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Work extraction and work cost

Work extraction: what is the largest possible W such that
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a small probability e>0 of error?

Work cost: what is the smallest possible W such that
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Work extraction and work cost

Theorem: The extractable work and work cost are

Wextr = kT (F()E(pS) - F(VS)) )
Weost = kT (Fcfo(ps) —F(’YS)) 7

where F, is the Rényi a-free energy:

—E.(1—
Fa(ps)—kBT(SgnolélOgZp?eXp< ( OO)) — kpTlog Z,

o — kBT

and Fi(ps) = F(ps) = (E) — kT S(ps)
Is the "standard” free energy.

M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale
thermodynamics, Nature Communications 4, 2059 (2013).
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Work extraction and work cost

Theorem: The extractable work and work cost are

Wextr = kT (Fg(pS) _ F(’YS)) ;
Weost = kBT (F (pS) F(’YS)) ;

Landauer's Principle: if ps = (1,0) and degenerate Hamiltonian,
Wextr — Wcost — kBTIHQ

However, in general W_ . < W_ !
% W()rk
FO F = F1 Foo
Fundamental thermodynamical irreversibility !
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Work extraction and work cost

Theorem: The extractable work and work cost are
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n independent copies of Ps

But: in the thermodynamic limit, /

. 1 3 n
lim —Fg(ps") = F(ps):

n—o00 M,

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics Markus P. Maller  Western



Work extraction and work cost

Theorem: The extractable work and work cost are

Wextr = kT (Fg(ps) - F(’VS)) )
Weost = kT (Fcfo(ps) - F(’YS)) ’

n independent copies of Pg

But: in the thermodynamic limit, /

: 1 3 n
lim —Fg(ps") = F(ps):

n—o00 M,

n independent
single
particles

heat bath, temperature T heat bath, temperature T heat bath, temperature T

heat bath, temperature T

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics Markus P. Miller  Western




Work extraction and work cost

n independent copies of Pg

But: in the thermodynamic limit, /

: 1 g n
lim —Fg(ps") = F(ps):

n—oo 1

n independent
single
particles

heat bath, temperature T heat bath, temperature T heat bath, temperature T heat bath, temperature T

heat bath, temperature T

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics Markus P. Muller  Western




Work extraction and work cost

n independent copies of Pg

But: in the thermodynamic limit, /

: 1 g n
lim —Fg(ps") = F(ps):

n—oo 1

n independent
single
particles

heat bath, temperature T heat bath, temperature T heat bath, temperature T heat bath, temperature T

iIdeal gas;

Wextr Wcost

S~ 2= F(ps) = F(3s),

heat bath, temperature T

1. Background: the second laws

Stochastic independence as a resource in small-scale thermodynamics Markus P. Muller  Western



Work extraction and work cost

n independent copies of Pg

But: in the thermodynamic limit, /

: 1 g n
lim —Fg(ps") = F(ps):
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n independent
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particles

heat bath, temperature T heat bath, temperature T heat bath, temperature T heat bath, temperature T

iIdeal gas;

Wextr Wcost

e 2 P(pg) - F(7s):

thermodynamical
reversibility

heat bath, temperature T emerges !
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The second laws

Theorem: A transition Ps — Ps is possible by catalytic
thermal operations if and only if

F.(ps) > F,(p) for all a > 0.

All a-free energies must go down!

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of
quantum thermodynamics, Proc. Natl. Acad. Sci. USA 112 (2015)
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Va > 0.

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics Markus P. Miller  Western



Stochastic independence: useful in small-scale thermo

A AT
A

But for  # 1 :

M. Lostaglio, MM, and M.
thermal bath Pastena, Phys. Rev. Lett. 115,
150402 (2015); arXiv:1409.3258

F,(in) > F,(out)
Va > 0.

Fo(paB) 2 Fa(pa) + Fu(pB)-

= Building up correlations can ease thermodynamic transitions.

2. Independence as a resource

Stochastic independence as a resource in small-scale thermodynamics Markus P. Miller  Western



Stochastic independence: useful in small-scale thermo

Theorem I.—Consider a system with Hamiltonian Hg
and states p and o block diagonal in energy. The three
following statements are equivalent.

1. There exists a thermodynamic process transforming p
into a state o, arbitrarily close to o, by creating correlations
among auxiliary systems, but without changing their local
states:

pPRCI V- Qcy—=>0.QcCp. N (6)

One can always choose N < 3 and trivial Hamiltonians for
the auxiliary systems.

2. There exists ¢y, ..., ¢y and ¢y such that anomalous
a-entropy production ensures that all {F,} constraints are
satisfied in Eq. (6).

3. F(p) > F(o). [ o]

[\

A A

M. Lostaglio, MM, and M.

Pastena, Phys. Rev. Lett. 115,
150402 (2015); arXiv:1409.3258
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Total correlation

> H(ei) — H

Cl,...,N)

)
can be made
arbitrarily small.
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Does nature "really
do that"?

Biology?

Natural interactions?

thermal bath
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Stochastic independence: useful in small-scale thermo

M. Lostaglio, MM, and M.
p thermal bath o Pastena, Phys. Rev. Lett. 115,
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A AT

But for o # 1: Fo(paB) 2 Fo(pa) + Fa(pB)-

= Building up correlations can ease thermodynamic transitions.

F,(in) > F,(out)
Va > 0.

In fact, it allows fluctuation-free work extraction of F(p) — F(Tthermal)
(as in the thermodynamic limit, but on single copies deterministically.)

In contrast, no fluctuation-free work extraction at all is possible
in the standard setting for full-rank quantum states p-
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3. Conclusions

e Small-scale thermo: governed by « many "second laws":
Fo(p) > Fy(o)Va < p—o.

¢ By building up correlations, these can be overcome.

p

A AT D%ﬂ —

¢ Allows fluctuation-free extraction of work AF.
"Fluctuations are dumped into the environment as correlations.”

M. Lostaglio, MM, and M. Pastena, Phys. Rev. Lett. 115, 150402 (2015); arXiv:1409.3258.

Mathematical background: MM and M. Pastena, A generalization of majorization that
characterizes Shannon entropy, arXiv:1507.06900.
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