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In the device-independent approach, these notions are taken

as primitives, without attempt of operational/formal definition.
A. Acín, T. Fritz, A. Leverrier, and A. B. Sainz, A Combinatorial Approach to Nonlocality and 
Contextuality, Commun. Math. Phys. 334(2), 533-628 (2015); arXiv:1212.4084.
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Figure 2. The contextuality scenario HKS proving the Kochen–Specker theorem
[20,25]. Each vertex represents a vector in C4, while each closed curve delimits a
set of 4 vertices. These sets are what we call ‘edges’.

2. Contextuality scenarios and their probabilistic models

2.1. Motivation: the Kochen–Specker theorem. Cabello et al. [20,25] showed that one
can find 18 vectors in C4 labeling the vertices of Figure 2 such that the four vectors associated to
each one of the 9 edges form an orthonormal basis. Together with the observation that there is
no consistent way to label the vertices by {0, 1} such that every edge contains exactly one vertex
labeled by 1, this is a proof of the Kochen–Specker theorem for the four-dimensional Hilbert space
C4.

Now what does the hypergraph of Figure 2 represent, operationally? This is what we would
like to consider next.

2.2. General definition. Since each edge of Figure 2 stands for a basis in C4, we may think
of an edge as representing a 4-outcome measurement. Now every vertex occurs in two different such
edges; in other words, some of the measurements share outcomes. The assumption of measure-
ment noncontextuality [90] means that any reasonable theory should represent such a shared
outcome as a function from states to probabilities which does not depend on the particular mea-
surement in which the outcome occurs.

Abstracting from this particular example to a general definition of contextuality scenario
means that we need to consider a mathematical structure containing a set of vertices, representing
outcomes, and a collection of subsets of the vertices, representing measurements. Mathematically
this is a hypergraph H with vertices V (H) and edges E(H). We therefore arrive at:

2.2.1. Definition. A contextuality scenario is a hypergraph H with set of vertices V (H)
and set of edges E(H) ⊆ 2V (H) such that

⋃
e∈E(H) e = V (H).

In the following, we will use the terms vertex and outcome interchangeably with edge over
measurement, respectively, while keeping in mind that the latter is the physical interpretation of
the former, respectively.
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5. Quantum models

Quantum models are those probabilistic models which can arise in a world complying with the
laws of quantum theory. Understanding the set of quantum models represents one approach for
understanding the counterintuitive aspects of quantum theory: if one can find a simple physical
or information-theoretic principle which characterizes the set of quantum models, one would have
found an indirect explanation for why our world obeys the laws of quantum theory.

In this section then we study how these models may be included in our formalism.We begin with
the basic definitions of quantum models, then study quantum models on products, and conclude
this section with an explanation of the Kochen–Specker theorem within our framework.

5.1. Definition and basic properties. We denote by B(H) the set of all bounded operators
on a Hilbert space H. The notation B+(H) stands for the subset of positive semi-definite operators.
A quantum state ρ is given by a normalized density operator, i.e. by some ρ ∈ B+,1(H), where
B+,1(H) := {ρ ∈ B+(H) | tr ρ = 1}.

5.1.1. Definition. Let H be a contextuality scenario. An assignment of probabilities p :
V (H) → [0, 1] is a quantum model if there exist a Hilbert space H, a quantum state ρ ∈ B+,1(H)
and a projection operator Pv ∈ B(H) associated to every v ∈ V which constitute projective mea-
surements in the sense that ∑

v∈e
Pv = H ∀e ∈ E(H), (5.1)

and reproduce the given probabilities,

p(v) = tr (ρPv) ∀v ∈ V (H). (5.2)

The set of all quantum models is the quantum set Q(H). Thanks to (5.1), it is clear that
Q(H) ⊆ G(H), i.e. every quantum model is a probabilistic model.

5.1.2. Proposition. (a) Q(H) is convex.
(b) Every classical model is a quantum model: C(H) ⊆ Q(H).

Proof. (a) Let p1, p2 ∈ Q(H) be quantum models described in terms of Hilbert spaces
H1, H2, projection operators P1,v, P2,v and states ρ1, ρ2 on the respective Hilbert space.
Then for any coefficient λ ∈ [0, 1], we construct a quantum representation of λp1+(1−λ)p2
by setting

H := H1 ⊕H2, Pv := P1,v ⊕ P2,v, ρ := λρ1 ⊕ (1− λ)ρ2.

It is immediate to verify that this is indeed a quantum representation of λp1 + (1− λ)p2.
(b) This follows from (a) upon showing that every deterministic model is quantum. A de-

terministic model p can be seen to be quantum by setting H := C, Pv := p(v) · and
ρ := . !

It is important to note that the dimension of H is not fixed in the definition of quantum model.
In general, H can be infinite-dimensional, and we suspect that in some scenarios, allowing infinite-
dimensional H is necessary for obtaining all quantum models; see Section 8.3 for a discussion.

We now prove that there is no quantum analogue of Proposition 4.2.1 relating the property of a
probabilistic model p to be quantum to a graph invariant of NO(H) with weights p. Unfortunately,
this will require some of the concepts and results from upcoming sections.
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CE1 seems like a rather arbitrary property…
Furthermore,
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Beyond QT, how do we know that the devices in our lab 
perform an analogue of a "projective measurement"?
What does that even mean?

A. Cabello, S. Severini, and A. Winter, (Non-)Contextuality of Physical 
Theories as an Axiom, arXiv:1010.2163

GPT analog of projector was taken to be: sum of extremal effects. 
But this is only one possible choice…
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Beyond QT, how do we know that the devices in our lab 
perform an analogue of a "projective measurement"?
What does that even mean?

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

"Compatible questions can be jointly asked without 
mutual disturbance" ⇒ need to talk about post-measurement states 
⇒ need GPTs, in particular projections / filters in GPTs

replaced by measurement disturbance.
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).



2. The general-probabilistic picture

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Initial motivation: find natural theories with higher-oder 
interference that can be tested against QT in experiments.



2. The general-probabilistic picture

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Initial motivation: find natural theories with higher-oder 
interference that can be tested against QT in experiments.

→ Turns out: these (must) have projections that model slits

     which say something about contextuality, too.



2. The general-probabilistic picture

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system 
postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014).

Initial motivation: find natural theories with higher-oder 
interference that can be tested against QT in experiments.

→ Turns out: these (must) have projections that model slits

     which say something about contextuality, too.

Let's look at interference first…
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"click"

probability of event, 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pi,j,... :=
i, j, . . .

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).

C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory, 
Found. Phys. 41, 396-405 (2011).
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Interference: Sorkin's hierarchy

Sorkin:

In any case, the important thing from the standpoint of interpretation is that

the electron follows one and only one path, not somehow two at once. If probabilities

are involved, it is only because the path is not determined in advance, just as it is

initially undetermined in a classical stochastic process.

Given the failure of the sum rule I(A, B) = 0, it is clear that quantum prob-

abilities cannot be interpreted in the same manner that classical ones are wont to

be interpreted, in terms of (actual or fictitious) ensemble frequencies. How they

should be interpreted is a question to which I will return briefly below, and more

at length in another place [8]. Here, my main purpose is to discuss the sum-rules

themselves.

Quantum measure theory and its generalizations

What ordinarily makes it difficult to regard quantum mechanics as in essence a

modified form of probability theory, is the peculiar fact that it works with complex

“amplitudes” rather than directly with probabilities, the former being more like

square roots of the latter. To put this peculiarity in context, consider the following

series of symmetric set-functions, which generalize the interference term I(A, B)

introduced above. (Notice that all the sets A, B, C · · · which occur here are mutually

disjoint.)

I1(A) ≡ |A|

I2(A, B) ≡ |A ⨿ B|− |A|− |B|

I3(A, B, C) ≡ |A ⨿ B ⨿ C|− |A ⨿ B|− |B ⨿ C|− |A ⨿ C| + |A| + |B| + |C|,

or in general,

In(A1, A2, · · · , An) ≡ |A1 ⨿ A2 ⨿ · · ·An|

−
∑

|(n − 1)sets| +
∑

|(n − 2)sets| · · ·

±
n∑

j=1

|Aj| (1)

5
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(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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⇤ = I3 � zerocount;

⇥ :=

⇤

�
;

� = |I12|+ |I13|+ |I23|,
I12 = p12 � p1 � p2 etc.
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(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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⇤ = I3 � zerocount;

⇥ :=

⇤

�
;

� = |I12|+ |I13|+ |I23|,
I12 = p12 � p1 � p2 etc.

Result: �  10�2.
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Which natural GPTs have 3rd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

pure states of the model. The three edges of the triangle (which we denote by �ij) are the
other faces, and are analogous to two-level classical systems. We also have that for each
face F̃ of �A, there is a face F of the cone S+(A) such that F̃ = F ⇥H.

Now define three projections Pi (i = 1, 2, 3) onto the faces Fi (which are generated by
the vertices �i), with positive kernels Fjk (j, k �= i), and further take P123 = IR4. These
four projections are in fact filters, and the Pi form a size three mask. Finally, the filters
defined by Pjk = Pj +Pk will be projections onto the faces Fjk. Since lin{F̃12, F̃13, F̃23} just
gives the plane defined by (x, y, t = 0, z = 1) (in which the central triangle is embedded),
it is clear that S+(A) � lin{F12, F13, F23}; the linear span of these faces is missing the t
dimension. Therefore, any normalized state which is not in the central triangle will exhibit
third order interference with respect to the generalized slit system generated by {Pi}3i=1.

Figure 4.4: The triangular pillow state space discussed above, and in Chapter 8 of [7]. Pure
states on the smooth top or bottom parts of the pillow will display third-order interference
with respect to a 3-slit mask defined by the pure states of the central embedded triangle.

It is possible to construct many more similar examples simply by replacing the central
triangle embedded in R2 with a direct sum of an n-ball and an m-ball embedded in Rn+m

(see Chapter 8 of [7] for more detail). For example, for n = m = 3, the resulting state
space can roughly be considered as a direct sum of two qubits (or a four-level system with
a kind of super-selection rule) with an extra degree of freedom (t in the example above).
The subset of states which are in the ‘quantum’ sector all have t = 0.

One important point about the above type of construction is that the pure states of
the initial state space (the triangle of the triangular pillow) are of a di⇥erent type than the
pure states on the top and bottom of the smooth part of the pillow. In particular, these
theories display a high degree of asymmetry. In particular, it is not di⌅cult to convince
oneself that the filters, Pjk, defined on the triangular pillow are in fact mixing, and further,
the triagular pillow is not bit-symmetric.
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1. Every state has a "spectral decomposition",

2. lots of symmetry.

Postulate 1. Every state ! can be written as a convex combination

! =

nX

i=1

�i!i,

where !1, . . . ,!n are pure and perfectly distinguishable (an “n-frame”).

Postulate 2. If !1, . . . ,!n and '1, . . . ,'n are n-frames, then there is a re-

versible transformation T with T!i = 'i.

QT: n-frame = orthonormal (sub-)basis

      Postulate 1 = spectral decomposition of a density matrix 
      Postulate 2 = unitaries can map any basis to any other.
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QT CPT
Jordan
?

1. Every state has a "spectral decomposition",

2. lots of symmetry.

Theorem: All these theories satisfy consistent exclusivity, CE1.

This is because there exist orthogonal projections  
in analogy to the quantum ones:

! 7! P12!

P12 orthogonal projector, P12 ? P3.

Proof of CE1 identical to quantum case.
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2-level subspace.

• … and they all satisfy consistent exclusivity.
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1. Every state has a "spectral decomposition",

2. lots of symmetry.

• Like QT, they allow for consistent thermodynamics & (rel.) entropy

• Unlike QT, they have higher-order interference.

• Like QT, they have a notion of eigenvalues, "eigenfaces", 

projectors, and "subspaces".

• Like in QT, "decoherence to classical" is a possible process.

• Like in QT, the projectors form an orthomodular lattice.

• Unlike QT, this lattice does not satisfy the covering law of QLogic.

• Like in QT, all sub-bits are Bloch balls (of some dimension).

• Unlike in QT, there are pure states ω, ρ that do not lie in a common 

2-level subspace.

• … and they all satisfy consistent exclusivity.

… IF they exist!



Some speculation…

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

QT CPT
Jordan
?

1. Every state has a "spectral decomposition",

2. lots of symmetry.



Some speculation…

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

QT CPT
Jordan
?

1. Every state has a "spectral decomposition",

2. lots of symmetry.

Bits: Bloch balls!

d=1 d=2 d=3

?
d=4 …

…?
d=5



Some speculation…

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

QT CPT
Jordan
?

1. Every state has a "spectral decomposition",

2. lots of symmetry.

Bits: Bloch balls!

d=1 d=2 d=3

?
d=4 …

…

Trits: Euclidean Jordan algebra state spaces (+classical)

2D 
(classical)

5D 
(real QM)

?
d=5

?
8D 

(QM over    )

?
14D 

(QM over    )

?
26D 

(QM over    )

?

C H O

no 
others 
known!



Some speculation…

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

QT CPT
Jordan
?

1. Every state has a "spectral decomposition",

2. lots of symmetry.

Bits: Bloch balls!

d=1 d=2 d=3

?
d=4 …

…

Trits: Euclidean Jordan algebra state spaces (+classical)

2D 
(classical)

5D 
(real QM)

?
d=5

?
8D 

(QM over    )

?
14D 

(QM over    )

?
26D 

(QM over    )

?

C H O

??
12D++ 

("quatrit"?)



Orthogonal projections

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

Orthogonality of projections expresses operationally intuitive 
properties of compatibility and non-disturbance:

PQ = QP = QP 2 = PQP = . . .

Composition of filters / compressions / slits



Orthogonal projections

2. The GPT picture

Consistent exclusivity and interference in probabilistic theories                                                            Markus P. Müller

Orthogonality of projections expresses operationally intuitive 
properties of compatibility and non-disturbance:

PQ = QP = QP 2 = PQP = . . .
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J. Henson, Bounding quantum contextuality with lack of third-order interference, arXiv:1406.3281

Basically, no 3rd order interference ⇒ consistent exclusivity.

3

where the inductive hypothesis has been applied to the
set Y ∪ A in the last step.

To sum this lemma up in a slogan, the existence of
a joint quantum measure implies that “pairwise non-
interference implies joint non-interference,” where joint
non-interference refers to eqn. (4). This is highly sugges-
tive of a connection to CE. As explained under eqn. (3),
if a pair of events is exclusive then it is non-interfering,
and hence, given the existence of a joint quantum mea-
sure, pairwise exclusivity implies joint non-interference.
However, this does not suffice to show that the existence
of a joint quantum measure implies CE; the quantum
measure is not in general bounded above, and so some
work remains to be done to derive eqn.(1).

Theorem 2. Consider a probability function P on a sce-
nario S. If P admits a joint quantum measure then it
obeys Consistent Exclusivity.

Proof. Assume that the probability function P admits a
joint quantum measure, and consider a set of fine-grained
outcomes S ⊂ C such that A and B are exclusive for all
pairs {A,B} ⊂ S. Let us define the sets X=

⋃
A∈S A

and R = Ξ\X , and also the set Q = S ∪ {R}, which is
a partition of Ξ. Furthermore, using (2), we have that
µ(A)+µ(B) = µ(A∪B) for all A,B ∈ S. Now, for some
B ∈ S, let us apply the Sorkin sum rule (3) to the sets
Y = X\B, B and R. We obtain

µ(Y ) + µ(B) + µ(R)−
µ(Y ∪B)− µ(Y ∪R)− µ(B ∪R) + µ(Ξ) = 0. (7)

Applying lemma 1 gives µ(Y )+µ(B) = µ(Y ∪B), and we
have µ(Y ∪ R) + µ(B) = µ(Ξ) from (2) because B (and
thus its complement Y ∪ R) is a measurement outcome,
giving the result

µ(B) + µ(R) = µ(B ∪R). (8)

Because this applies for all B ∈ S we have µ(A)+µ(B) =
µ(A ∪ B) for all A,B ∈ Q. From this, lemma 1 gives∑

A∈Q µ(A) = µ(Ξ) = 1. Subtracting µ(R), and re-
membering that the quantum measure is non-negative,
we have that

∑
A∈S µ(A) ≤ 1. Using (2), this establishes

that CE holds for the probability function P , proving the
theorem.

This allows a number of interesting results to be im-
ported into quantum measure theory from the study of
local orthogonality and CE, of which the following are in-
structive and representative but certainly not exhaustive
(see [17, 32–34] for more).

Corollary 3. The following are properties of all proba-
bility functions on partition scenarios that admit a joint
quantum measure:

(i) They imply the quantum bound,
√
5, on the maxi-

mum violation of the KCBS inequality for two in-
dependent copies of the Wright pentagon scenario;

(ii) for the CHSH scenario, the existence of two in-
dependent copies of this probability function with
maximum violation of the CHSH inequality of more
than 2.883 is banned;

(iii) they allow no advantage over classical (non-
contextual) probability functions for the Guess Your
Neighbour’s Input Game.

Proof. As noted above, the Wright pentagon can be con-
structed in a partition scenario. Thus (i) can be proved
by combining theorem 2 with the arguments in [14]. Bell
scenarios and copies thereof are also partition scenarios
[25], and so (ii) and (iii) can be proved by combining the-
orem 2 with the argument in section 4.3 of [34], and the
first proof in the Methods section of [13], respectively.

By construing the principle more broadly (by assuming
that certain contextuality scenarios are realisable, or that
quantum probability functions must be in the physical
set) CE can be made to imply both Tsirelson’s bound for
CHSH [31] and the quantum bound for all contextuality
scenarios [33] [35].
As noted above, other definitions of “lack of third order

interference” have been made. Finding out whether these
versions of the principle are equivalent to the one given
here is important for the goal of simplifying and clarify-
ing the list of candidate principles. Also, if the definition
given above implies any of the others, then the results
given above can be extended to these other formalisms.
This not ruled out for [20]: while CE is shown to follow
from two other assumptions unrelated to third order in-
terference in this formalism, this does not mean that lack
of third order interference alone fails to imply CE. It will
require more work to see if the definition of lack of third
order interference given here is equivalent to that of [20],
as the formalisms are quite different, and it is non-trivial
to embed one formalism in the other. It is possible that
the definitions are only equivalent under some assump-
tions. Similarly, it is not obvious that the definition of
third order interference given in [20] implies consistent
exclusivity by a similar argument to that given above;
indeed this implication may be false in general. [36]
Many other interesting issues remain open. Firstly,

it would be of great significance if the converse of the
above theorem is also true. However, the construction of
a quantum measure from a probability function obeying
CE, even if possible, is not a straightforward task. Sec-
ondly, the stronger forms of joint quantum measure con-
sidered in [25] have been justified by appealing to com-
posability, and so it would be instructive to know if they
can be derived from the above principle by adding some
simple assumptions. Similarly, it has been asked whether

2

To understand this, consider the following “marginal
scenarios” [26]. They involve a set of “boxes” with la-
bels in X = {1, .., n}. When a box is opened it can be
found to be empty or full, denoted by the outcome bit
a ∈ {0, 1}. Only certain subsets of the boxes J ⊂ 2X

can be jointly opened. A measurement picks out a sub-
set j ∈ J of the boxes to open and an outcome of that
measurement corresponds to the assignment of a bit to
each of those boxes, s ∈ 2j. To represent this as a par-
tition scenario, we take the sample space to be all n-bit
strings, Ξ = 2X , so that each string specifies an outcome
for every box. The outcome As ⊂ Ξ comprises all of
these strings that agree with the outcomes for the boxes
actually measured, j: formally, As = {γ ∈ 2X : γ|j = s}
where γ|j is the restriction of the function γ over X to
j. The measurement corresponding to subset j ⊂ X is
represented by the partition Mj = {As}s∈2j . Other mea-
surements, in which later choices of box are functions of
earlier outcomes, can also be included [27]. If the mea-
surable subsets j are such that exactly one of each subset
in a partition of the boxes can be opened, then we have
a “Bell scenario” (two pairs of boxes, such that only one
box in each pair can be opened, is the CHSH scenario).
Another well-known example consists of n boxes such
that only pairs labelled {i, i+ 1} for all i and {n, 1} can
be jointly measured. “Specker’s parable” concerns the
n = 3 case [28], while for n = 5 there is a set of outcomes
{Ai} with i = 1...5 such that {Ai, Ai+1} for i = 1...4
and {A5, A1} are the only exclusive pairs, known as a
“Wright pentagon” [29].
Given a partition scenario, a probability function P (·)

represents a set of experimental results. Its domain is
the set of all outcomes C, but the function P is only re-
quired to be a probability measure when restricted to the
outcomes AM for a given measurement M ; thus the only
restriction on experimental probabilities is that identified
outcomes have the same probability (“consistency”) [30].
Turning to restrictions on the experimental probabili-

ties, non-contextuality requires that there exists a joint
probability distribution PJ on Ξ such that PJ (A) =
P (A) ∀A ∈ C. That is, the experimental probabilities
can be derived from a probability distribution over the
whole sample space. It is well-known that this principle
is incompatible with QM. Consistent Exclusivity (CE)
[13, 14] can be seen as a weakening of this condition. A
probability function P on a scenario S obeys CE if, for
all sets S of fine-grained outcomes such that A and B are
exclusive for all pairs {A,B} ⊂ S,

∑

A∈S

P (A) ≤ 1. (1)

This definition follows 7.1.1 of [17], by which CE accords
with the E principle, “the sum of the probabilities of any
set of pairwise mutually exclusive events cannot be higher
than 1” [31].

Non-contextuality can instead be weakened by replac-
ing the joint probability measure with a generalised mea-
sure that, while agreeing with the experimental probabil-
ities, allows interference, meaning violation of the Kol-
mogorov sum rule. This interference is not unrestricted
in QM, however – otherwise any probability function
would be allowed. A joint quantum measure is a function
µ : 2Ξ → R≥0 such that

µ(A) = P (A) ∀A ∈ C, (2)

and such that for any three disjoint sets A ⊂ Ξ, B ⊂ Ξ
and C ⊂ Ξ,

µ(A) + µ(B) + µ(C)

−µ(A ∪B)− µ(B ∪ C)− µ(C ∪ A)

+µ(A ∪B ∪ C) = 0. (3)

Equation (2) ensures that the quantum measure µ re-
duces to the experimental probabilities P when restricted
to measurement outcomes. This implies that µ obeys the
Kolmogorov rule when restricted to the outcomes of one
experiment: we have P (A) + P (B) = P (A ∪ B) for ex-
clusive outcomes, which, substituting all three terms by
eqn. (2), gives µ(A) + µ(B) = µ(A ∪B). Equation (3) is
known as the Sorkin sum rule (or “quantum sum rule”).
It is not hard to check that both CE and the existence of a
joint quantum measure are implied if there is a standard
quantum model for the probability function [17, 25].
Given this definition, it might not be obvious why lack

of third order interference is being used as a synonym for
the existence of a joint quantum measure. The following
lemma clarifies this.

Lemma 1. Consider a probability function P on a sce-
nario S that admits a joint quantum measure, and con-
sider a partition Q of a set X ⊂ Ξ. If µ(A) + µ(B) =
µ(A ∪B) for all A,B ∈ Q then

µ(X) =
∑

A∈Q

µ(A). (4)

Proof. For |Q| = 2 the statement is trivially true. As-
sume that the lemma holds in all cases with |Q| ≤ n for
some n ≥ 2, and consider a partition Q of a set X for
which |Q| = n+1, obeying the condition µ(A) +µ(B) =
µ(A ∪ B) for all A,B ∈ Q. Let A,B ∈ Q be two events
in the partition and let Y = X\(A ∪ B). Applying the
Sorkin sum rule (3) to {Y,A,B} yields

µ(Y ) + µ(A) + µ(B)− µ(Y ∪ A)−
µ(A ∪B)− µ(Y ∪B) + µ(X) = 0. (5)

The inductive hypothesis implies that µ(Y ∪B) = µ(Y )+
µ(B), and by assumption µ(A ∪B)− µ(A) = µ(B), and
so this implies

µ(X) = µ(Y ∪ A) + µ(B) =
∑

C∈Q

µ(C), (6)
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where the inductive hypothesis has been applied to the
set Y ∪ A in the last step.

To sum this lemma up in a slogan, the existence of
a joint quantum measure implies that “pairwise non-
interference implies joint non-interference,” where joint
non-interference refers to eqn. (4). This is highly sugges-
tive of a connection to CE. As explained under eqn. (3),
if a pair of events is exclusive then it is non-interfering,
and hence, given the existence of a joint quantum mea-
sure, pairwise exclusivity implies joint non-interference.
However, this does not suffice to show that the existence
of a joint quantum measure implies CE; the quantum
measure is not in general bounded above, and so some
work remains to be done to derive eqn.(1).

Theorem 2. Consider a probability function P on a sce-
nario S. If P admits a joint quantum measure then it
obeys Consistent Exclusivity.

Proof. Assume that the probability function P admits a
joint quantum measure, and consider a set of fine-grained
outcomes S ⊂ C such that A and B are exclusive for all
pairs {A,B} ⊂ S. Let us define the sets X=

⋃
A∈S A

and R = Ξ\X , and also the set Q = S ∪ {R}, which is
a partition of Ξ. Furthermore, using (2), we have that
µ(A)+µ(B) = µ(A∪B) for all A,B ∈ S. Now, for some
B ∈ S, let us apply the Sorkin sum rule (3) to the sets
Y = X\B, B and R. We obtain

µ(Y ) + µ(B) + µ(R)−
µ(Y ∪B)− µ(Y ∪R)− µ(B ∪R) + µ(Ξ) = 0. (7)

Applying lemma 1 gives µ(Y )+µ(B) = µ(Y ∪B), and we
have µ(Y ∪ R) + µ(B) = µ(Ξ) from (2) because B (and
thus its complement Y ∪ R) is a measurement outcome,
giving the result

µ(B) + µ(R) = µ(B ∪R). (8)

Because this applies for all B ∈ S we have µ(A)+µ(B) =
µ(A ∪ B) for all A,B ∈ Q. From this, lemma 1 gives∑

A∈Q µ(A) = µ(Ξ) = 1. Subtracting µ(R), and re-
membering that the quantum measure is non-negative,
we have that

∑
A∈S µ(A) ≤ 1. Using (2), this establishes

that CE holds for the probability function P , proving the
theorem.

This allows a number of interesting results to be im-
ported into quantum measure theory from the study of
local orthogonality and CE, of which the following are in-
structive and representative but certainly not exhaustive
(see [17, 32–34] for more).

Corollary 3. The following are properties of all proba-
bility functions on partition scenarios that admit a joint
quantum measure:

(i) They imply the quantum bound,
√
5, on the maxi-

mum violation of the KCBS inequality for two in-
dependent copies of the Wright pentagon scenario;

(ii) for the CHSH scenario, the existence of two in-
dependent copies of this probability function with
maximum violation of the CHSH inequality of more
than 2.883 is banned;

(iii) they allow no advantage over classical (non-
contextual) probability functions for the Guess Your
Neighbour’s Input Game.

Proof. As noted above, the Wright pentagon can be con-
structed in a partition scenario. Thus (i) can be proved
by combining theorem 2 with the arguments in [14]. Bell
scenarios and copies thereof are also partition scenarios
[25], and so (ii) and (iii) can be proved by combining the-
orem 2 with the argument in section 4.3 of [34], and the
first proof in the Methods section of [13], respectively.

By construing the principle more broadly (by assuming
that certain contextuality scenarios are realisable, or that
quantum probability functions must be in the physical
set) CE can be made to imply both Tsirelson’s bound for
CHSH [31] and the quantum bound for all contextuality
scenarios [33] [35].
As noted above, other definitions of “lack of third order

interference” have been made. Finding out whether these
versions of the principle are equivalent to the one given
here is important for the goal of simplifying and clarify-
ing the list of candidate principles. Also, if the definition
given above implies any of the others, then the results
given above can be extended to these other formalisms.
This not ruled out for [20]: while CE is shown to follow
from two other assumptions unrelated to third order in-
terference in this formalism, this does not mean that lack
of third order interference alone fails to imply CE. It will
require more work to see if the definition of lack of third
order interference given here is equivalent to that of [20],
as the formalisms are quite different, and it is non-trivial
to embed one formalism in the other. It is possible that
the definitions are only equivalent under some assump-
tions. Similarly, it is not obvious that the definition of
third order interference given in [20] implies consistent
exclusivity by a similar argument to that given above;
indeed this implication may be false in general. [36]
Many other interesting issues remain open. Firstly,

it would be of great significance if the converse of the
above theorem is also true. However, the construction of
a quantum measure from a probability function obeying
CE, even if possible, is not a straightforward task. Sec-
ondly, the stronger forms of joint quantum measure con-
sidered in [25] have been justified by appealing to com-
posability, and so it would be instructive to know if they
can be derived from the above principle by adding some
simple assumptions. Similarly, it has been asked whether

2

To understand this, consider the following “marginal
scenarios” [26]. They involve a set of “boxes” with la-
bels in X = {1, .., n}. When a box is opened it can be
found to be empty or full, denoted by the outcome bit
a ∈ {0, 1}. Only certain subsets of the boxes J ⊂ 2X

can be jointly opened. A measurement picks out a sub-
set j ∈ J of the boxes to open and an outcome of that
measurement corresponds to the assignment of a bit to
each of those boxes, s ∈ 2j. To represent this as a par-
tition scenario, we take the sample space to be all n-bit
strings, Ξ = 2X , so that each string specifies an outcome
for every box. The outcome As ⊂ Ξ comprises all of
these strings that agree with the outcomes for the boxes
actually measured, j: formally, As = {γ ∈ 2X : γ|j = s}
where γ|j is the restriction of the function γ over X to
j. The measurement corresponding to subset j ⊂ X is
represented by the partition Mj = {As}s∈2j . Other mea-
surements, in which later choices of box are functions of
earlier outcomes, can also be included [27]. If the mea-
surable subsets j are such that exactly one of each subset
in a partition of the boxes can be opened, then we have
a “Bell scenario” (two pairs of boxes, such that only one
box in each pair can be opened, is the CHSH scenario).
Another well-known example consists of n boxes such
that only pairs labelled {i, i+ 1} for all i and {n, 1} can
be jointly measured. “Specker’s parable” concerns the
n = 3 case [28], while for n = 5 there is a set of outcomes
{Ai} with i = 1...5 such that {Ai, Ai+1} for i = 1...4
and {A5, A1} are the only exclusive pairs, known as a
“Wright pentagon” [29].
Given a partition scenario, a probability function P (·)

represents a set of experimental results. Its domain is
the set of all outcomes C, but the function P is only re-
quired to be a probability measure when restricted to the
outcomes AM for a given measurement M ; thus the only
restriction on experimental probabilities is that identified
outcomes have the same probability (“consistency”) [30].
Turning to restrictions on the experimental probabili-

ties, non-contextuality requires that there exists a joint
probability distribution PJ on Ξ such that PJ (A) =
P (A) ∀A ∈ C. That is, the experimental probabilities
can be derived from a probability distribution over the
whole sample space. It is well-known that this principle
is incompatible with QM. Consistent Exclusivity (CE)
[13, 14] can be seen as a weakening of this condition. A
probability function P on a scenario S obeys CE if, for
all sets S of fine-grained outcomes such that A and B are
exclusive for all pairs {A,B} ⊂ S,

∑

A∈S

P (A) ≤ 1. (1)

This definition follows 7.1.1 of [17], by which CE accords
with the E principle, “the sum of the probabilities of any
set of pairwise mutually exclusive events cannot be higher
than 1” [31].

Non-contextuality can instead be weakened by replac-
ing the joint probability measure with a generalised mea-
sure that, while agreeing with the experimental probabil-
ities, allows interference, meaning violation of the Kol-
mogorov sum rule. This interference is not unrestricted
in QM, however – otherwise any probability function
would be allowed. A joint quantum measure is a function
µ : 2Ξ → R≥0 such that

µ(A) = P (A) ∀A ∈ C, (2)

and such that for any three disjoint sets A ⊂ Ξ, B ⊂ Ξ
and C ⊂ Ξ,

µ(A) + µ(B) + µ(C)

−µ(A ∪B)− µ(B ∪ C)− µ(C ∪ A)

+µ(A ∪B ∪ C) = 0. (3)

Equation (2) ensures that the quantum measure µ re-
duces to the experimental probabilities P when restricted
to measurement outcomes. This implies that µ obeys the
Kolmogorov rule when restricted to the outcomes of one
experiment: we have P (A) + P (B) = P (A ∪ B) for ex-
clusive outcomes, which, substituting all three terms by
eqn. (2), gives µ(A) + µ(B) = µ(A ∪B). Equation (3) is
known as the Sorkin sum rule (or “quantum sum rule”).
It is not hard to check that both CE and the existence of a
joint quantum measure are implied if there is a standard
quantum model for the probability function [17, 25].
Given this definition, it might not be obvious why lack

of third order interference is being used as a synonym for
the existence of a joint quantum measure. The following
lemma clarifies this.

Lemma 1. Consider a probability function P on a sce-
nario S that admits a joint quantum measure, and con-
sider a partition Q of a set X ⊂ Ξ. If µ(A) + µ(B) =
µ(A ∪B) for all A,B ∈ Q then

µ(X) =
∑

A∈Q

µ(A). (4)

Proof. For |Q| = 2 the statement is trivially true. As-
sume that the lemma holds in all cases with |Q| ≤ n for
some n ≥ 2, and consider a partition Q of a set X for
which |Q| = n+1, obeying the condition µ(A) +µ(B) =
µ(A ∪ B) for all A,B ∈ Q. Let A,B ∈ Q be two events
in the partition and let Y = X\(A ∪ B). Applying the
Sorkin sum rule (3) to {Y,A,B} yields

µ(Y ) + µ(A) + µ(B)− µ(Y ∪ A)−
µ(A ∪B)− µ(Y ∪B) + µ(X) = 0. (5)

The inductive hypothesis implies that µ(Y ∪B) = µ(Y )+
µ(B), and by assumption µ(A ∪B)− µ(A) = µ(B), and
so this implies

µ(X) = µ(Y ∪ A) + µ(B) =
∑

C∈Q

µ(C), (6)

Q: What about the converse implication?

A: Seems very unlikely, given the above.
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where the inductive hypothesis has been applied to the
set Y ∪ A in the last step.

To sum this lemma up in a slogan, the existence of
a joint quantum measure implies that “pairwise non-
interference implies joint non-interference,” where joint
non-interference refers to eqn. (4). This is highly sugges-
tive of a connection to CE. As explained under eqn. (3),
if a pair of events is exclusive then it is non-interfering,
and hence, given the existence of a joint quantum mea-
sure, pairwise exclusivity implies joint non-interference.
However, this does not suffice to show that the existence
of a joint quantum measure implies CE; the quantum
measure is not in general bounded above, and so some
work remains to be done to derive eqn.(1).

Theorem 2. Consider a probability function P on a sce-
nario S. If P admits a joint quantum measure then it
obeys Consistent Exclusivity.

Proof. Assume that the probability function P admits a
joint quantum measure, and consider a set of fine-grained
outcomes S ⊂ C such that A and B are exclusive for all
pairs {A,B} ⊂ S. Let us define the sets X=

⋃
A∈S A

and R = Ξ\X , and also the set Q = S ∪ {R}, which is
a partition of Ξ. Furthermore, using (2), we have that
µ(A)+µ(B) = µ(A∪B) for all A,B ∈ S. Now, for some
B ∈ S, let us apply the Sorkin sum rule (3) to the sets
Y = X\B, B and R. We obtain

µ(Y ) + µ(B) + µ(R)−
µ(Y ∪B)− µ(Y ∪R)− µ(B ∪R) + µ(Ξ) = 0. (7)

Applying lemma 1 gives µ(Y )+µ(B) = µ(Y ∪B), and we
have µ(Y ∪ R) + µ(B) = µ(Ξ) from (2) because B (and
thus its complement Y ∪ R) is a measurement outcome,
giving the result

µ(B) + µ(R) = µ(B ∪R). (8)

Because this applies for all B ∈ S we have µ(A)+µ(B) =
µ(A ∪ B) for all A,B ∈ Q. From this, lemma 1 gives∑

A∈Q µ(A) = µ(Ξ) = 1. Subtracting µ(R), and re-
membering that the quantum measure is non-negative,
we have that

∑
A∈S µ(A) ≤ 1. Using (2), this establishes

that CE holds for the probability function P , proving the
theorem.

This allows a number of interesting results to be im-
ported into quantum measure theory from the study of
local orthogonality and CE, of which the following are in-
structive and representative but certainly not exhaustive
(see [17, 32–34] for more).

Corollary 3. The following are properties of all proba-
bility functions on partition scenarios that admit a joint
quantum measure:

(i) They imply the quantum bound,
√
5, on the maxi-

mum violation of the KCBS inequality for two in-
dependent copies of the Wright pentagon scenario;

(ii) for the CHSH scenario, the existence of two in-
dependent copies of this probability function with
maximum violation of the CHSH inequality of more
than 2.883 is banned;

(iii) they allow no advantage over classical (non-
contextual) probability functions for the Guess Your
Neighbour’s Input Game.

Proof. As noted above, the Wright pentagon can be con-
structed in a partition scenario. Thus (i) can be proved
by combining theorem 2 with the arguments in [14]. Bell
scenarios and copies thereof are also partition scenarios
[25], and so (ii) and (iii) can be proved by combining the-
orem 2 with the argument in section 4.3 of [34], and the
first proof in the Methods section of [13], respectively.

By construing the principle more broadly (by assuming
that certain contextuality scenarios are realisable, or that
quantum probability functions must be in the physical
set) CE can be made to imply both Tsirelson’s bound for
CHSH [31] and the quantum bound for all contextuality
scenarios [33] [35].
As noted above, other definitions of “lack of third order

interference” have been made. Finding out whether these
versions of the principle are equivalent to the one given
here is important for the goal of simplifying and clarify-
ing the list of candidate principles. Also, if the definition
given above implies any of the others, then the results
given above can be extended to these other formalisms.
This not ruled out for [20]: while CE is shown to follow
from two other assumptions unrelated to third order in-
terference in this formalism, this does not mean that lack
of third order interference alone fails to imply CE. It will
require more work to see if the definition of lack of third
order interference given here is equivalent to that of [20],
as the formalisms are quite different, and it is non-trivial
to embed one formalism in the other. It is possible that
the definitions are only equivalent under some assump-
tions. Similarly, it is not obvious that the definition of
third order interference given in [20] implies consistent
exclusivity by a similar argument to that given above;
indeed this implication may be false in general. [36]
Many other interesting issues remain open. Firstly,

it would be of great significance if the converse of the
above theorem is also true. However, the construction of
a quantum measure from a probability function obeying
CE, even if possible, is not a straightforward task. Sec-
ondly, the stronger forms of joint quantum measure con-
sidered in [25] have been justified by appealing to com-
posability, and so it would be instructive to know if they
can be derived from the above principle by adding some
simple assumptions. Similarly, it has been asked whether
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To understand this, consider the following “marginal
scenarios” [26]. They involve a set of “boxes” with la-
bels in X = {1, .., n}. When a box is opened it can be
found to be empty or full, denoted by the outcome bit
a ∈ {0, 1}. Only certain subsets of the boxes J ⊂ 2X

can be jointly opened. A measurement picks out a sub-
set j ∈ J of the boxes to open and an outcome of that
measurement corresponds to the assignment of a bit to
each of those boxes, s ∈ 2j. To represent this as a par-
tition scenario, we take the sample space to be all n-bit
strings, Ξ = 2X , so that each string specifies an outcome
for every box. The outcome As ⊂ Ξ comprises all of
these strings that agree with the outcomes for the boxes
actually measured, j: formally, As = {γ ∈ 2X : γ|j = s}
where γ|j is the restriction of the function γ over X to
j. The measurement corresponding to subset j ⊂ X is
represented by the partition Mj = {As}s∈2j . Other mea-
surements, in which later choices of box are functions of
earlier outcomes, can also be included [27]. If the mea-
surable subsets j are such that exactly one of each subset
in a partition of the boxes can be opened, then we have
a “Bell scenario” (two pairs of boxes, such that only one
box in each pair can be opened, is the CHSH scenario).
Another well-known example consists of n boxes such
that only pairs labelled {i, i+ 1} for all i and {n, 1} can
be jointly measured. “Specker’s parable” concerns the
n = 3 case [28], while for n = 5 there is a set of outcomes
{Ai} with i = 1...5 such that {Ai, Ai+1} for i = 1...4
and {A5, A1} are the only exclusive pairs, known as a
“Wright pentagon” [29].
Given a partition scenario, a probability function P (·)

represents a set of experimental results. Its domain is
the set of all outcomes C, but the function P is only re-
quired to be a probability measure when restricted to the
outcomes AM for a given measurement M ; thus the only
restriction on experimental probabilities is that identified
outcomes have the same probability (“consistency”) [30].
Turning to restrictions on the experimental probabili-

ties, non-contextuality requires that there exists a joint
probability distribution PJ on Ξ such that PJ (A) =
P (A) ∀A ∈ C. That is, the experimental probabilities
can be derived from a probability distribution over the
whole sample space. It is well-known that this principle
is incompatible with QM. Consistent Exclusivity (CE)
[13, 14] can be seen as a weakening of this condition. A
probability function P on a scenario S obeys CE if, for
all sets S of fine-grained outcomes such that A and B are
exclusive for all pairs {A,B} ⊂ S,

∑

A∈S

P (A) ≤ 1. (1)

This definition follows 7.1.1 of [17], by which CE accords
with the E principle, “the sum of the probabilities of any
set of pairwise mutually exclusive events cannot be higher
than 1” [31].

Non-contextuality can instead be weakened by replac-
ing the joint probability measure with a generalised mea-
sure that, while agreeing with the experimental probabil-
ities, allows interference, meaning violation of the Kol-
mogorov sum rule. This interference is not unrestricted
in QM, however – otherwise any probability function
would be allowed. A joint quantum measure is a function
µ : 2Ξ → R≥0 such that

µ(A) = P (A) ∀A ∈ C, (2)

and such that for any three disjoint sets A ⊂ Ξ, B ⊂ Ξ
and C ⊂ Ξ,

µ(A) + µ(B) + µ(C)

−µ(A ∪B)− µ(B ∪ C)− µ(C ∪ A)

+µ(A ∪B ∪ C) = 0. (3)

Equation (2) ensures that the quantum measure µ re-
duces to the experimental probabilities P when restricted
to measurement outcomes. This implies that µ obeys the
Kolmogorov rule when restricted to the outcomes of one
experiment: we have P (A) + P (B) = P (A ∪ B) for ex-
clusive outcomes, which, substituting all three terms by
eqn. (2), gives µ(A) + µ(B) = µ(A ∪B). Equation (3) is
known as the Sorkin sum rule (or “quantum sum rule”).
It is not hard to check that both CE and the existence of a
joint quantum measure are implied if there is a standard
quantum model for the probability function [17, 25].
Given this definition, it might not be obvious why lack

of third order interference is being used as a synonym for
the existence of a joint quantum measure. The following
lemma clarifies this.

Lemma 1. Consider a probability function P on a sce-
nario S that admits a joint quantum measure, and con-
sider a partition Q of a set X ⊂ Ξ. If µ(A) + µ(B) =
µ(A ∪B) for all A,B ∈ Q then

µ(X) =
∑

A∈Q

µ(A). (4)

Proof. For |Q| = 2 the statement is trivially true. As-
sume that the lemma holds in all cases with |Q| ≤ n for
some n ≥ 2, and consider a partition Q of a set X for
which |Q| = n+1, obeying the condition µ(A) +µ(B) =
µ(A ∪ B) for all A,B ∈ Q. Let A,B ∈ Q be two events
in the partition and let Y = X\(A ∪ B). Applying the
Sorkin sum rule (3) to {Y,A,B} yields

µ(Y ) + µ(A) + µ(B)− µ(Y ∪ A)−
µ(A ∪B)− µ(Y ∪B) + µ(X) = 0. (5)

The inductive hypothesis implies that µ(Y ∪B) = µ(Y )+
µ(B), and by assumption µ(A ∪B)− µ(A) = µ(B), and
so this implies

µ(X) = µ(Y ∪ A) + µ(B) =
∑

C∈Q

µ(C), (6)

CE1: intuitive properties of composition of slit transformations

No 3rd order int.: decomposability of interference pattern into pairs
⇒ intuitively, CE1 seems much weaker.
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• Consistent exclusivity becomes much less mysterious. 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                   lots of symmetry ⇒ projections ⇒ CE1 

• Relation to 3rd-order interference goes probably only 
in one direction. →What are those? QT CPT
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• Contextuality should be studied in the context of GPTs 
→ post-measurement states 

• Consistent exclusivity becomes much less mysterious. 
In particular 
                   lots of symmetry ⇒ projections ⇒ CE1 

• Relation to 3rd-order interference goes probably only 
in one direction. →What are those? QT CPT

Jordan
?Thank you!
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