Thermalization and canonical typicality in translation-invariant quantum lattice systems

Markus P. Müller Institute für Theoretische Physik, Universität Heidelberg

joint work with Emily Adlam, Lluís Masanes, and Nathan Wiebe.

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

I.The setup Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

Markus P. Müller HGSFP

I.The setup

The full quantum system is a V-dim. lattice $\Lambda_n \subset \mathbb{Z}^{\nu}$.

I.The setup

The full quantum system is a (large) V-dim. lattice $\Lambda_n \subset \mathbb{Z}^{\nu}$.

For example
$$\Lambda_n = [-n, n]^{\nu}$$
.

I.The setup

The full quantum system is a (large) v-dim. lattice $\Lambda_n \subset \mathbb{Z}^{\nu}$.

For example
$$\Lambda_n = [-n, n]^{\nu}$$
.

I.The setup

Thermalization and canonical typicality (arXiv:1312.7420)

The full quantum system is a (large) V-dim. lattice $\Lambda_n \subset \mathbb{Z}^{\nu}$.

For example
$$\Lambda_n = [-n, n]^{\nu}$$
.

Some Hamiltonian H_{Λ_n} on Λ_n , for example

$$H_{\Lambda_n} = -J \sum_{i=1}^n \left(X_i X_{i+1} + Y_i Y_{i+1} \right) - h \sum_{i=1}^n Z_i.$$

Finite-range, translation-invariant; otherwise arbitrary.

I.The setup

The full quantum system is a (large) V-dim. lattice $\Lambda_n \subset \mathbb{Z}^{\nu}$.

For example
$$\Lambda_n = [-n, n]^{\nu}$$
.

Some Hamiltonian H_{Λ_n} on Λ_n , for example

$$H_{\Lambda_n}^p = -J\sum_{i=1}^n \left(X_i X_{i+1} + Y_i Y_{i+1} \right) - h\sum_{i=1}^n Z_i -JX_n X_1 - JY_n Y_1$$

Finite-range, translation-invariant; otherwise arbitrary.

In this talk: periodic boundary conditions.

I.The setup

I.The setup

Thermalization and canonical typicality (arXiv:1312.7420)

 Goldstein et al.; Popescu et al.; Reimann; Short et al., ...: Subsystems of closed quantum systems equilibrate; but equilibrium state is not in general thermal (Gibbs)!

I.The setup

 $\|H_{\rm int}\| \ll k_B T$

- Goldstein et al.; Popescu et al.; Reimann; Short et al., ...: Subsystems of closed quantum systems equilibrate; but equilibrium state is not in general thermal (Gibbs)!
- Riera, Gogolin, Eisert (2012): Thermality is ensured under conditions on the bath's spectrum, for very weak interaction.

I.The setup

- Goldstein et al.; Popescu et al.; Reimann; Short et al., ...: Subsystems of closed quantum systems equilibrate; but equilibrium state is not in general thermal (Gibbs)!
- Riera, Gogolin, Eisert (2012): Thermality is ensured under conditions on the bath's spectrum, for very weak interaction.
- We show: T.I. + F.R. \Rightarrow thermality, also for strong interaction.

I.The setup

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

I.The setup

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

2. Equivalence of ensemb.		
Thermalization and canonical typicality (arXiv:13	2.7420) Markus P. Müller	SF

Equivalence of ensembles:

Microcanonical ensemble yields the same predictions as the canonical ensemble.

2. Equivalence of ensemb.

Thermalization and canonical typicality (arXiv:1312.7420)

Equivalence of ensembles:

Microcanonical ensemble yields the same predictions as the canonical ensemble.

We show a bit more:

Every sequence of states with asymptotically minimal free energy density is equivalent to the canonical ensemble.

2. Equivalence of ensemb.

Equivalence of ensembles:

Microcanonical ensemble yields the same predictions as the canonical ensemble.

We show a bit more:

Every sequence of states with asymptotically minimal free energy density is equivalent to the canonical ensemble.

Proof goes via infinite-lattice Gibbs states.

2. Equivalence of ensemb.

Thermalization and canonical typicality (arXiv:1312.7420)

Definition: (cf. Barry Simon, Stat. Mech. of Lattice Gases) A state ω on the infinite lattice is a family of density matrices $(\omega_{\Lambda})_{\Lambda \subset \mathbb{Z}^{\nu} \text{finite}}$

satisfying $\Lambda' \subset \Lambda \Rightarrow \omega_{\Lambda'} = \operatorname{Tr}_{\Lambda \setminus \Lambda'} \omega_{\Lambda}$.

2. Equivalence of ensemb.

Definition: (cf. Barry Simon, Stat. Mech. of Lattice Gases) A state ω on the infinite lattice is a family of density matrices $(\omega_{\Lambda})_{\Lambda \subset \mathbb{Z}^{\nu} \text{finite}}$ satisfying $\Lambda' \subset \Lambda \implies \omega_{\Lambda'} = \text{Tr}_{\Lambda \setminus \Lambda'} \omega_{\Lambda}$.

Local Gibbs states $\rho_{\Lambda_n}(\beta) := \exp(-\beta H_{\Lambda_n}^p)/Z$ minimize the free energy functional

 $F(\rho) := \operatorname{tr}(\rho H^p_{\Lambda_n}) - S(\rho)/\beta \ (= U - TS).$

2. Equivalence of ensemb.

Definition: (cf. Barry Simon, Stat. Mech. of Lattice Gases) A state ω on the infinite lattice is a family of density matrices $(\omega_{\Lambda})_{\Lambda \subset \mathbb{Z}^{\nu} \text{finite}}$

satisfying $\Lambda' \subset \Lambda \implies \omega_{\Lambda'} = \operatorname{Tr}_{\Lambda \setminus \Lambda'} \omega_{\Lambda}$.

Local Gibbs states $\rho_{\Lambda_n}(\beta) := \exp(-\beta H_{\Lambda_n}^p)/Z$ minimize the free energy functional

$$F(\rho) := \operatorname{tr}(\rho H^p_{\Lambda_n}) - S(\rho)/\beta \ (= U - TS).$$

Use analogous definition on infinite lattice via densities

$$u(\omega) := \lim_{n \to \infty} \frac{1}{|\Lambda_n|} \operatorname{tr}(\omega_{\Lambda_n} H^p_{\Lambda_n}),$$
$$s(\omega) := \lim_{n \to \infty} \frac{1}{|\Lambda_n|} S(\omega_{\Lambda_n}).$$

2. Equivalence of ensemb.

Thermalization and canonical typicality (arXiv:1312.7420)

Definition: A translation-invariant state ω on the infinite lattice is a Gibbs state at inv.temp. β if it minimizes the F.E. density, i.e. $u(\omega) - s(\omega)/\beta \leq f_{\rm th}(\beta),$

where $f_{\rm th}(\beta)$ is the limiting F.E. density of local Gibbs states.

2. Equivalence of ensemb.

Definition: A translation-invariant state ω on the infinite lattice is a Gibbs state at inv.temp. β if it minimizes the F.E. density, i.e. $u(\omega) - s(\omega)/\beta \leq f_{\rm th}(\beta),$

where $f_{\rm th}(\beta)$ is the limiting F.E. density of local Gibbs states.

- If $\nu \geq 2$ then there can be
- more than one Gibbs state
 - \Rightarrow several phases / phase transition!

2. Equivalence of ensemb.

Thermalization and canonical typicality (arXiv:1312.7420)

Definition: A translation-invariant state ω on the infinite lattice is a Gibbs state at inv.temp. β if it minimizes the F.E. density, i.e. $u(\omega) - s(\omega)/\beta \leq f_{\rm th}(\beta),$

where $f_{\rm th}(\beta)$ is the limiting F.E. density of local Gibbs states.

- If $\nu \geq 2$ then there can be
- More than one Gibbs state ⇒ several phases / phase transition!
- Now show:

Every sequence of states with asymptotically minimal free energy density is equivalent to the canonical ensemble.

M

2. Equivalence of ensemb.

2. Equivalence of ensemb.

Theorem 2. Suppose that $(\tau_n)_{n \in \mathbb{N}}$ is any sequence of Λ_n *translation-invariant states on* Λ_n *, and* $\beta > 0$ *such that there* is a unique phase around inverse temperature β . If

$$\limsup_{n \to \infty} \frac{1}{|\Lambda_n|} \left(\operatorname{tr}(\tau_n H_{\Lambda_n}^{BC}) - S(\tau_n) / \beta \right) \le f_{\mathrm{th}}(\beta) \qquad (2)$$

for some choice of boundary conditions BC, then

$$\lim_{n \to \infty} \left\| \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \tau_n - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta_n H_{\Lambda_n}^p)}{Z_n} \right\|_1 = 0, \quad (3)$$

where we may set β_n either equal to the fixed value β , or equal to the solution of $\operatorname{tr}(H^p_{\Lambda_n}\rho^p_{\Lambda_n}(\beta_n))/|\Lambda_n| = u(\beta).$

Markus P. Müller HGSFP

2. Equivalence of ensemb.

Theorem 2. Suppose that $(\tau_n)_{n \in \mathbb{N}}$ is any sequence of Λ_n -translation-invariant states on Λ_n , and $\beta > 0$ such that there is a unique phase around inverse temperature β . If

$$\limsup_{n \to \infty} \frac{1}{|\Lambda_n|} \left(\operatorname{tr}(\tau_n H_{\Lambda_n}^{BC}) - S(\tau_n) / \beta \right) \le f_{\mathrm{th}}(\beta) \qquad (2)$$

for some choice of boundary conditions BC, then

$$\lim_{n \to \infty} \left\| \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \tau_n - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta_n H_{\Lambda_n}^p)}{Z_n} \right\|_1 = 0, \quad (3)$$

where we may set β_n either equal to the fixed value β , or equal to the solution of $\operatorname{tr}(H^p_{\Lambda_n}\rho^p_{\Lambda_n}(\beta_n))/|\Lambda_n| = u(\beta)$.

Example: $\tau_n = \text{mixture on}$ span $\{|E\rangle \mid u - \delta \leq E/|\Lambda_n| \leq u\}$ Microcanonical ensemble!

2. Equivalence of ensemb.

Theorem 2. Suppose that $(\tau_n)_{n \in \mathbb{N}}$ is any sequence of Λ_n -translation-invariant states on Λ_n , and $\beta > 0$ such that there is a unique phase around inverse temperature β . If

$$\limsup_{n \to \infty} \frac{1}{|\Lambda_n|} \left(\operatorname{tr}(\tau_n H_{\Lambda_n}^{BC}) - S(\tau_n) / \beta \right) \le f_{\mathrm{th}}(\beta)$$
 (2)

for some choice of boundary conditions BC, then

r

$$\lim_{n \to \infty} \left\| \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \tau_n - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta_n H_{\Lambda_n}^p)}{Z_n} \right\|_1 = 0, \quad (3)$$

where we may set β_n either equal to the fixed value β , or equal to the solution of $\operatorname{tr}(H^p_{\Lambda_n}\rho^p_{\Lambda_n}(\beta_n))/|\Lambda_n| = u(\beta)$.

Example: $\tau_n = \text{mixture on}$ span { $|E\rangle \mid u - \delta \leq E/|\Lambda_n| \leq u$ } Microcanonical ensemble!

Proof: they both converge locally to the unique infinitevolume Gibbs state.

2. Equivalence of ensemb.

Thermalization and canonical typicality (arXiv:1312.7420)

For local qubits, without interaction, $\delta = 0$ (de Finetti Theorem):

$$\left|\operatorname{Tr}_{\Lambda_n \setminus \Lambda} \tau_n - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta H_{\Lambda_n}^p)}{Z}\right\|_1 \le \frac{4|\Lambda|}{|\Lambda_n|}$$

Similar analytic bound for $\delta > 0$, and numerically with interaction.

2. Equivalence of ensemb.

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

2. Equivalence of ensemb.				
Thermalization and canonical typicality (arXiv:1312.7420)		Markus P. Müller	НG	SF

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

3. Canonical typicality

3. Canonical typicality

Thermalization and canonical typicality (arXiv:1312.7420)

Draw a pure state $|\psi\rangle$ at random from the microcanonical subspace $\operatorname{span} \{|E\rangle \mid u - \delta \leq E/|\Lambda_n| \leq u\}$

If there is a unique phase around $\beta(u)$ then:

3. Canonical typicality

Thermalization and canonical typicality (arXiv:1312.7420)

Draw a pure state $|\psi\rangle$ at random from the microcanonical subspace

span {
$$|E\rangle \mid u - \delta \leq E/|\Lambda_n| \leq u$$
 }

If there is a unique phase around $\beta(u)$ then:

Theorem 1. For any $\varepsilon \geq 0$, the probability p that a state $|\psi\rangle \in T_n^p$ sampled according to the unitarily invariant measure satisfies

$$\left\|\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |\psi\rangle \langle \psi| - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta H_{\Lambda_n}^p)}{Z}\right\|_1 \ge \varepsilon + \Delta_{n,\Lambda}$$

is doubly-exponentially small in the lattice size $|\Lambda_n|$; that is, $p \leq \exp(-\varepsilon^2 \exp(|\Lambda_n|s + o(|\Lambda_n|)))$, where $s = s(\omega_\beta)$ is the entropy density of the corresponding Gibbs state, and $\Delta_{n,\Lambda}$ is a sequence of positive real numbers with $\lim_{n\to\infty} \Delta_{n,\Lambda} = 0$ for every fixed Λ . Here, β can either be set equal to $\beta(u)$ as defined above, or equal to the solution of $\operatorname{tr}(H^p_{\Lambda_n}\rho^p_{\Lambda_n}(\beta))/|\Lambda_n| = u$ (which depends on n).

Thermalization and canonical typicality (arXiv:1312.7420)

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

3. Canonical typicality

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

4. Dynam. thermalization

Full lattice Λ_n evolves unitarily: $|\psi(t)\rangle = \exp(-itH^p_{\Lambda_n})|\psi(0)\rangle$

4. Dynam. thermalization

Thermalization and canonical typicality (arXiv:1312.7420)

Full lattice Λ_n evolves unitarily: $|\psi(t)\rangle = \exp(-itH^p_{\Lambda_n})|\psi(0)\rangle$

We show: if Shannon entropy of initial occupation numbers

$$p_n = |\langle E_n | \psi(0) \rangle|^2$$

is close to maximal, in first order in $|\Lambda_n|$, then $\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |\psi(t)\rangle \langle \psi(t)| \approx \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta H_{\Lambda_n}^p)}{Z}$ for most times *t*.

Thermalization and canonical typicality (arXiv:1312.7420)

4. Dynam. thermalization

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis

A weak version that holds for all models.

4. Dynam. thermalization

I.The setup

Quantum lattice systems with interaction.

5. Eigenstate thermalization hypothesis A weak version that holds for all models.

Thermalization and canonical typicality (arXiv:1312.7420)

ETH (Deutsch '91, Srednicki '94): Results could be significantly sharpened if

random/typical $|\psi\rangle \longrightarrow$ energy eigenstate $|E\rangle$

Thermalization and canonical typicality (arXiv:1312.7420)

Markus P. Müller HGSFP

5. Eigenstate thermaliz.

ETH (Deutsch '91, Srednicki '94): Results could be significantly sharpened if

random/typical $|\psi\rangle \longrightarrow$ energy eigenstate $|E\rangle$

Natural conjecture: If
$$|E\rangle$$
 is an
energy eigenstate on Λ_n , then
 $\mathrm{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \approx \mathrm{Tr}_{\Lambda_{\mathrm{shell}}} \frac{\exp(-\beta H_{\Lambda'})}{Z}$.

5. Eigenstate thermaliz.

ETH (Deutsch '91, Srednicki '94): Results could be significantly sharpened if

random/typical $|\psi\rangle \longrightarrow$ energy eigenstate $|E\rangle$

Natural conjecture: If
$$|E\rangle$$
 is an
energy eigenstate on Λ_n , then
 $\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \approx \operatorname{Tr}_{\Lambda_{\mathrm{shell}}} \frac{\exp(-\beta H_{\Lambda'})}{Z}$.

Theorem 4. There is a state ω_E on Λ' such that

$$\left\| \operatorname{Tr}_{\Lambda_{\text{shell}}}(\omega_{E}) - \operatorname{Tr}_{\Lambda_{n} \setminus \Lambda} |E\rangle \langle E| \right\|_{1} \leq \kappa \cdot e^{-c(l-r)/2}$$

which is weakly diagonal in the eigenbasis $\{|e\rangle\}$ of $H_{\Lambda'}$, i.e.

$$|\langle e_1 | \omega_E | e_2 \rangle| \le e^{-(l-r)(e_1 - e_2)^2 / (8cv^2)},$$

where $\kappa, c, v > 0$ are constants, and r the range of interaction.

5. Eigenstate thermaliz.

Markus P. Müller HGS

Conclusions

The Gibbs state emerges naturally in translation-invariant quantum lattice systems.

Conclusions

The Gibbs state emerges naturally in translation-invariant quantum lattice systems.

Open problem: Can we prove a strong version of the ETH? Integrability?

arXiv:1312.7420

