Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

Departments of Applied Mathematics and Philosophy, UWO Perimeter Institute for Theoretical Physics, Waterloo

Joint work with Matteo Lostaglio and Michele Pastena

1. Background: the second laws

Severe constraints of small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Stochastic independence as a resource

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258.

3. Conclusions

1. Background: the second laws

Severe constraints of small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Stochastic independence as a resource

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258.

3. Conclusions

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Western

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Western

Work extraction: what is the largest possible W such that

by a catalytic thermal operation?

1. Background: the second laws

by a catalytic thermal operation?

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

by a catalytic thermal operation, if we allow a small probability $\varepsilon > 0$ of error?

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

by a catalytic thermal operation, if we allow a small probability $\varepsilon > 0$ of error?

Work cost: what is the smallest possible W such that

Stochastic independence as a resource in small-scale thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

where F_{α} is the Rényi α -free energy:

$$F_{\alpha}(p_S) = k_B T \left(\frac{\operatorname{sgn} \alpha}{\alpha - 1} \log \sum_{i} p_i^{\alpha} \exp\left(\frac{-E_i(1 - \alpha)}{k_B T}\right) \right) - k_B T \log Z,$$

and
$$F_1(p_S) = F(p_S) = \langle E \rangle - k_B T S(p_S)$$

is the "standard" free energy.

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1, 0)$ and degenerate Hamiltonian, $W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1,0)$ and degenerate Hamiltonian,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}!$

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

Western

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1,0)$ and degenerate Hamiltonian,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}!$ $F_0 \qquad F = F_1 \qquad F_{\infty}$ work

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

1. Background: the second laws

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1, 0)$ and degenerate Hamiltonian,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}!$ $F_0 \qquad F = F_1 \qquad F_{\infty}$ work

Fundamental thermodynamical irreversibility !

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

But: in the thermodynamic limit,
$$n \text{ independent copies of } p_S$$

$$\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$$

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles eat bath, temperature eat bath, temperature eat bath, temperature heat bath, temperature T 1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles ideal gas; $\frac{W_{\text{extr}}}{n} = \frac{W_{\text{cost}}}{n} = F(p_S) - F(\gamma_S).$ heat bath, temperature T1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

Western

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles ideal gas; $\frac{W_{\text{extr}}}{n} = \frac{W_{\text{cost}}}{n} = F(p_S) - F(\gamma_S).$ thermodynamical reversibility emerges ! heat bath, temperature T1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

Western

The second laws

Theorem: A transition $p_S \rightarrow p'_S$ is possible by catalytic thermal operations if and only if

 $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All *a*-free energies must go down!

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Theorem: A transition $p_S \rightarrow p'_S$ is possible by catalytic thermal operations if and only if

 $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All *a*-free energies must go down!

Consequence: some states are incomparable, i.e. neither $p_S \rightarrow p'_S$ nor $p'_S \rightarrow p_S$.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Theorem: A transition $p_S \rightarrow p'_S$ is possible by catalytic thermal operations if and only if

 $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All *a*-free energies must go down!

Consequence: some states are incomparable, i.e.

neither
$$p_S \to p'_S$$
 nor $p'_S \to p_S$.

Again, in the thermodynamic limit, it all collapses to $F(p_S) \ge F(p'_S)$.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

Theorem: A transition $p_S \rightarrow p'_S$ is possible by catalytic thermal operations if and only if

 $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All *a*-free energies must go down!

Consequence: some states are incomparable, i.e.

neither
$$p_S \to p'_S$$
 nor $p'_S \to p_S$.

Again, in the thermodynamic limit, it all collapses to $F(p_S) \ge F(p'_S)$. Constant $E \Rightarrow$ entropy cannot decrease.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

1. Background: the second laws

1. Background: the second laws

Severe constraints of small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Stochastic independence as a resource

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258.

3. Conclusions

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics

1. Background: the second laws

Severe constraints of small-scale thermodynamics

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Stochastic independence as a resource

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258.

3. Conclusions

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$

Equality iff $p_{AB} = p_A \otimes p_B$; correlation helps to extract work.

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$ Equality iff $p_{AB} = p_A \otimes p_B;$ correlation helps to extract work.

Suppose we want to transform $\rho \rightarrow \sigma$:

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$ Equality iff $p_{AB} = p_A \otimes p_B;$ correlation helps to extract work.

Suppose we want to transform $\rho \rightarrow \sigma$:

Thermod. limit: condition is $F(\rho) \ge F(\sigma).$

2. Independence as a resource

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$ Equality iff $p_{AB} = p_A \otimes p_B;$ correlation helps to extract work.

Suppose we want to transform $\rho \rightarrow \sigma$:

Thermod. limit: condition is $F(in) \ge F(out).$

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$ Equality iff $p_{AB} = p_A \otimes p_B;$ correlation helps to extract work.

Suppose we want to transform $\rho \rightarrow \sigma$:

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

Thermod. limit: condition is $F(in) \ge F(out).$

even more difficult!

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Standard free energy is superadditive:

 $F(p_{AB}) \ge F(p_A) + F(p_B).$ Equality iff $p_{AB} = p_A \otimes p_B;$ correlation helps to extract work.

Suppose we want to transform $\rho \rightarrow \sigma$:

Thermod. limit: condition is $F(in) \ge F(out).$

even more difficult!

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $F_{\alpha}(\mathrm{in}) \ge F_{\alpha}(\mathrm{out})$ $\forall \alpha > 0.$

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $F_{\alpha}(\mathrm{in}) \ge F_{\alpha}(\mathrm{out})$ $\forall \alpha > 0.$

But for $\alpha \neq 1$: $F_{\alpha}(p_{AB}) \not\geq F_{\alpha}(p_A) + F_{\alpha}(p_B)$.

 \Rightarrow Building up correlations can ease thermodynamic transitions.

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

(6)

Theorem 1.—Consider a system with Hamiltonian \mathcal{H}_S and states ρ and σ block diagonal in energy. The three following statements are equivalent.

1. There exists a thermodynamic process transforming ρ into a state σ_e arbitrarily close to σ , by creating correlations among auxiliary systems, but without changing their local states:

$$\rho \otimes c_1 \otimes \cdots \otimes c_N \to \sigma_{\epsilon} \otimes c_{1,\ldots,N}.$$

One can always choose $N \leq 3$ and trivial Hamiltonians for the auxiliary systems.

2. There exists c_1, \ldots, c_N and $c_{1,\ldots,N}$ such that anomalous α -entropy production ensures that all $\{F_{\alpha}\}$ constraints are satisfied in Eq. (6).

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

(6)

thermal bath

Theorem 1.—Consider a system with Hamiltonian \mathcal{H}_S and states ρ and σ block diagonal in energy. The three following statements are equivalent.

1. There exists a thermodynamic process transforming ρ into a state σ_{ϵ} arbitrarily close to σ , by creating correlations among auxiliary systems, but without changing their local states:

$$\rho \otimes c_1 \otimes \cdots \otimes c_N \to \sigma_{\epsilon} \otimes c_{1,\ldots,N}.$$

One can always choose $N \leq 3$ and trivial Hamiltonians for the auxiliary systems.

2. There exists $c_1, ..., c_N$ and $c_{1,...,N}$ such that anomalous α -entropy production ensures that all $\{r_{\alpha}\}$ constraints are satisfied in Eq. (6). 3. $F(\rho) \ge F(\sigma)$. M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

all
$$F_{\alpha}(\rho) \ge F_{\alpha}(\sigma)$$

replaced by

Stochastic independence as a resource in small-scale thermodynamics

(6)

Theorem 1.—Consider a system with Hamiltonian \mathcal{H}_S and states ρ and σ block diagonal in energy. The three following statements are equivalent.

1. There exists a thermodynamic process transforming ρ into a state σ_{ϵ} arbitrarily close to σ , by creating correlations among auxiliary systems, but without changing their local states:

$$\rho \otimes c_1 \otimes \cdots \otimes c_N \to \sigma_{\epsilon} \otimes c_{1,\ldots,N}$$

One can always choose $N \leq 3$ and trivial Hamiltonians for the auxiliary systems.

2. There exists c_1, \ldots, c_N and $c_{1,\ldots,N}$ such that anomalous α -entropy production ensures that all $\{F_{\alpha}\}$ constraints are satisfied in Eq. (6).

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $\sum_{i} H(c_i) - H(c_{1,...,N})$ can be made arbitrarily small.

Total correlation

Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

Western

(6)

thermal bath

Theorem 1.—Consider a system with Hamiltonian \mathcal{H}_S and states ρ and σ block diagonal in energy. The three following statements are equivalent.

1. There exists a thermodynamic process transforming ρ into a state σ_{ϵ} arbitrarily close to σ , by creating correlations among auxiliary systems, but without changing their local states:

$$\rho \otimes c_1 \otimes \cdots \otimes c_N \to \sigma_{\epsilon} \otimes c_{1,\ldots,N}.$$

One can always choose $N \leq 3$ and trivial Hamiltonians for the auxiliary systems.

2. There exists c_1, \ldots, c_N and $c_{1,\ldots,N}$ such that anomalous α -entropy production ensures that all $\{F_{\alpha}\}$ constraints are satisfied in Eq. (6).

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

Does nature "really do that"? Biology? Natural interactions?

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

Markus P. Müller

Western

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $F_{\alpha}(\mathrm{in}) \ge F_{\alpha}(\mathrm{out})$ $\forall \alpha > 0.$

But for $\alpha \neq 1$: $F_{\alpha}(p_{AB}) \not\geq F_{\alpha}(p_A) + F_{\alpha}(p_B)$.

 \Rightarrow Building up correlations can ease thermodynamic transitions.

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $F_{\alpha}(\mathrm{in}) \ge F_{\alpha}(\mathrm{out})$ $\forall \alpha > 0.$

But for $\alpha \neq 1$: $F_{\alpha}(p_{AB}) \not\geq F_{\alpha}(p_A) + F_{\alpha}(p_B)$.

\Rightarrow Building up correlations can ease thermodynamic transitions.

In fact, it allows fluctuation-free work extraction of $F(\rho) - F(\tau_{\text{thermal}})$ (as in the thermodynamic limit, but on single copies deterministically.)

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258

 $F_{\alpha}(\mathrm{in}) \geq F_{\alpha}(\mathrm{out})$ $\forall \alpha > 0.$

But for $\alpha \neq 1$: $F_{\alpha}(p_{AB}) \not\geq F_{\alpha}(p_A) + F_{\alpha}(p_B)$.

\Rightarrow Building up correlations can ease thermodynamic transitions.

In fact, it allows fluctuation-free work extraction of $F(\rho) - F(\tau_{\text{thermal}})$ (as in the thermodynamic limit, but on single copies deterministically.)

In contrast, no fluctuation-free work extraction at all is possible in the standard setting for full-rank quantum states ρ .

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics

- Small-scale thermo: governed by ∞ many "second laws": $F_{\alpha}(\rho) \ge F_{\alpha}(\sigma) \forall \alpha \iff \rho \rightarrow \sigma.$
- By building up correlations, these can be overcome.

• Allows fluctuation-free extraction of work ΔF . "Fluctuations are dumped into the environment as correlations."

M. Lostaglio, **MM**, and M. Pastena, Phys. Rev. Lett. **115**, 150402 (2015); arXiv:1409.3258.

Mathematical background:

MM and M. Pastena, *A generalization of majorization that characterizes Shannon entropy*, arXiv:1507.06900.

3. Conclusions

Stochastic independence as a resource in small-scale thermodynamics