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1. General probabilistic theories
Quantum theory is just one possible probabilistic theory.

2. Geometry and probability
Deriving QT and 3D of space from axioms on their relation.

3. Third-order interference
Searching and testing for "QT's closest cousins".
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QT violates Bell inequalities, but not maximally:
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ments, 2 outcomes each:
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1. General probabilistic theories

A GPT is defined by an arbitrary convex state space:

That is the set of all states ω that can be prepared.

“yes“

“no“

ω T M

Transformations T preserve mixtures, and map states to states.

Probabilities of measurement outcomes      are linear functionals
on state space.

M
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1. General probabilistic theories

Classical N-level state spaces:

bit (N=2) trit (N=3)
ω = (1, 0, 0)

ϕ = (0, 1, 0)

3

by affine maps M(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
outcome if the coin shows heads, and the second other-
wise. The possible states are then characterized by the
probability p ∈ [0, 1] of obtaining heads. The state space
becomes a line segment, with all states being probabilis-
tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.

Quantum state spaces look quite different. Quantum
bits, the states of spin-1/2 particles, can be described
by 2 × 2 complex density matrices ρ. These can al-
ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)(�r) = (1 + rz)/2
and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are
not balls, but intricate compact convex sets of dimension
n
2 − 1 [36, 39].
Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-
ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values

of observables, simply called observables in the following.
These are arbitrary affine maps h : A → R; in quantum
theory, they are maps of the form ρ �→ tr(ρH), where
H = H

† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =

�
i hiMi, hi ∈ R, and

to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are

N=4

1. General prob. theories
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theory, they are maps of the form ρ �→ tr(ρH), where
H = H

† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =
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i hiMi, hi ∈ R, and

to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are
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by affine maps M(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
outcome if the coin shows heads, and the second other-
wise. The possible states are then characterized by the
probability p ∈ [0, 1] of obtaining heads. The state space
becomes a line segment, with all states being probabilis-
tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.
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ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)(�r) = (1 + rz)/2
and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are
not balls, but intricate compact convex sets of dimension
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M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-
ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
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take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
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maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
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We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
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of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
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for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
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wise. The possible states are then characterized by the
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bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].
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equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
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bits, the states of spin-1/2 particles, can be described
by 2 × 2 complex density matrices ρ. These can al-
ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
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and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
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not balls, but intricate compact convex sets of dimension
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ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values
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theory, they are maps of the form ρ �→ tr(ρH), where
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† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =
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to measure the effects Mi on different copies (in general,
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of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.
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flat background space, such that there is a unique way
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sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
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probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.

Quantum state spaces look quite different. Quantum
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ways be written in the form ρ = (1 + �r · �σ)/2, where
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ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values

of observables, simply called observables in the following.
These are arbitrary affine maps h : A → R; in quantum
theory, they are maps of the form ρ �→ tr(ρH), where
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† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =
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to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.
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We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.
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ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may
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ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
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implement; in order to describe a physical system, we
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are not.
From the effects, we can construct expectation values
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to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.
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dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set ∆2 in it.

we consider the space curve

�x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), − sin(t)

�T
. (16)

Note that the curve is closed, �x(t) = �x(t + 2π), and be-

longs to the unit sphere, ||�x(t)|| = 1. Moreover

||�x(t)− �x(t+ 1
32π)|| =

√
3 (17)

for every value of t. Hence every point �x(t) belongs to

an equilateral triangle with vertices at

�x(t), �x(t+ 1
32π), and �x(t+ 2

32π) .

They span a plane including the z-axis for all times t.
During the time ∆t =

2π
3 this plane makes a full turn

about the z-axis, while the triangle rotates by the angle

2π/3 within the plane—so the triangle has returned to a

congruent position. The curve �x(t) is shown in Fig. 8 a)

together with exemplary positions of the rotating trian-

gle, and Fig. 8 b) shows its convex hull C. This convex

hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve �x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is

our best model so far of the set of quantum pure states,

although the likeness is not perfect.

It is interesting to think a bit more about the boundary

of C. There are three flat faces, two triangular ones and

one rectangular. The remaining part of the boundary

consists of ruled surfaces: they are curved, but contain

one dimensional faces (straight lines). The boundary of

the set shown in Fig. 7 has similar properties. The ruled

surfaces of C have an analogue in the boundary of the

set of quantum states Q3, we have already noted that a

generic point in the boundary of Q3 belongs to a copy of

Q2 (the Bloch ball), arising as the intersection of Q3 with

a hyperplane. The flat pieces of C have no analogues in

the boundary of Q3, apart from Bloch balls (rank two)

and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states

has self-intersections. Although it is created by rotating

a triangle, the triangles are not cross-sections of C. It

is not true that every point on the boundary belongs

to a face that touches the largest inscribed sphere, as

it happens for the set of quantum states [17]. Indeed its

boundary is not quite what we want it to be, in particular

qutrit (N=3)

Complicated 8D convex
set, mixed states in
its boundary.

Bengtsson et al., arXiv:1112.2347
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1. General probabilistic theories

Other probabilistic theories:

• More or less non-locality, complementarity, computational
   power than QT, no-cloning,
• many allow for teleportation, analogs of "unitaries" and
   the "Schrödinger equation",
• physical predictions different from QT.
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What makes QT "special"?

L. Hardy, "Quantum Theory From Five Reasonable Axioms",
arXiv:quant-ph/0101012 (2001).

Idea: Give a few simple, natural postulates
        that single out QT.
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In what follows: sketch 2 ways with different goals.
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von Weizsäcker's idea (1955+):
Space is 3D because the qubit is!

3

by affine maps M(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
outcome if the coin shows heads, and the second other-
wise. The possible states are then characterized by the
probability p ∈ [0, 1] of obtaining heads. The state space
becomes a line segment, with all states being probabilis-
tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.

Quantum state spaces look quite different. Quantum
bits, the states of spin-1/2 particles, can be described
by 2 × 2 complex density matrices ρ. These can al-
ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)(�r) = (1 + rz)/2
and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are
not balls, but intricate compact convex sets of dimension
n
2 − 1 [36, 39].
Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-
ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values

of observables, simply called observables in the following.
These are arbitrary affine maps h : A → R; in quantum
theory, they are maps of the form ρ �→ tr(ρH), where
H = H

† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =

�
i hiMi, hi ∈ R, and

to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are
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von Weizsäcker's idea (1955+):
Space is 3D because the qubit is!

Spatial rotations of Stern-Gerlach device
can prepare any pure qubit state.
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0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
outcome if the coin shows heads, and the second other-
wise. The possible states are then characterized by the
probability p ∈ [0, 1] of obtaining heads. The state space
becomes a line segment, with all states being probabilis-
tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.

Quantum state spaces look quite different. Quantum
bits, the states of spin-1/2 particles, can be described
by 2 × 2 complex density matrices ρ. These can al-
ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)(�r) = (1 + rz)/2
and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are
not balls, but intricate compact convex sets of dimension
n
2 − 1 [36, 39].
Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-
ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values

of observables, simply called observables in the following.
These are arbitrary affine maps h : A → R; in quantum
theory, they are maps of the form ρ �→ tr(ρH), where
H = H

† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =

�
i hiMi, hi ∈ R, and

to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are
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by affine maps M(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
that ΩA is topologically closed.

As a simple example, consider a physical system which
resembles a classical bit, or coin. We can perform a mea-
surement by looking whether the coin shows heads or
tails; think of a two-outcome device which yields the first
outcome if the coin shows heads, and the second other-
wise. The possible states are then characterized by the
probability p ∈ [0, 1] of obtaining heads. The state space
becomes a line segment, with all states being probabilis-
tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).

!" #" $"

%" &" '" ("

FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.

Quantum state spaces look quite different. Quantum
bits, the states of spin-1/2 particles, can be described
by 2 × 2 complex density matrices ρ. These can al-
ways be written in the form ρ = (1 + �r · �σ)/2, where
�r is an ordinary real vector in R3 with |�r| ≤ 1, and
σ = (σx,σy,σz) denotes the Pauli matrices [37]. We can
consider �r = (rx, ry, rz) as the state of the qubit. Thus,
the state space is a three-dimensional unit ball as shown
in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)(�r) = (1 + rz)/2
and M(2)(�r) = (1 − rz)/2, for example, where the two
outcomes correspond to “spin up” and “spin down”, re-
spectively.
However, the state space of a quantum n-level system is
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not balls, but intricate compact convex sets of dimension
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2 − 1 [36, 39].
Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-
ceivable measurement devices. We can work out the set
of these maps from a description of ΩA. In general, some
of these measurements might be physically impossible to
implement; in order to describe a physical system, we
have to specify which ones are possible and which ones
are not.
From the effects, we can construct expectation values
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These are arbitrary affine maps h : A → R; in quantum
theory, they are maps of the form ρ �→ tr(ρH), where
H = H

† is any self-adjoint matrix. One way to measure
an observable (on many copies of a state) is to write it as a
linear combination of effects, h =

�
i hiMi, hi ∈ R, and

to measure the effects Mi on different copies (in general,
they may not be jointly measurable on a single copy and
thus be outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that
take a state to another state, and may be inverted by
another physical process (in quantum theory, these are
the unitaries, mapping ρ to UρU†). Since they must
respect probabilistic mixtures, they must also be affine
maps. Due to reversibility, they map the state space
ΩA onto itself – they are symmetries of the state space.
The set of reversible transformations on A is a closed
subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-
ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
may apply to more general situations). We will also as-
sume that all physical operations considered in the fol-
lowing, such as measurements, are performed locally in a
way such that all parties (particles, measurement devices
etc.) are relative to each other at rest [72]. Thus, we do
not have to consider conceivable relativistic effects.

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now
assume that there exists a particular type of physical
system which, in a sense to be made precise, behaves
like a “unit of direction information”. We will call these
systems “direction bits” (later on, we show that they are

2. Geometry and probability

2. Geometry+probability

 Axiomatic reconstructions and generalizations of quantum theory                                               Markus P. Müller



2. Geometry and probability

2. Geometry+probability

 Axiomatic reconstructions and generalizations of quantum theory                                               Markus P. Müller



2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

MM and Ll. Masanes, New J. Phys. 15, 053040 (2013), arXiv:1206.0630

An information-theoretic task in d spatial dimensions:
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the
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tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)
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If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

MM and Ll. Masanes, New J. Phys. 15, 053040 (2013), arXiv:1206.0630

An information-theoretic task in d spatial dimensions:

4 Postulates: There is a probabilistic system such that...

1. Alice can send any spatial direction
2. but not more.

x ∈ Rd, |x| = 1,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].
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result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to
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text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where
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Now suppose that we have two devices, both preparing
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particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they
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use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will
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by affine maps M(i) : A → R which yield values between
0 and 1 for every state. Maps of this kind will be called
effects. Full measurements are described by a collection
of effects {M(i)}ki=1 that sum to unity if applied to any
state. The set of all possible states of the correspond-
ing physical system will be denoted ΩA, the state space.
It is a bounded subset of A. We have just seen that
ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We
will only consider finite-dimensional state spaces in this
paper. Since outcome probabilities can only ever be de-
termined to finite precision, we may (and will) assume
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surement by looking whether the coin shows heads or
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tic mixtures of two pure states that yield either heads or
tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [36].

The state spaces of a classical three- and four-level sys-
tem are also shown in Fig. 3, b) and c): they are an
equilateral triangle, resp. a tetrahedron. In general, the
state space of a classical n-level system is the set of all
probability distributions (p1, . . . , pn), which is an (n−1)-
dimensional simplex.
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the state space is a three-dimensional unit ball as shown
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n
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H = H
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an observable (on many copies of a state) is to write it as a
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�
i hiMi, hi ∈ R, and
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III. SINGLE SYSTEMS: POSTULATES 1 AND 2
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ments take place in d-dimensional space, with one time
dimension. For simplicity, we assume that there is a fixed
flat background space, such that there is a unique way
to transport vectors from one laboratory A to another
distant laboratory B (however, we think that our results
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.
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generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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postulate will be discussed in detail, yielding our main
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proof sketches are given; the full proofs are deferred to
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back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in
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prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random
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state ϕ with probability 1 − p. The resulting state will
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.
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The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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Proof idea:
If d≠3, probability negative
unless X=XA+XB,
i.e. no interaction.
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Theorem (G. de la Torre, Ll. Masanes, A. J. Short, MM, PRL 108 (2012)):
Only solution for d=3 is two-qubit quantum theory, and
interaction is of the form                            with           unitary.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Result:

Information-theoretic task with 4 Postulates
uniquely determines spatial dimension d=3 and quantum theory.

MM and Ll. Masanes, New J. Phys. 15, 053040 (2013), arXiv:1206.0630
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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state ω.
Now suppose that we have two devices, both preparing
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particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will
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Additional solutions in case of tripartite interactions?
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A TRIPLE SLIT TEST ... (SINHA ET AL.)

84 C LA PHYSIQUE AU CANADA / Vol. 66, No. 2 ( avr. à juin 2010 )

Although Born’s rule has been indirectly verified to high accu-
racy in other experiments, the consequences of a detection of
even a small three-way interference in the quantum mechanical
null prediction would be tremendous. If a non-zero result were
to be obtained, it would mean that quantum mechanics is only
approximate, in the same way that the double slit experiment
proves that classical physics is only an approximation to the
true laws of nature.

This would give an important hint on how to generalize quan-
tum mechanics and open a new window to the world. Currently
we have no idea what such a theory could look like but research
is already being done to explore the characteristics of and alter-
native ways to understand such a theory [7]. It might even give
a hint towards unifying quantum mechanics and gravity, a
major goal of fundamental physics today.

Obviously the discovery of a three path interference would lead
to the question: Is there four-way interference? There is indeed
a whole hierarchy of theory types: a level k theory being one in
which there is k-way interference but no k+1-way interfer-
ence [4].

An interesting consequence of the violation of Born’s rule
would be for computer science. In the last 40 years, computer
scientists have classified sets of problems according to the dif-
ficulty with which they can be solved. They look at how these
sets relate to each other and have conjectured many relation-
ships. A well-known example is the famous question of
whether or not the classes P and NP are the same [5] C finding
a proof to resolve this longstanding question would earn a mil-
lion dollar prize from the Clay Foundation [6]. Aaronson has
shown that violating Born’s rule would have a dramatic effect
on computational complexity because it would allow one to
efficiently distinguish two states that are exponentially close.
This would relate two complexity classes implying that NP-
complete problems could be solved in polynomial space [8]

something which is not believed to be true with either classical
or quantum computers and would surprise many computer sci-
entists.

A similar conclusion was reached by Meyer in [9]. He has sug-
gested that a task that takes two steps with quantum C level
k = 2 C resources could be achieved in one step with level 3
resources and so on. To realise this intriguing idea would
require models for level 3 and higher k physical systems to be
discovered but it shows that the implications of a detection of
super-quantum theories would be very far reaching indeed,
even beyond the boundaries of physics itself.

BRINGING THEORY TO THE LAB ...
The triple slit experiment is being performed at the Institute for
Quantum Computing in the University of Waterloo, Canada. In
this experiment, we evaluate the triple slit interference term
given by equation (2). If Quantum Mechanics is correct, this
term will be zero, if there is a further generalization to the the-
ory, then we would get a non zero result which cannot be
explained by experimental errors. 

The experiment consists of measuring the seven probability
terms in equation (2) along with an eighth term P(0) which
gives the background probability (this takes care of any exper-
imental background such as detector dark counts i.e. spurious
counts measured by the detector even in the absence of a
source of photons). We define a quantity ε as

ε = P (A c B c C) − P (A c B) − P (B c C) − P (C c A)
+ P (A) + P (B) + P (C) − P (0) (3)

Figure 1 shows how the various probabilities are measured in a
triple slit configuration. For better comparison between possi-
ble realizations of such an experiment, we further define a nor-
malized variant of ε called ρ,

(4)

δ$$$$$=    | IAB | + | IBC | + | ICA |
=    | P (A c B) − P (A) − P (B) + P (0)|
+ | P (B c C) − P (B) − P (C) + P (0)|
+ | P (A c C) − P (A) − P (C) + P (0)| . (5)

Since δ$is a measure of the regular interference contrast, ρ can
be seen as the ratio of three-path interference over the regular
two-path interference. (If δ$= 0 then ε = 0 trivially, and we real-
ly are not dealing with quantum behavior at all, but only clas-
sical probabilities.)

EXPERIMENTAL SET UP
Figure 2 shows a schematic of the complete experimental set-
up. The laser beam passes through an arrangement of mirrors
and collimators before being incident on a 50/50 beam splitter.
The beam then splits into two, one of the beams is used as a ref-
erence arm for measuring fluctuations in laser power whereas
the other beam is incident on the thin metal membrane , which
has the slit pattern cut into it using commercial laser cutting.
The beam height and wast is adjusted so that it is incident on a
set of three slits, the slits being centered on the beam. There is

Fig. 1 Pictorial representation of how the different probability
terms are measured. The leftmost configuration has all slits
open, whereas the rightmost has all three slits blocked. The
black bars represent the slits, which are never changed or
moved throughout the experiment. The thick grey bars rep-
resent the opening mask, which is moved in order to make
different combinations of openings overlap with the slits,
thus switching between the different combinations of open
and closed slits.

,where
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Although Born’s rule has been indirectly verified to high accu-
racy in other experiments, the consequences of a detection of
even a small three-way interference in the quantum mechanical
null prediction would be tremendous. If a non-zero result were
to be obtained, it would mean that quantum mechanics is only
approximate, in the same way that the double slit experiment
proves that classical physics is only an approximation to the
true laws of nature.

This would give an important hint on how to generalize quan-
tum mechanics and open a new window to the world. Currently
we have no idea what such a theory could look like but research
is already being done to explore the characteristics of and alter-
native ways to understand such a theory [7]. It might even give
a hint towards unifying quantum mechanics and gravity, a
major goal of fundamental physics today.

Obviously the discovery of a three path interference would lead
to the question: Is there four-way interference? There is indeed
a whole hierarchy of theory types: a level k theory being one in
which there is k-way interference but no k+1-way interfer-
ence [4].

An interesting consequence of the violation of Born’s rule
would be for computer science. In the last 40 years, computer
scientists have classified sets of problems according to the dif-
ficulty with which they can be solved. They look at how these
sets relate to each other and have conjectured many relation-
ships. A well-known example is the famous question of
whether or not the classes P and NP are the same [5] C finding
a proof to resolve this longstanding question would earn a mil-
lion dollar prize from the Clay Foundation [6]. Aaronson has
shown that violating Born’s rule would have a dramatic effect
on computational complexity because it would allow one to
efficiently distinguish two states that are exponentially close.
This would relate two complexity classes implying that NP-
complete problems could be solved in polynomial space [8]

something which is not believed to be true with either classical
or quantum computers and would surprise many computer sci-
entists.

A similar conclusion was reached by Meyer in [9]. He has sug-
gested that a task that takes two steps with quantum C level
k = 2 C resources could be achieved in one step with level 3
resources and so on. To realise this intriguing idea would
require models for level 3 and higher k physical systems to be
discovered but it shows that the implications of a detection of
super-quantum theories would be very far reaching indeed,
even beyond the boundaries of physics itself.

BRINGING THEORY TO THE LAB ...
The triple slit experiment is being performed at the Institute for
Quantum Computing in the University of Waterloo, Canada. In
this experiment, we evaluate the triple slit interference term
given by equation (2). If Quantum Mechanics is correct, this
term will be zero, if there is a further generalization to the the-
ory, then we would get a non zero result which cannot be
explained by experimental errors. 

The experiment consists of measuring the seven probability
terms in equation (2) along with an eighth term P(0) which
gives the background probability (this takes care of any exper-
imental background such as detector dark counts i.e. spurious
counts measured by the detector even in the absence of a
source of photons). We define a quantity ε as

ε = P (A c B c C) − P (A c B) − P (B c C) − P (C c A)
+ P (A) + P (B) + P (C) − P (0) (3)

Figure 1 shows how the various probabilities are measured in a
triple slit configuration. For better comparison between possi-
ble realizations of such an experiment, we further define a nor-
malized variant of ε called ρ,

(4)

δ$$$$$=    | IAB | + | IBC | + | ICA |
=    | P (A c B) − P (A) − P (B) + P (0)|
+ | P (B c C) − P (B) − P (C) + P (0)|
+ | P (A c C) − P (A) − P (C) + P (0)| . (5)

Since δ$is a measure of the regular interference contrast, ρ can
be seen as the ratio of three-path interference over the regular
two-path interference. (If δ$= 0 then ε = 0 trivially, and we real-
ly are not dealing with quantum behavior at all, but only clas-
sical probabilities.)

EXPERIMENTAL SET UP
Figure 2 shows a schematic of the complete experimental set-
up. The laser beam passes through an arrangement of mirrors
and collimators before being incident on a 50/50 beam splitter.
The beam then splits into two, one of the beams is used as a ref-
erence arm for measuring fluctuations in laser power whereas
the other beam is incident on the thin metal membrane , which
has the slit pattern cut into it using commercial laser cutting.
The beam height and wast is adjusted so that it is incident on a
set of three slits, the slits being centered on the beam. There is

Fig. 1 Pictorial representation of how the different probability
terms are measured. The leftmost configuration has all slits
open, whereas the rightmost has all three slits blocked. The
black bars represent the slits, which are never changed or
moved throughout the experiment. The thick grey bars rep-
resent the opening mask, which is moved in order to make
different combinations of openings overlap with the slits,
thus switching between the different combinations of open
and closed slits.

,where

For 2 slits, QM predicts

but for 3 slits

PAB �= PA + PB ,

PABC = PAB + PBC + PAC − PA − PB − PC .=
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Every state is a convex
combination of pure,
perfectly distinguishable
states.
QT: ρ =

�

i

λi|i��i|.
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If ω1, . . . ,ωk are pure and
perfectly distinguishable,
and so are ϕ1, . . . ,ϕk, then
there is a reversible
transformation T with
Tωi = ϕi.

QT: unitaries.
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racy in other experiments, the consequences of a detection of
even a small three-way interference in the quantum mechanical
null prediction would be tremendous. If a non-zero result were
to be obtained, it would mean that quantum mechanics is only
approximate, in the same way that the double slit experiment
proves that classical physics is only an approximation to the
true laws of nature.

This would give an important hint on how to generalize quan-
tum mechanics and open a new window to the world. Currently
we have no idea what such a theory could look like but research
is already being done to explore the characteristics of and alter-
native ways to understand such a theory [7]. It might even give
a hint towards unifying quantum mechanics and gravity, a
major goal of fundamental physics today.

Obviously the discovery of a three path interference would lead
to the question: Is there four-way interference? There is indeed
a whole hierarchy of theory types: a level k theory being one in
which there is k-way interference but no k+1-way interfer-
ence [4].

An interesting consequence of the violation of Born’s rule
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ficulty with which they can be solved. They look at how these
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require models for level 3 and higher k physical systems to be
discovered but it shows that the implications of a detection of
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even beyond the boundaries of physics itself.
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Quantum Computing in the University of Waterloo, Canada. In
this experiment, we evaluate the triple slit interference term
given by equation (2). If Quantum Mechanics is correct, this
term will be zero, if there is a further generalization to the the-
ory, then we would get a non zero result which cannot be
explained by experimental errors. 

The experiment consists of measuring the seven probability
terms in equation (2) along with an eighth term P(0) which
gives the background probability (this takes care of any exper-
imental background such as detector dark counts i.e. spurious
counts measured by the detector even in the absence of a
source of photons). We define a quantity ε as

ε = P (A c B c C) − P (A c B) − P (B c C) − P (C c A)
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Figure 1 shows how the various probabilities are measured in a
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malized variant of ε called ρ,
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Since δ$is a measure of the regular interference contrast, ρ can
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ly are not dealing with quantum behavior at all, but only clas-
sical probabilities.)
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up. The laser beam passes through an arrangement of mirrors
and collimators before being incident on a 50/50 beam splitter.
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the other beam is incident on the thin metal membrane , which
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The beam height and wast is adjusted so that it is incident on a
set of three slits, the slits being centered on the beam. There is

Fig. 1 Pictorial representation of how the different probability
terms are measured. The leftmost configuration has all slits
open, whereas the rightmost has all three slits blocked. The
black bars represent the slits, which are never changed or
moved throughout the experiment. The thick grey bars rep-
resent the opening mask, which is moved in order to make
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There is a meaningful way
to associate observables to
generators of time evolution.

ρ �→ −i[H, ρ]

ρ �→ tr(Hρ).

QT:
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No mention of composite systems!
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CPT

We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy Specker's Principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• but two pure states can generate a 3-level subsystem (unlike QT),
• they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.



3. Third-order interference

3. 3rd-order interference

 Axiomatic reconstructions and generalizations of quantum theory                                               Markus P. Müller

?

QT
Jordan

H. Barnum, MM, and C. Ududec, in preparation (2013)

CPT

We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy Specker's Principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• but two pure states can generate a 3-level subsystem (unlike QT),
• they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.



3. Third-order interference

3. 3rd-order interference

 Axiomatic reconstructions and generalizations of quantum theory                                               Markus P. Müller

?

QT
Jordan

H. Barnum, MM, and C. Ududec, in preparation (2013)

CPT

Do they exist? If yes: natural models, experimentally testable against QT.

We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy Specker's Principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• but two pure states can generate a 3-level subsystem (unlike QT),
• they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.
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• Quantum theory is just one possible probabilistic theory.

• Information-theoretic task in d spatial dimensions.
   Result: "Nice" interplay between geometry & probability
   determines d=3 and QT uniquely.

MM and Ll. Masanes, New J. Phys. 15, 053040 (2013), arXiv:1206.0630

See also:

B. Dakic and C. Brukner, arXiv:1307.3984

• "No 3rd-order interference" as an axiom for QT,
   and the search for QT's "closest cousins".


