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possible, if we can use an additional system σ as a catalyst, i.e., we
may have ρ↛ ρ′ and yet ρ⊗ σ→ ρ′⊗ σ. In the case of thermody-
namics, the catalyst σ may be thought of as a working body or
heat engine which undergoes a cyclic process and is returned
back into its original state. In deciding whether one can trans-
form ρ into ρ′, one therefore needs to ask whether there exists
a working body or other ancillas σ for which ρ⊗ σ→ ρ′⊗ σ (Fig.
1). Thus, thermo-majorization (Fig. 2) should only be applied to
total resources including all possible catalysts and working bodies
and not the system of interest itself. In the case of entanglement
theory, and when the catalyst is returned in exactly the same state,
the criteria for when one pure state may be transformed into
another have been found (6, 7) and they are called trumping
conditions. We will generalize and adapt the trumping conditions
to enable their application to the case of thermodynamics.

Family of Second Laws
Here, we consider all possible cyclic thermodynamical processes,
and show that transition laws are affected by using ancillary
systems which are returned back to their initial state. Rather
than a single free energy that determines which transitions are
possible, we find necessary and sufficient conditions for ther-
modynamic transitions which form not just one but a family of
second laws. We define the free energies

Fα
!
ρ; ρβ

"
dkTDα

!
ρkρβ

"
− kT logZ; [2]

with the Rényi divergences DαðρkρβÞ defined as

Dα
!
ρkρβ

"
=
sgnðαÞ
α− 1

log
X

i

pαi q
1−α
i ; [3]

where pi are the eigenvalues of ρ and qi the eigenvalues of the
thermal state of the system ρβ = e−βHS=Z with Hamiltonian HS,
partition function Z=

P
i;ge

−βEi , and β= 1=T.
We can then state quantum second laws, and ones that hold

for states block diagonal in the energy basis. In the latter case, we
find the following set of second laws:
In the presence of a heat bath of single fixed temperature, the

free energies Fαðρ; ρβÞ do not increase for α≥ 0 That is, ∀α≥ 0,
Fαðρ; ρβÞ≥Fαðρ′; ρβÞ, where ρ and ρ′ are the initial and final
state, respectively. Moreover, if Fαðρ; ρβÞ≥Fαðρ′; ρβÞ holds ∀α≥ 0,

then there exists a catalytic thermal operation that transforms
ρ to ρ′.
We say that the Fαðρ; ρβÞ are monotones––the system always

gets closer to the thermal state, thus the function always de-
creases. By including an auxiliary system as described in ref. 2,
the above statement of the second law is equivalent to the case
where one changes the Hamiltonian of the system, in which case
one could write Fαðρ; ρβÞ≥Fαðρ′; ρβ′Þ, where the initial Hamilto-
nian HS has been changed via external control to the final
Hamiltonian HS′ , with ρβ and ρβ′ being the respective thermal
states. This is described in SI Appendix, section I. Note that in
fact Fαðρ; ρβÞ is a monotone for all α∈ ð−∞;∞Þ but because we
are allowed to borrow a pure state and return it in a state arbi-
trarily close to its initial state, only α≥ 0 is relevant, as can be seen
by noting that if any of the probabilities pi in Eq. 3 are zero, then
for α< 0, Fαðρ; ρβÞ diverges and will thus always be monotonic.
This set of limitations is less stringent than thermo-majoriza-

tion. Not only do these second laws provide limitations, but they
are also sufficient––whenever the free energies of some state ρ
are all greater than for another state ρ′, one can transform ρ into
ρ′. We prove this in SI Appendix. Note that the monotonicity of
[2] establishes a continuous family of conditions, one for each
value of α. However, in the case of larger systems, one can per-
form a quick check, namely: we find that for any distribution p we
can construct smoothed distributions that are very close to p, and
in terms of these smoothed distributions, check two conditions in
terms of the two free energies for α= 0;∞ found in ref. 2. If such
conditions are satisfied on the smoothed distribution, it implies
that the infinite set of conditions is satisfied as well.
For α→ 1, Fαðρ; ρβÞ is equal to the ordinary Helmholtz free en-

ergy FðρÞ, hence our conditions include the ordinary second law
(combined with energy conservation), and we thus see that it is
merely one of many constraints on thermodynamical state transitions.
In the macroscopic regime, and for systems which are not

highly correlated, then Fαðρ; ρβÞ≈F1ðρ; ρβÞ for all α (2, 8), which
explains why the single constraint given by the usual second law
is more or less adequate in this limit. It was previously found that
the quantity FminðρÞ, defined in ref. 2, gives the maximal amount
of work extractable from a system in contact with a reservoir
under all thermal operations (2) (by transforming it to a thermal
state in equilibrium with the bath). This is also the relevant
quantity in a model of alternating adiabatic and isothermal
operations (9). We see this in our newly derived second laws as

Fig. 1. In the microregime, when can a state ρS with Hamiltonian HS be transformed to a state ρS′ and Hamiltonian HS′? To do so, one can couple the system to a
heat bath ρβ = e−βHR=Z with Hamiltonian HR and use any devices as long as they are returned back in their original state (thus wemay think of them as a catalyst––σ)
and we are allowed to perform any action as long as we preserve the overall energy (see below for a more detailed description of these operations, which we call
catalytic thermal operations). Loosely speaking, our second law says that ρS can transit to ρS′ if and only if ρS′ is closer to the thermal state ρβ of the system at inverse
temperature β with respect to all Rényi divergences. In the thermodynamic limit, all these quantities converge so that we recover the usual second law.
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Fα
!
ρ; ρβ

"
dkTDα

!
ρkρβ

"
− kT logZ; [2]

with the Rényi divergences DαðρkρβÞ defined as

Dα
!
ρkρβ

"
=
sgnðαÞ
α− 1

log
X

i

pαi q
1−α
i ; [3]

where pi are the eigenvalues of ρ and qi the eigenvalues of the
thermal state of the system ρβ = e−βHS=Z with Hamiltonian HS,
partition function Z=

P
i;ge

−βEi , and β= 1=T.
We can then state quantum second laws, and ones that hold

for states block diagonal in the energy basis. In the latter case, we
find the following set of second laws:
In the presence of a heat bath of single fixed temperature, the

free energies Fαðρ; ρβÞ do not increase for α≥ 0 That is, ∀α≥ 0,
Fαðρ; ρβÞ≥Fαðρ′; ρβÞ, where ρ and ρ′ are the initial and final
state, respectively. Moreover, if Fαðρ; ρβÞ≥Fαðρ′; ρβÞ holds ∀α≥ 0,

then there exists a catalytic thermal operation that transforms
ρ to ρ′.
We say that the Fαðρ; ρβÞ are monotones––the system always

gets closer to the thermal state, thus the function always de-
creases. By including an auxiliary system as described in ref. 2,
the above statement of the second law is equivalent to the case
where one changes the Hamiltonian of the system, in which case
one could write Fαðρ; ρβÞ≥Fαðρ′; ρβ′Þ, where the initial Hamilto-
nian HS has been changed via external control to the final
Hamiltonian HS′ , with ρβ and ρβ′ being the respective thermal
states. This is described in SI Appendix, section I. Note that in
fact Fαðρ; ρβÞ is a monotone for all α∈ ð−∞;∞Þ but because we
are allowed to borrow a pure state and return it in a state arbi-
trarily close to its initial state, only α≥ 0 is relevant, as can be seen
by noting that if any of the probabilities pi in Eq. 3 are zero, then
for α< 0, Fαðρ; ρβÞ diverges and will thus always be monotonic.
This set of limitations is less stringent than thermo-majoriza-

tion. Not only do these second laws provide limitations, but they
are also sufficient––whenever the free energies of some state ρ
are all greater than for another state ρ′, one can transform ρ into
ρ′. We prove this in SI Appendix. Note that the monotonicity of
[2] establishes a continuous family of conditions, one for each
value of α. However, in the case of larger systems, one can per-
form a quick check, namely: we find that for any distribution p we
can construct smoothed distributions that are very close to p, and
in terms of these smoothed distributions, check two conditions in
terms of the two free energies for α= 0;∞ found in ref. 2. If such
conditions are satisfied on the smoothed distribution, it implies
that the infinite set of conditions is satisfied as well.
For α→ 1, Fαðρ; ρβÞ is equal to the ordinary Helmholtz free en-

ergy FðρÞ, hence our conditions include the ordinary second law
(combined with energy conservation), and we thus see that it is
merely one of many constraints on thermodynamical state transitions.
In the macroscopic regime, and for systems which are not

highly correlated, then Fαðρ; ρβÞ≈F1ðρ; ρβÞ for all α (2, 8), which
explains why the single constraint given by the usual second law
is more or less adequate in this limit. It was previously found that
the quantity FminðρÞ, defined in ref. 2, gives the maximal amount
of work extractable from a system in contact with a reservoir
under all thermal operations (2) (by transforming it to a thermal
state in equilibrium with the bath). This is also the relevant
quantity in a model of alternating adiabatic and isothermal
operations (9). We see this in our newly derived second laws as

Fig. 1. In the microregime, when can a state ρS with Hamiltonian HS be transformed to a state ρS′ and Hamiltonian HS′? To do so, one can couple the system to a
heat bath ρβ = e−βHR=Z with Hamiltonian HR and use any devices as long as they are returned back in their original state (thus wemay think of them as a catalyst––σ)
and we are allowed to perform any action as long as we preserve the overall energy (see below for a more detailed description of these operations, which we call
catalytic thermal operations). Loosely speaking, our second law says that ρS can transit to ρS′ if and only if ρS′ is closer to the thermal state ρβ of the system at inverse
temperature β with respect to all Rényi divergences. In the thermodynamic limit, all these quantities converge so that we recover the usual second law.

3276 | www.pnas.org/cgi/doi/10.1073/pnas.1411728112 Brandão et al.

"catalytic

thermal


operation"

⇢0S ⌦ �C = TrRC

h
USRC(⇢S ⌦ ⌧R ⌦ �C)U

†
SRC

i

[USRC , HS +HR +HC ] = 0, ⌧R = exp(�HR/(kBT ))/Z.

⇢S ! ⇢0S

For now, consider only states blockdiagonal 
in energy: [⇢S , HS ] = 0.
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Work extraction and work cost

Work extraction: what is the largest possible W such that

pS } energy

difference W ?

by a catalytic thermal operation, if we allow 
a small probability ε>0 of error?

S1

0 1� "

"

Work cost: what is the smallest possible W such that

pS} energy

difference W

1

0

�S

(up to ε)
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Work extraction and work cost

Theorem: The extractable work and work cost are

W
extr

= kBT
�
F "
0

(pS)� F (�S)
�
,

W
cost

= kBT
�
F "
1(pS)� F (�S)

�
,

where       is the Rényi α-free energy:F↵

F↵(pS) = kBT

 
sgn↵

↵� 1

log

X

i

p↵i exp

✓
�Ei(1� ↵)

kBT

◆!
� kBT logZ,

and
is the "standard" free energy.

F1(pS) = F (pS) = hEi � kBTS(pS)

M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale 
thermodynamics, Nature Communications 4, 2059 (2013).
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Landauer's Principle: if                      and degenerate Hamiltonian,pS = (1, 0)
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pS = (1, 0)

W
extr

= W
cost

= kBT ln 2.
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extr
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!

work
F0 F1F = F1
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�
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cost
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�
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Work extraction and work cost

But: in the thermodynamic limit,

lim
n!1

1

n
F "
↵(p

⌦n
S ) = F (pS).

n independent copies of pS

… }n independent
single


particles

heat bath, temperature T

ideal gas;
W

extr

n
=

W
cost

n
= F (pS)� F (�S).

thermodynamical 
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Theorem: A transition                   is possible by catalytic 
                 thermal operations if and only if

pS ! p0S

F↵(pS) � F↵(p
0
S) for all ↵ � 0.

All α-free energies must go down!

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of 
quantum thermodynamics, Proc. Natl. Acad. Sci. USA 112 (2015)
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⇒ Building up correlations can ease thermodynamic transitions.



Stochastic independence: useful in small-scale thermo

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics                                              Markus P. Müller

M. Lostaglio, MM, and M. 
Pastena, Phys. Rev. Lett. 115, 
150402 (2015); arXiv:1409.3258

A to B or vice versa (“comparison hypothesis”). Moreover,
it implies a scale-invariance property that can hold only for
an effective theory of macroscopic systems [31]. Therefore,
the existence of a family of free energies fFαg is not a
mathematical curiosity with no bearing on physics, but is
tightly linked to the fundamental properties of nonequili-
brium systems. This gives the multiple constraints of
nonequilibrium thermodynamics of Ref. [2], but also, as
we shall now see, a key, counterintuitive property of
correlations: they can generate entropy while being created.
A result of Ref. [2] is that the catalysts used in the

thermodynamic processes can always be chosen to have
trivialHamiltonians.Hence, the free energies of the catalysts
are given by Fα ¼ −kTHα, where Hα are information-
theoretic generalization of the Shannon entropy called
Rényi entropies (see Ref. [29] and Supplemental Material
Sec. B in [18]). One has H1 ≡H, the Shannon entropy.
Because we usually deal with “the” entropy H, we have

some hard-wired intuitions about the connection between
correlations and entropy. For example, we expect two
uncorrelated probability distributions to become less dis-
ordered when correlations are created (without changing
the marginals). Intuitively this is because knowing the
realization of one of them allows us (due to correlations) to
more easily guess the realization of the other. This is
captured by the well-known subadditivity of the entropy
[32] and by the relation

HðpABÞ ¼ HðpAÞ þHðpBÞ − IðpABÞ; ð4Þ

where IðpABÞ [implicitly defined by Eq. (4)] is the mutual
information between A and B, and pA, pB are the marginals
of the joint distribution pAB. IðpABÞ ≥ 0 [and IðpABÞ ¼ 0 if
and only if pAB ¼ pA ⊗ pB] implies HðpABÞ < HðpA ⊗
pBÞ whenever pAB is correlated. It seems that creating
correlations has an average work cost [33,34], because it
leads to a reduction of entropy.
However, as discussed above, for nonequilibrium proc-

esses we are forced to use many notions of entropy and
some of them are at odds with this intuition. In other words,
the creation of correlations can be associated to an entropy
production:

HαðpA ⊗ pBÞ < HαðpABÞ: ð5Þ

We call this property “anomalous α-entropy production.” If,
for some α ≠ 1, Eq. (5) holds for some distribution pAB,
this suggests that the creation of correlations can ease
the thermodynamic transformation. Indeed, we will see that
the creation of correlations between the catalysts used in the
process massively enlarges the set of accessible states and
allows one to extract much more high-quality work than
would have been possible otherwise.
We hinted at the fact that this is due to anomalous

α-entropy production. The nonuniqueness of entropy

carries physical consequences at odds with what is
expected in the regimes where one entropy provides a
complete description. The following result shows that what
we came across in the example of the previous section is a
general thermodynamical property.
A general result.—Let us denote by c1;…; cN the

marginals of an N-partite system c1;…;N . The general
thermodynamical property is the following: whenever we
are given two states that satisfy ΔF ≤ 0, we can find
auxiliary systems and correlations among them that make
the transformation thermodynamically possible.
Theorem 1.—Consider a system with Hamiltonian HS

and states ρ and σ block diagonal in energy. The three
following statements are equivalent.
1. There exists a thermodynamic process transforming ρ

into a state σϵ arbitrarily close to σ, by creating correlations
among auxiliary systems, but without changing their local
states:

ρ ⊗ c1 ⊗ % % % ⊗ cN → σϵ ⊗ c1;…;N: ð6Þ

One can always choose N ≤ 3 and trivial Hamiltonians for
the auxiliary systems.
2. There exists c1;…; cN and c1;…;N such that anomalous

α-entropy production ensures that all fFαg constraints are
satisfied in Eq. (6).
3. FðρÞ ≥ FðσÞ.
For a rigorous statement and proof, see Supplemental

Material Sec. D in [18]. The proof is based on a gener-
alization of the notion of catalytic majorization introduced
in Ref. [35]. Theorem 1 says that whenever a trans-
formation is possible in the thermodynamic limit (i.e.,
when ΔF ≤ 0, see Ref. [15]), then it is also possible by
processing individual systems in the single-shot regime;
what is needed is the creation of correlations among
auxiliary systems whose local state is left unchanged.
This is a surprising simplification of the thermodynamic
ordering, compared to the infinite constraints ΔFα ≤ 0
of Ref. [2], and provides a nonasymptotic, operational
meaning to the nonequilibrium free energy F.
It is useful to compare with recent results on work

extraction from single quantum systems. The free energy F
gives absolute limits on the average amount of energy that
can be extracted from single systems out of equilibrium
[36]. However for small, single systems, the work distri-
bution can be very broad. These fluctuations are a function
of the initial nonequilibrium state and can be of the same
order as the average extracted energy itself. Hence, argu-
ably, the energy extracted can be more heatlike than
worklike [4].
Since the ability to extract fluctuation-free work seems

crucial for any engine that is trying to operate reliably in a
nonequilibrium environment, deterministic work extraction
has been recently investigated in Refs. [1,2]. It has been
shown that from a system ρ incoherent in energy we can
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the existence of a family of free energies fFαg is not a
mathematical curiosity with no bearing on physics, but is
tightly linked to the fundamental properties of nonequili-
brium systems. This gives the multiple constraints of
nonequilibrium thermodynamics of Ref. [2], but also, as
we shall now see, a key, counterintuitive property of
correlations: they can generate entropy while being created.
A result of Ref. [2] is that the catalysts used in the

thermodynamic processes can always be chosen to have
trivialHamiltonians.Hence, the free energies of the catalysts
are given by Fα ¼ −kTHα, where Hα are information-
theoretic generalization of the Shannon entropy called
Rényi entropies (see Ref. [29] and Supplemental Material
Sec. B in [18]). One has H1 ≡H, the Shannon entropy.
Because we usually deal with “the” entropy H, we have

some hard-wired intuitions about the connection between
correlations and entropy. For example, we expect two
uncorrelated probability distributions to become less dis-
ordered when correlations are created (without changing
the marginals). Intuitively this is because knowing the
realization of one of them allows us (due to correlations) to
more easily guess the realization of the other. This is
captured by the well-known subadditivity of the entropy
[32] and by the relation

HðpABÞ ¼ HðpAÞ þHðpBÞ − IðpABÞ; ð4Þ

where IðpABÞ [implicitly defined by Eq. (4)] is the mutual
information between A and B, and pA, pB are the marginals
of the joint distribution pAB. IðpABÞ ≥ 0 [and IðpABÞ ¼ 0 if
and only if pAB ¼ pA ⊗ pB] implies HðpABÞ < HðpA ⊗
pBÞ whenever pAB is correlated. It seems that creating
correlations has an average work cost [33,34], because it
leads to a reduction of entropy.
However, as discussed above, for nonequilibrium proc-

esses we are forced to use many notions of entropy and
some of them are at odds with this intuition. In other words,
the creation of correlations can be associated to an entropy
production:

HαðpA ⊗ pBÞ < HαðpABÞ: ð5Þ

We call this property “anomalous α-entropy production.” If,
for some α ≠ 1, Eq. (5) holds for some distribution pAB,
this suggests that the creation of correlations can ease
the thermodynamic transformation. Indeed, we will see that
the creation of correlations between the catalysts used in the
process massively enlarges the set of accessible states and
allows one to extract much more high-quality work than
would have been possible otherwise.
We hinted at the fact that this is due to anomalous

α-entropy production. The nonuniqueness of entropy

carries physical consequences at odds with what is
expected in the regimes where one entropy provides a
complete description. The following result shows that what
we came across in the example of the previous section is a
general thermodynamical property.
A general result.—Let us denote by c1;…; cN the

marginals of an N-partite system c1;…;N . The general
thermodynamical property is the following: whenever we
are given two states that satisfy ΔF ≤ 0, we can find
auxiliary systems and correlations among them that make
the transformation thermodynamically possible.
Theorem 1.—Consider a system with Hamiltonian HS

and states ρ and σ block diagonal in energy. The three
following statements are equivalent.
1. There exists a thermodynamic process transforming ρ

into a state σϵ arbitrarily close to σ, by creating correlations
among auxiliary systems, but without changing their local
states:

ρ ⊗ c1 ⊗ % % % ⊗ cN → σϵ ⊗ c1;…;N: ð6Þ

One can always choose N ≤ 3 and trivial Hamiltonians for
the auxiliary systems.
2. There exists c1;…; cN and c1;…;N such that anomalous

α-entropy production ensures that all fFαg constraints are
satisfied in Eq. (6).
3. FðρÞ ≥ FðσÞ.
For a rigorous statement and proof, see Supplemental

Material Sec. D in [18]. The proof is based on a gener-
alization of the notion of catalytic majorization introduced
in Ref. [35]. Theorem 1 says that whenever a trans-
formation is possible in the thermodynamic limit (i.e.,
when ΔF ≤ 0, see Ref. [15]), then it is also possible by
processing individual systems in the single-shot regime;
what is needed is the creation of correlations among
auxiliary systems whose local state is left unchanged.
This is a surprising simplification of the thermodynamic
ordering, compared to the infinite constraints ΔFα ≤ 0
of Ref. [2], and provides a nonasymptotic, operational
meaning to the nonequilibrium free energy F.
It is useful to compare with recent results on work

extraction from single quantum systems. The free energy F
gives absolute limits on the average amount of energy that
can be extracted from single systems out of equilibrium
[36]. However for small, single systems, the work distri-
bution can be very broad. These fluctuations are a function
of the initial nonequilibrium state and can be of the same
order as the average extracted energy itself. Hence, argu-
ably, the energy extracted can be more heatlike than
worklike [4].
Since the ability to extract fluctuation-free work seems

crucial for any engine that is trying to operate reliably in a
nonequilibrium environment, deterministic work extraction
has been recently investigated in Refs. [1,2]. It has been
shown that from a system ρ incoherent in energy we can
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One can always choose N ≤ 3 and trivial Hamiltonians for
the auxiliary systems.
2. There exists c1;…; cN and c1;…;N such that anomalous

α-entropy production ensures that all fFαg constraints are
satisfied in Eq. (6).
3. FðρÞ ≥ FðσÞ.
For a rigorous statement and proof, see Supplemental

Material Sec. D in [18]. The proof is based on a gener-
alization of the notion of catalytic majorization introduced
in Ref. [35]. Theorem 1 says that whenever a trans-
formation is possible in the thermodynamic limit (i.e.,
when ΔF ≤ 0, see Ref. [15]), then it is also possible by
processing individual systems in the single-shot regime;
what is needed is the creation of correlations among
auxiliary systems whose local state is left unchanged.
This is a surprising simplification of the thermodynamic
ordering, compared to the infinite constraints ΔFα ≤ 0
of Ref. [2], and provides a nonasymptotic, operational
meaning to the nonequilibrium free energy F.
It is useful to compare with recent results on work

extraction from single quantum systems. The free energy F
gives absolute limits on the average amount of energy that
can be extracted from single systems out of equilibrium
[36]. However for small, single systems, the work distri-
bution can be very broad. These fluctuations are a function
of the initial nonequilibrium state and can be of the same
order as the average extracted energy itself. Hence, argu-
ably, the energy extracted can be more heatlike than
worklike [4].
Since the ability to extract fluctuation-free work seems

crucial for any engine that is trying to operate reliably in a
nonequilibrium environment, deterministic work extraction
has been recently investigated in Refs. [1,2]. It has been
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⇒ Building up correlations can ease thermodynamic transitions.
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In contrast, no fluctuation-free work extraction at all is possible

in the standard setting for full-rank quantum states ⇢.
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• Small-scale thermo: governed by ∞ many "second laws":
F↵(⇢) � F↵(�) 8↵ , ⇢ ! �.

• By building up correlations, these can be overcome.

, F (⇢) � F (�).

• Allows fluctuation-free extraction of work ΔF. 
"Fluctuations are dumped into the environment as correlations."

M. Lostaglio, MM, and M. Pastena, Phys. Rev. Lett. 115, 150402 (2015); arXiv:1409.3258.
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