclinic rotations in $\mathrm{SO}(4)$ (or vice versa), such that both are
 isomorphic to $\mathrm{SU}(2)$ and $\mathcal{G}_{A} \cap \mathcal{G}_{B}=\{+\mathbb{1},-\mathbb{1}\}$.

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

$$
\mathcal{G}_{A}=\mathcal{G}_{B}
$$

$\mathcal{G}_{A} \simeq \mathcal{G}_{B}$

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

$$
\mathcal{G}_{A}=\mathcal{G}_{B}
$$

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

$$
\mathcal{G}_{A}=\mathcal{G}_{B}
$$

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

$$
\mathcal{G}_{A}=\mathcal{G}_{B}
$$

$$
\mathcal{G}_{A} \simeq \mathcal{G}_{B}
$$

Classification of possibilities

A. Garner, MM, O. Dahlsten, arXiv:1412.7112

$$
\mathcal{G}_{A}=\mathcal{G}_{B}
$$

$$
\mathcal{G}_{A} \simeq \mathcal{G}_{B}
$$

Relativistic constraints on the state space

Consequences for actual interference experiments:

PHYSICAL REVIEW LETTERS

Proposed Test for Complex versus Quaternion Quantum Theory

Asher Peres
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel (Received 7 December 1978)

If scattering amplitudes are ordinary complex numbers (not quaternions) then there is a universal algebraic relationship between the six coherent cross sections of any three scatterers (taken singly and pairwise). A violation of this relationship would indicate either that scattering amplitudes are quaternions, or that the superposition principle fails. Some experimental tests are proposed, involving neutron diffraction by crystals made of three different isotopes, neutron interferometry, and $K_{\mathcal{S}}$-meson regeneration.

Relativistic constraints on the state space

Consequences for actual interference experiments:

PHYSICAL REVIEW LETTERS

- Generalized Peres Test
- Quaternion quantum mechanics?
- Octonion quantum mechanics?

Proposed Test fo

Department of Physi

If scattering amplitudes a universal algebraic rela scatterers (taken singly ar either that scattering amp fails. Some experimental made of three different is

THE 5-PATH INTERFEROMETER
G. Weihs (2013)

Relativistic constraints on the state space

Science
 \1AAAS

U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Ruling Out Multi-Order Interference in Quantum Mechanics, Science 329, 418 (2010).

3. Relativity of simultaneity

What can we learn from this?

What can we learn from this?

- Structure of quantum theory is closely related to the structure of spacetime.
- Is QT and the path integral the only possible theory describing detector click probabilities in relativistic spacetime?

What can we learn from this?

- Structure of quantum theory is closely related to the structure of spacetime.
- Is QT and the path integral the only possible theory describing detector click probabilities in relativistic spacetime?
- Can we learn something about quantum gravity by studying this relationship? Is the structure of QT modified in regimes where the structure of spacetime is modified?

Further evidence

spatial rotations

quantum 2-level state space
transformations of the probabilistic state

Further evidence

spatial rotations

quantum 2-level state space
transformations of the probabilistic state

arbitrary state space
C. F. von Weizsäcker (>1954):
"ur theory"

Further evidence

spatial rotations

quantum 2-level transformations of the probabilistic state

arbitrary state space

Standard perspective:

"That's all trivial, because the qubit is just a representation of SU(2)!"

Further evidence

spatial rotations

quantum 2-level transformations of the state space probabilistic state

arbitrary state space

Standard perspective:

"That's all trivial, because the qubit is just a representation of SU(2)!"

Further evidence

spatial rotations

quantum 2-level transformations of the state space probabilistic state

arbitrary state space

Standard perspective:
"That's all trivial, because the qubit is just a representation of SU(2)!"

Different view: it's highly remarkable!

4. Conclusions

4. Conclusions

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

- QT can be derived from simple postulates.
- Open Problem: are there natural "higher-order interference" state spaces?

4. Conclusions

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

- QT can be derived from simple postulates.
- Open Problem: are there natural "higher-order interference" state spaces?

LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
- The Bloch ball is 3D because otherwise bits could not interact.
A. Garner, MM, O. Dahlsten, arXiv:1412.7112
- The bloch ball is 3D (or maybe 5D) due to relativity of simultaneity.

