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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,
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The full quantum system is a (large) ν-dim. lattice Λn ⊂ Zν .

For example Λn = [−n, n]ν .Small sub-
system Λ

Some Hamiltonian         on      , for exampleHΛn Λn

HΛn = −J

n�

i=1

�
XiXi+1 + YiYi+1

�
− h

n�

i=1

Zi.

Finite-range, translation-invariant; otherwise arbitrary.
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The full quantum system is a (large) ν-dim. lattice Λn ⊂ Zν .

For example Λn = [−n, n]ν .Small sub-
system Λ

Some Hamiltonian         on      , for exampleHΛn Λn

Finite-range, translation-invariant; otherwise arbitrary.

In this talk: periodic boundary conditions.

H
p
Λn

= −J

n�

i=1

�
XiXi+1 + YiYi+1

�
− h

n�

i=1

Zi−JXnX1 − JYnY1.
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Why translation-invariant lattice systems? 

• Goldstein et al.; Popescu et al.; Reimann; Short et al., ...:
   Subsystems of closed quantum systems equilibrate;
   but equilibrium state is not in general thermal (Gibbs)!

• Riera, Gogolin, Eisert (2012): Thermality is ensured under
   conditions on the bath's spectrum, for very weak interaction.

• We show: T.I. + F.R. ⇒ thermality, also for strong interaction.
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Equivalence of ensembles:
Microcanonical ensemble yields the same predictions as
the canonical ensemble.

We show a bit more:
Every sequence of states with asymptotically minimal free
energy density is equivalent to the canonical ensemble.

Proof goes via infinite-lattice Gibbs states.

ρ = ???
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Definition: (cf. Barry Simon, Stat. Mech. of Lattice Gases)
A state ω on the infinite lattice is a family of density matrices

(ωΛ)Λ⊂Zνfinite

satisfying Λ� ⊂ Λ ⇒ ωΛ� = TrΛ\Λ�ωΛ.

Local Gibbs states
minimize the free energy functional

ρΛn(β) := exp(−βHp
Λn

)/Z

F (ρ) := tr(ρHp
Λn

)− S(ρ)/β (= U − TS).

Use analogous definition on infinite lattice via densities

u(ω) := lim
n→∞

1

|Λn|
tr(ωΛnH

p
Λn

),

s(ω) := lim
n→∞

1

|Λn|
S(ωΛn).
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where             is the limiting F.E. density of local Gibbs states.fth(β)

u(ω)− s(ω)/β ≤ fth(β),
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zwar umso stärker, je stärker diese Wechselwirkung ist. Damit sind ferromagneti-
sche Wechselwirkungen besser verstanden als solche, bei denen J(Λ) auch kleiner
als Null sein kann, also Kräfte in entgegengesetzte Richtungen wirken können.

Wir können die GKS-Ungleichungen dazu benutzen, um etwas über die Ab-
hängigkeit gewisser Erwartungswerte von Parametern zu erfahren.

8.10 Beispiel Die mittlere Magnetisierung M = 1
N

∑N
i=1 〈si〉 eines ferromagne-

tischen Systems von N Spins nimmt monoton mit der Temperatur ab.

Bew.: Übung

Wir können aber auch verschiedene Modelle der Statistischen Mechanik mitein-
ander vergleichen.

8.11 Beispiel Es ist bekannt, dass das ferromagnetische Isingmodell auf Z2 mit

h

M

Abbildung 8.6: Mittlere Magnetisierung M des zweidimensionalen Isingmodells
als Funktion des äußeren Magnetfeldes h

äußerem Magnetfeld h qualitativ die in Abb. 8.6 dargestellte Abhängigkeit des
Erwartungswertes

m := lim
Λ→∞

1

|Λ|

〈

∑

i∈Λ

si

〉

der mittleren Magnetisierung zeigt, wenn die Temperatur T < Tcr ist.
Addieren wir nun ferromagnetische Wechselwirkungen zwischen übernächsten

Nachbarn, d. h.

J(Λ) =










h , Λ = {i}
J1 , Λ = {i, k}, ‖i− k‖2 = 1
J2 , Λ = {i, k}, ‖i− k‖2 =

√
2

0 sonst

mit J2 > 0, so vergrößert sich damit die Magnetisierung für positive h (aus
Symmetriegründen gilt m(−h) = −m(h)):

106

! If            then there can be
more than one Gibbs state
⇒ several phases / phase transition!

ν ≥ 2
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〉
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Addieren wir nun ferromagnetische Wechselwirkungen zwischen übernächsten
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h , Λ = {i}
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√
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106

! If            then there can be
more than one Gibbs state
⇒ several phases / phase transition!

ν ≥ 2

Now show:
Every sequence of states with asymptotically minimal free
energy density is equivalent to the canonical ensemble.
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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

τn

TrΛn\Λτn ≈ TrΛn\Λ
exp(−βHp

Λn
)

Z
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prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

τn

TrΛn\Λτn ≈ TrΛn\Λ
exp(−βHp

Λn
)

Z

3

that is only exponentially small in the lattice size: p ≤
(d3|Λ|

/ε2) exp(−|Λn|s+ o(|Λn|)).
To prove Theorem 1, we invoke the results of [4],

which tell us that TrΛn\Λ |ψ��ψ| is with high probabil-

ity close to TrΛn\Λ τn, where τn is the uniformly mixed

state on T
p
n . We obtain Theorem 1 directly, with all

constants, if we set ∆n,Λ up to corrections of order

exp
�
− 1

2 |Λn|s+ o(|Λn|)
�

equal to

δn,Λ :=

����TrΛn\Λ τn − TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

. (1)

It remains to prove that δn,Λ → 0 as n → ∞. However,

τn is nothing but the microcanonical ensemble, and the

statement left to prove is that its predictions on small

subsystems Λ are equivalent to those of the canonical

ensemble in the thermodynamic limit.

Equivalence of ensembles. To state our result, note that

we can regard Λn as a torus, by identifying µi + 1 in the

interval [λi, µi] with λi; this way, we can define periodic

translations of Λn as those of the resulting torus. A state

τn on Λn will be called Λn-translation-invariant if it is

invariant with respect to all periodic translations of Λn.

Theorem 2. Suppose that (τn)n∈N is any sequence of Λn-
translation-invariant states on Λn, and β > 0 such that there
is a unique phase around inverse temperature β. If

lim sup
n→∞

1

|Λn|
�
tr(τnH

BC
Λn

)− S(τn)/β
�
≤ fth(β) (2)

for some choice of boundary conditions BC, then

lim
n→∞

����TrΛn\Λτn − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (3)

where we may set βn either equal to the fixed value β, or equal
to the solution of tr(Hp

Λn
ρpΛn

(βn))/|Λn| = u(β).

If τn is the microcanonical ensemble, i.e. maximal mix-

ture on T
p
n , then tr(τnH

p
Λn

)/|Λn| ≤ u by construction,

and S(τn) = log dim(T p
n) = s|Λn| + o(|Λn|) accord-

ing to [12, Thm. IV.2.14]. Since u − s/β = fth(β), (2)

holds, which shows equivalence to the canonical ensem-

ble, limn→∞ δn,Λ = 0, and establishes Theorem 1.

To prove Theorem 2, we first show that (τn)n∈N has

at least one limit point ω as a state on the infinite lat-

tice. Since every τn is Λn-translation-invariant, ω is

translation-invariant, and (2) implies that f(ω) = fth(β).
Thus, ω is the unique Gibbs state ωβ , and so

lim
n→∞

TrΛn\Λ τn = (ωβ)Λ. (4)

Furthermore, (2) remains valid, and the calculation can

be repeated, if τn is replaced by ρpΛn
(βn), because every

ρn := ρpΛn
(βn) minimizes the free energy locally, so

tr(ρnH
p
Λn

)− S(ρn)/β ≤ tr((ωβ)ΛnH
p
Λn

)− S((ωβ)Λn)/β

and (2) holds for (ωβ)Λn . We obtain (4) by replacing τn
with ρn, proving the theorem.

This proof strategy has been pioneered by

Lima [10, 11]; however, our result is more general

in several respects. In particular, we consider a more

general set of possible interactions, and allow βn �= β to

be determined from the finite region Λn.

Dynamical thermalization. It has been shown in [6–8]

that subsystems of closed quantum systems equilibrate,

subject to some conditions on the initial state and spec-

trum. In general, the equilibrium state depends on the

initial state, and is not thermal unless additional con-

ditions are met [9]. However, for translation-invariant

systems, we can say more. Consider any initial state

ρ(n)0 on Λn, pure or mixed. The index n indicates that

the state should be a simple function of lattice size n (for

example, “all spins up”), and we assume that it is cho-

sen in a way such that the energy Un := tr(ρ(n)0 H
p
Λn

)
converges to some well-defined thermal energy density

u := limn→∞ Un/|Λn|.
The state evolves unitarily under the Hamiltonian

H
p
Λn

, i.e. ρ(n)(t) = exp(−itH
p
Λn

)ρ(n)0 exp(itHp
Λn

). We

can define the occupation entropy S̄(ρ(n)0 ) as follows.

From the spectral decomposition H
p
Λn

=
�

i Eiπi, com-

pute the occupation numbers λi := tr(ρ(n)0 πi), and set

S̄(ρ(n)0 ) := −
�

i λi log λi. Similarly, there is an in-

verse temperature βn corresponding to ρ(n)0 , defined by

tr(Hp
Λn

ρpΛn
(βn)) = Un. Denote the time average by �·�,

i.e. ρ(n)avg := �ρ(n)(t)� := limT→∞(1/T )
� T
0 ρ(n)(t)dt. Then:

Theorem 3. If there is a unique phase around inverse tem-
perature β := limn→∞ βn, if the (possibly pure) initial state
has close to maximal occupation entropy, in the sense that

S̄(ρ(n)0 ) ≥ S(ρBC
Λn

(βn))− o(|Λn|), (5)

and if each H
p
Λn

is non-degenerate, then unitary time evolu-
tion thermalizes the subsystem Λ for most times t:

����TrΛn\Λ ρ(n)(t)− TrΛn\Λ ρ(n)avg

���
1

�
≤ d

|Λ| ×

×
�

DG exp

�
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

�
, and (6)

lim
n→∞

����TrΛn\Λ ρ(n)avg − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (7)

where DG is the gap degeneracy [8] of Hp
Λn

, defined by DG =
maxE |{(i, j) | i �= j, Ei − Ej = E}|, where Ei denotes the
distinct eigenvalues of Hp

Λn
.

In the appendix, we generalize this result to the case

of arbitrary boundary conditions and degenerate H
BC
Λn

.

Instead of (7) which expresses equivalence of ρ(n)avg and

ρpΛn
(βn) for local observables A on Λ, the generalized

version shows equivalence of these global states on a
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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

τn

TrΛn\Λτn ≈ TrΛn\Λ
exp(−βHp

Λn
)

Z

3

that is only exponentially small in the lattice size: p ≤
(d3|Λ|

/ε2) exp(−|Λn|s+ o(|Λn|)).
To prove Theorem 1, we invoke the results of [4],

which tell us that TrΛn\Λ |ψ��ψ| is with high probabil-

ity close to TrΛn\Λ τn, where τn is the uniformly mixed

state on T
p
n . We obtain Theorem 1 directly, with all

constants, if we set ∆n,Λ up to corrections of order

exp
�
− 1

2 |Λn|s+ o(|Λn|)
�

equal to

δn,Λ :=

����TrΛn\Λ τn − TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

. (1)

It remains to prove that δn,Λ → 0 as n → ∞. However,

τn is nothing but the microcanonical ensemble, and the

statement left to prove is that its predictions on small

subsystems Λ are equivalent to those of the canonical

ensemble in the thermodynamic limit.

Equivalence of ensembles. To state our result, note that

we can regard Λn as a torus, by identifying µi + 1 in the

interval [λi, µi] with λi; this way, we can define periodic

translations of Λn as those of the resulting torus. A state

τn on Λn will be called Λn-translation-invariant if it is

invariant with respect to all periodic translations of Λn.

Theorem 2. Suppose that (τn)n∈N is any sequence of Λn-
translation-invariant states on Λn, and β > 0 such that there
is a unique phase around inverse temperature β. If

lim sup
n→∞

1

|Λn|
�
tr(τnH

BC
Λn

)− S(τn)/β
�
≤ fth(β) (2)

for some choice of boundary conditions BC, then

lim
n→∞

����TrΛn\Λτn − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (3)

where we may set βn either equal to the fixed value β, or equal
to the solution of tr(Hp

Λn
ρpΛn

(βn))/|Λn| = u(β).

If τn is the microcanonical ensemble, i.e. maximal mix-

ture on T
p
n , then tr(τnH

p
Λn

)/|Λn| ≤ u by construction,

and S(τn) = log dim(T p
n) = s|Λn| + o(|Λn|) accord-

ing to [12, Thm. IV.2.14]. Since u − s/β = fth(β), (2)

holds, which shows equivalence to the canonical ensem-

ble, limn→∞ δn,Λ = 0, and establishes Theorem 1.

To prove Theorem 2, we first show that (τn)n∈N has

at least one limit point ω as a state on the infinite lat-

tice. Since every τn is Λn-translation-invariant, ω is

translation-invariant, and (2) implies that f(ω) = fth(β).
Thus, ω is the unique Gibbs state ωβ , and so

lim
n→∞

TrΛn\Λ τn = (ωβ)Λ. (4)

Furthermore, (2) remains valid, and the calculation can

be repeated, if τn is replaced by ρpΛn
(βn), because every

ρn := ρpΛn
(βn) minimizes the free energy locally, so

tr(ρnH
p
Λn

)− S(ρn)/β ≤ tr((ωβ)ΛnH
p
Λn

)− S((ωβ)Λn)/β

and (2) holds for (ωβ)Λn . We obtain (4) by replacing τn
with ρn, proving the theorem.

This proof strategy has been pioneered by

Lima [10, 11]; however, our result is more general

in several respects. In particular, we consider a more

general set of possible interactions, and allow βn �= β to

be determined from the finite region Λn.

Dynamical thermalization. It has been shown in [6–8]

that subsystems of closed quantum systems equilibrate,

subject to some conditions on the initial state and spec-

trum. In general, the equilibrium state depends on the

initial state, and is not thermal unless additional con-

ditions are met [9]. However, for translation-invariant

systems, we can say more. Consider any initial state

ρ(n)0 on Λn, pure or mixed. The index n indicates that

the state should be a simple function of lattice size n (for

example, “all spins up”), and we assume that it is cho-

sen in a way such that the energy Un := tr(ρ(n)0 H
p
Λn

)
converges to some well-defined thermal energy density

u := limn→∞ Un/|Λn|.
The state evolves unitarily under the Hamiltonian

H
p
Λn

, i.e. ρ(n)(t) = exp(−itH
p
Λn

)ρ(n)0 exp(itHp
Λn

). We

can define the occupation entropy S̄(ρ(n)0 ) as follows.

From the spectral decomposition H
p
Λn

=
�

i Eiπi, com-

pute the occupation numbers λi := tr(ρ(n)0 πi), and set

S̄(ρ(n)0 ) := −
�

i λi log λi. Similarly, there is an in-

verse temperature βn corresponding to ρ(n)0 , defined by

tr(Hp
Λn

ρpΛn
(βn)) = Un. Denote the time average by �·�,

i.e. ρ(n)avg := �ρ(n)(t)� := limT→∞(1/T )
� T
0 ρ(n)(t)dt. Then:

Theorem 3. If there is a unique phase around inverse tem-
perature β := limn→∞ βn, if the (possibly pure) initial state
has close to maximal occupation entropy, in the sense that

S̄(ρ(n)0 ) ≥ S(ρBC
Λn

(βn))− o(|Λn|), (5)

and if each H
p
Λn

is non-degenerate, then unitary time evolu-
tion thermalizes the subsystem Λ for most times t:

����TrΛn\Λ ρ(n)(t)− TrΛn\Λ ρ(n)avg

���
1

�
≤ d

|Λ| ×

×
�

DG exp

�
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

�
, and (6)

lim
n→∞

����TrΛn\Λ ρ(n)avg − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (7)

where DG is the gap degeneracy [8] of Hp
Λn

, defined by DG =
maxE |{(i, j) | i �= j, Ei − Ej = E}|, where Ei denotes the
distinct eigenvalues of Hp

Λn
.

In the appendix, we generalize this result to the case

of arbitrary boundary conditions and degenerate H
BC
Λn

.

Instead of (7) which expresses equivalence of ρ(n)avg and

ρpΛn
(βn) for local observables A on Λ, the generalized

version shows equivalence of these global states on a

Example:          mixture onτn =

Microcanonical ensemble!

2

we may have the sequence of hypercubes Λn = [−n, n]ν .
The physical interpretation is that a region Λn describes
the actual physical system in the laboratory, and a sub-
region Λ ⊂ Λn describes a small subsystem, cf. Fig. 1.
The number of sites in a region Λ is denoted |Λ|.

Every lattice site carries a d-dimensional Hilbert space
Cd. Time evolution in Λn is determined by a Hamil-
tonian H

BC
Λn

with unspecified boundary conditions de-
noted BC. The Hamiltonian is characterized by an in-
teraction Φ, assigning to each finite region X ⊂ Zν

a self-adjoint operator Φ(X). The Hamiltonian with
open boundary conditions is then defined by HΛ :=�

X⊂Λ Φ(X); we assume translation-invariance, i.e.
Φ(X + y) equals Φ(X) up to translation to other lat-
tice sites, and finite-range, i.e. there is some r < ∞
such that Φ(X) = 0 whenever the diameter of X is
larger than r. In the following, we will exclude the
case that Φ is, up to physical equivalence [12], every-
where identically zero. We can add boundary terms to
HΛn to obtain some H

BC
Λn

, for example periodic bound-
ary conditions, Hp

Λn
. The only assumption will be that

�HBC
Λn

−HΛn�/|Λn| → 0 as n → ∞, where �·� is the oper-
ator norm. That is, the boundary terms only contribute
a vanishing energy density. All mathematical details are
given in the appendix.

While we aim at statements for finite regions Λn,
the thermodynamic limit n → ∞ becomes impor-
tant as a proof tool and an indicator of phase transi-
tions [12, 13]. States ω on the infinite lattice Zν are given
by consistent families of density matrices (ωΛ)Λ⊂Zνfinite,
with ωΛ = TrΛ�\Λ ωΛ� if Λ ⊆ Λ�. Translation-
invariant states ω on Zν have entropy density s(ω) :=
limn→∞

1
|Λn|S(ωΛn), with S(ρ) = −tr(ρ log ρ) the von

Neumann entropy. For given interaction Φ, they have
energy density u(ω) := limn→∞

1
|Λn| tr(ωΛnHΛn). A

characteristic quantity for any interaction Φ and β > 0 is
the equilibrium Helmholtz free energy density fth(β) :=
(−1/β) limn→∞

1
|Λn| log tr exp(−βHΛn). It holds

fth(β) = inf{f(ω) | ω translation-invariant state},

where f(ω) := u(ω) − s(ω)/β is the Helmholtz free en-
ergy density [12] of state ω. For finite Λ, the Gibbs state
at inverse temperature β is ρBC

Λ (β) := exp(−βHBC
Λ )/Z,

with Z the normalization. A translation-invariant state
ω on the infinite lattice is by definition a Gibbs state at in-
verse temperature β if it minimizes the free energy den-
sity, i.e. if f(ω) = fth(β). This definition is equivalent to
the well-known KMS condition [15]. For every β, there
is at least one Gibbs state (“phase”) ωβ on the infinite
lattice; however, if the lattice dimension is ν ≥ 2, there
may be more than one. Consequently, we say that there

is a unique phase around inverse temperature β if there is a
small interval around β such that for all β� in that inter-
val, there is only one Gibbs state at inverse temperature
β�. A given energy density value u will be called thermal

if it is strictly larger than umin and smaller than umax,
where umin := limn→∞ λmin(HΛn)/|Λn| with λmin the

smallest eigenvalue, and umax := limn→∞ tr(HΛn)/|Λn|.
If u is thermal, then there is exactly one inverse temper-
ature β ≡ β(u) > 0 such that u(ωβ) = u [12].

Canonical typicality. As suggested in [3], we now show
that the Gibbs ensemble arises in quantum lattice sys-
tems due to entanglement between small subsystems
and the remainder. Consider any interaction Φ and ther-
mal energy density u such that there is a unique phase
around inverse temperature β = β(u). For δ > 0, we can
define a microcanonical subspace

T
p
n := span {|E� | u− δ ≤ E/|Λn| ≤ u} ,

where H
p
Λn

|E� = E|E� denotes the periodic boundary
condition energy eigenstates on the global region Λn.
Choose any pure state |ψ� ∈ T

p
n at random according

to the unitarily invariant measure. Then:

Theorem 1. For any ε ≥ 0, the probability p that a state

|ψ� ∈ T
p
n sampled according to the unitarily invariant mea-

sure satisfies

����TrΛn\Λ |ψ��ψ|− TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

≥ ε+∆n,Λ

is doubly-exponentially small in the lattice size |Λn|; that

is, p ≤ exp
�
−ε2 exp(|Λn|s+ o(|Λn|))

�
, where s = s(ωβ)

is the entropy density of the corresponding Gibbs state,

and ∆n,Λ is a sequence of positive real numbers with

limn→∞ ∆n,Λ = 0 for every fixed Λ. Here, β can either be

set equal to β(u) as defined above, or equal to the solution of

tr(Hp
Λn

ρpΛn
(β))/|Λn| = u (which depends on n).

As illustrated in Fig. 1, if n is large, then almost all
pure states |ψ� in an energy window subspace will be
locally almost indistinguishable from the Gibbs state at
the corresponding temperature, since the one-norm dis-
tance �ρ − σ�1 = 2maxP=P †=P 2 |tr(ρP ) − tr(σP )| be-
ing small means that ρ and σ give similar expectation
value for all possible measurements. The theorem does
not say how quickly ∆n,Λ tends to zero; we will come
back to the question of finite-size estimates later. Ear-
lier work [3, 9] attempted to prove that TrΛn\Λ |ψ��ψ| is
arbitrarily close to the local Gibbs state exp(−βHp

Λ)/Z.
However, this can only be true approximately if the in-
teraction across the boundary of Λ is very small [9],
yielding very restrictive conditions when the lattice di-
mension is larger than one. Our theorem shows that the
local Gibbs state has to be replaced by the reduction of
the global Gibbs state to obtain a valid formulation.

Before we turn to the proof, we note that the unitar-
ily invariant (Haar) measure in Theorem 1 can be re-
placed by a more physically realistic measure, namely
an η-approximate t-design [22, 24], for t = 8 and η =
exp(−|Λn|s + o(|Λn|)). Such t-designs are approxima-
tions to the Haar measure that can be efficiently gen-
erated in a time which is polynomial in the lattice size
|Λn|. It follows from the results of Low [23] that Theo-
rem 1 remains valid, however with a probability value
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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

τn

TrΛn\Λτn ≈ TrΛn\Λ
exp(−βHp

Λn
)

Z

3

that is only exponentially small in the lattice size: p ≤
(d3|Λ|

/ε2) exp(−|Λn|s+ o(|Λn|)).
To prove Theorem 1, we invoke the results of [4],

which tell us that TrΛn\Λ |ψ��ψ| is with high probabil-

ity close to TrΛn\Λ τn, where τn is the uniformly mixed

state on T
p
n . We obtain Theorem 1 directly, with all

constants, if we set ∆n,Λ up to corrections of order

exp
�
− 1

2 |Λn|s+ o(|Λn|)
�

equal to

δn,Λ :=

����TrΛn\Λ τn − TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

. (1)

It remains to prove that δn,Λ → 0 as n → ∞. However,

τn is nothing but the microcanonical ensemble, and the

statement left to prove is that its predictions on small

subsystems Λ are equivalent to those of the canonical

ensemble in the thermodynamic limit.

Equivalence of ensembles. To state our result, note that

we can regard Λn as a torus, by identifying µi + 1 in the

interval [λi, µi] with λi; this way, we can define periodic

translations of Λn as those of the resulting torus. A state

τn on Λn will be called Λn-translation-invariant if it is

invariant with respect to all periodic translations of Λn.

Theorem 2. Suppose that (τn)n∈N is any sequence of Λn-
translation-invariant states on Λn, and β > 0 such that there
is a unique phase around inverse temperature β. If

lim sup
n→∞

1

|Λn|
�
tr(τnH

BC
Λn

)− S(τn)/β
�
≤ fth(β) (2)

for some choice of boundary conditions BC, then

lim
n→∞

����TrΛn\Λτn − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (3)

where we may set βn either equal to the fixed value β, or equal
to the solution of tr(Hp

Λn
ρpΛn

(βn))/|Λn| = u(β).

If τn is the microcanonical ensemble, i.e. maximal mix-

ture on T
p
n , then tr(τnH

p
Λn

)/|Λn| ≤ u by construction,

and S(τn) = log dim(T p
n) = s|Λn| + o(|Λn|) accord-

ing to [12, Thm. IV.2.14]. Since u − s/β = fth(β), (2)

holds, which shows equivalence to the canonical ensem-

ble, limn→∞ δn,Λ = 0, and establishes Theorem 1.

To prove Theorem 2, we first show that (τn)n∈N has

at least one limit point ω as a state on the infinite lat-

tice. Since every τn is Λn-translation-invariant, ω is

translation-invariant, and (2) implies that f(ω) = fth(β).
Thus, ω is the unique Gibbs state ωβ , and so

lim
n→∞

TrΛn\Λ τn = (ωβ)Λ. (4)

Furthermore, (2) remains valid, and the calculation can

be repeated, if τn is replaced by ρpΛn
(βn), because every

ρn := ρpΛn
(βn) minimizes the free energy locally, so

tr(ρnH
p
Λn

)− S(ρn)/β ≤ tr((ωβ)ΛnH
p
Λn

)− S((ωβ)Λn)/β

and (2) holds for (ωβ)Λn . We obtain (4) by replacing τn
with ρn, proving the theorem.

This proof strategy has been pioneered by

Lima [10, 11]; however, our result is more general

in several respects. In particular, we consider a more

general set of possible interactions, and allow βn �= β to

be determined from the finite region Λn.

Dynamical thermalization. It has been shown in [6–8]

that subsystems of closed quantum systems equilibrate,

subject to some conditions on the initial state and spec-

trum. In general, the equilibrium state depends on the

initial state, and is not thermal unless additional con-

ditions are met [9]. However, for translation-invariant

systems, we can say more. Consider any initial state

ρ(n)0 on Λn, pure or mixed. The index n indicates that

the state should be a simple function of lattice size n (for

example, “all spins up”), and we assume that it is cho-

sen in a way such that the energy Un := tr(ρ(n)0 H
p
Λn

)
converges to some well-defined thermal energy density

u := limn→∞ Un/|Λn|.
The state evolves unitarily under the Hamiltonian

H
p
Λn

, i.e. ρ(n)(t) = exp(−itH
p
Λn

)ρ(n)0 exp(itHp
Λn

). We

can define the occupation entropy S̄(ρ(n)0 ) as follows.

From the spectral decomposition H
p
Λn

=
�

i Eiπi, com-

pute the occupation numbers λi := tr(ρ(n)0 πi), and set

S̄(ρ(n)0 ) := −
�

i λi log λi. Similarly, there is an in-

verse temperature βn corresponding to ρ(n)0 , defined by

tr(Hp
Λn

ρpΛn
(βn)) = Un. Denote the time average by �·�,

i.e. ρ(n)avg := �ρ(n)(t)� := limT→∞(1/T )
� T
0 ρ(n)(t)dt. Then:

Theorem 3. If there is a unique phase around inverse tem-
perature β := limn→∞ βn, if the (possibly pure) initial state
has close to maximal occupation entropy, in the sense that

S̄(ρ(n)0 ) ≥ S(ρBC
Λn

(βn))− o(|Λn|), (5)

and if each H
p
Λn

is non-degenerate, then unitary time evolu-
tion thermalizes the subsystem Λ for most times t:

����TrΛn\Λ ρ(n)(t)− TrΛn\Λ ρ(n)avg

���
1

�
≤ d

|Λ| ×

×
�

DG exp

�
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

�
, and (6)

lim
n→∞

����TrΛn\Λ ρ(n)avg − TrΛn\Λ
exp(−βnH

p
Λn

)

Zn

����
1

= 0, (7)

where DG is the gap degeneracy [8] of Hp
Λn

, defined by DG =
maxE |{(i, j) | i �= j, Ei − Ej = E}|, where Ei denotes the
distinct eigenvalues of Hp

Λn
.

In the appendix, we generalize this result to the case

of arbitrary boundary conditions and degenerate H
BC
Λn

.

Instead of (7) which expresses equivalence of ρ(n)avg and

ρpΛn
(βn) for local observables A on Λ, the generalized

version shows equivalence of these global states on a

Example:          mixture onτn =

Microcanonical ensemble!

2

we may have the sequence of hypercubes Λn = [−n, n]ν .
The physical interpretation is that a region Λn describes
the actual physical system in the laboratory, and a sub-
region Λ ⊂ Λn describes a small subsystem, cf. Fig. 1.
The number of sites in a region Λ is denoted |Λ|.

Every lattice site carries a d-dimensional Hilbert space
Cd. Time evolution in Λn is determined by a Hamil-
tonian H

BC
Λn

with unspecified boundary conditions de-
noted BC. The Hamiltonian is characterized by an in-
teraction Φ, assigning to each finite region X ⊂ Zν

a self-adjoint operator Φ(X). The Hamiltonian with
open boundary conditions is then defined by HΛ :=�

X⊂Λ Φ(X); we assume translation-invariance, i.e.
Φ(X + y) equals Φ(X) up to translation to other lat-
tice sites, and finite-range, i.e. there is some r < ∞
such that Φ(X) = 0 whenever the diameter of X is
larger than r. In the following, we will exclude the
case that Φ is, up to physical equivalence [12], every-
where identically zero. We can add boundary terms to
HΛn to obtain some H

BC
Λn

, for example periodic bound-
ary conditions, Hp

Λn
. The only assumption will be that

�HBC
Λn

−HΛn�/|Λn| → 0 as n → ∞, where �·� is the oper-
ator norm. That is, the boundary terms only contribute
a vanishing energy density. All mathematical details are
given in the appendix.

While we aim at statements for finite regions Λn,
the thermodynamic limit n → ∞ becomes impor-
tant as a proof tool and an indicator of phase transi-
tions [12, 13]. States ω on the infinite lattice Zν are given
by consistent families of density matrices (ωΛ)Λ⊂Zνfinite,
with ωΛ = TrΛ�\Λ ωΛ� if Λ ⊆ Λ�. Translation-
invariant states ω on Zν have entropy density s(ω) :=
limn→∞

1
|Λn|S(ωΛn), with S(ρ) = −tr(ρ log ρ) the von

Neumann entropy. For given interaction Φ, they have
energy density u(ω) := limn→∞

1
|Λn| tr(ωΛnHΛn). A

characteristic quantity for any interaction Φ and β > 0 is
the equilibrium Helmholtz free energy density fth(β) :=
(−1/β) limn→∞

1
|Λn| log tr exp(−βHΛn). It holds

fth(β) = inf{f(ω) | ω translation-invariant state},

where f(ω) := u(ω) − s(ω)/β is the Helmholtz free en-
ergy density [12] of state ω. For finite Λ, the Gibbs state
at inverse temperature β is ρBC

Λ (β) := exp(−βHBC
Λ )/Z,

with Z the normalization. A translation-invariant state
ω on the infinite lattice is by definition a Gibbs state at in-
verse temperature β if it minimizes the free energy den-
sity, i.e. if f(ω) = fth(β). This definition is equivalent to
the well-known KMS condition [15]. For every β, there
is at least one Gibbs state (“phase”) ωβ on the infinite
lattice; however, if the lattice dimension is ν ≥ 2, there
may be more than one. Consequently, we say that there

is a unique phase around inverse temperature β if there is a
small interval around β such that for all β� in that inter-
val, there is only one Gibbs state at inverse temperature
β�. A given energy density value u will be called thermal

if it is strictly larger than umin and smaller than umax,
where umin := limn→∞ λmin(HΛn)/|Λn| with λmin the

smallest eigenvalue, and umax := limn→∞ tr(HΛn)/|Λn|.
If u is thermal, then there is exactly one inverse temper-
ature β ≡ β(u) > 0 such that u(ωβ) = u [12].

Canonical typicality. As suggested in [3], we now show
that the Gibbs ensemble arises in quantum lattice sys-
tems due to entanglement between small subsystems
and the remainder. Consider any interaction Φ and ther-
mal energy density u such that there is a unique phase
around inverse temperature β = β(u). For δ > 0, we can
define a microcanonical subspace

T
p
n := span {|E� | u− δ ≤ E/|Λn| ≤ u} ,

where H
p
Λn

|E� = E|E� denotes the periodic boundary
condition energy eigenstates on the global region Λn.
Choose any pure state |ψ� ∈ T

p
n at random according

to the unitarily invariant measure. Then:

Theorem 1. For any ε ≥ 0, the probability p that a state

|ψ� ∈ T
p
n sampled according to the unitarily invariant mea-

sure satisfies

����TrΛn\Λ |ψ��ψ|− TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

≥ ε+∆n,Λ

is doubly-exponentially small in the lattice size |Λn|; that

is, p ≤ exp
�
−ε2 exp(|Λn|s+ o(|Λn|))

�
, where s = s(ωβ)

is the entropy density of the corresponding Gibbs state,

and ∆n,Λ is a sequence of positive real numbers with

limn→∞ ∆n,Λ = 0 for every fixed Λ. Here, β can either be

set equal to β(u) as defined above, or equal to the solution of

tr(Hp
Λn

ρpΛn
(β))/|Λn| = u (which depends on n).

As illustrated in Fig. 1, if n is large, then almost all
pure states |ψ� in an energy window subspace will be
locally almost indistinguishable from the Gibbs state at
the corresponding temperature, since the one-norm dis-
tance �ρ − σ�1 = 2maxP=P †=P 2 |tr(ρP ) − tr(σP )| be-
ing small means that ρ and σ give similar expectation
value for all possible measurements. The theorem does
not say how quickly ∆n,Λ tends to zero; we will come
back to the question of finite-size estimates later. Ear-
lier work [3, 9] attempted to prove that TrΛn\Λ |ψ��ψ| is
arbitrarily close to the local Gibbs state exp(−βHp

Λ)/Z.
However, this can only be true approximately if the in-
teraction across the boundary of Λ is very small [9],
yielding very restrictive conditions when the lattice di-
mension is larger than one. Our theorem shows that the
local Gibbs state has to be replaced by the reduction of
the global Gibbs state to obtain a valid formulation.

Before we turn to the proof, we note that the unitar-
ily invariant (Haar) measure in Theorem 1 can be re-
placed by a more physically realistic measure, namely
an η-approximate t-design [22, 24], for t = 8 and η =
exp(−|Λn|s + o(|Λn|)). Such t-designs are approxima-
tions to the Haar measure that can be efficiently gen-
erated in a time which is polynomial in the lattice size
|Λn|. It follows from the results of Low [23] that Theo-
rem 1 remains valid, however with a probability value

Proof: they both converge
locally to the unique infinite-
volume Gibbs state.
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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

τn

TrΛn\Λτn ≈ TrΛn\Λ
exp(−βHp

Λn
)

Z

microcanonical canonical

For local qubits, without interaction, δ=0 (de Finetti Theorem):
����TrΛn\Λτn − TrΛn\Λ

exp(−βHp
Λn

)

Z

����
1

≤ 4|Λ|
|Λn|

Similar analytic bound for δ>0, and numerically with interaction.
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How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,
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of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

Draw a pure state
at random from the
microcanonical subspace

If there is a unique
phase around         then:

|ψ�

2

we may have the sequence of hypercubes Λn = [−n, n]ν .
The physical interpretation is that a region Λn describes
the actual physical system in the laboratory, and a sub-
region Λ ⊂ Λn describes a small subsystem, cf. Fig. 1.
The number of sites in a region Λ is denoted |Λ|.

Every lattice site carries a d-dimensional Hilbert space
Cd. Time evolution in Λn is determined by a Hamil-
tonian H

BC
Λn

with unspecified boundary conditions de-
noted BC. The Hamiltonian is characterized by an in-
teraction Φ, assigning to each finite region X ⊂ Zν

a self-adjoint operator Φ(X). The Hamiltonian with
open boundary conditions is then defined by HΛ :=�

X⊂Λ Φ(X); we assume translation-invariance, i.e.
Φ(X + y) equals Φ(X) up to translation to other lat-
tice sites, and finite-range, i.e. there is some r < ∞
such that Φ(X) = 0 whenever the diameter of X is
larger than r. In the following, we will exclude the
case that Φ is, up to physical equivalence [12], every-
where identically zero. We can add boundary terms to
HΛn to obtain some H

BC
Λn

, for example periodic bound-
ary conditions, Hp

Λn
. The only assumption will be that

�HBC
Λn

−HΛn�/|Λn| → 0 as n → ∞, where �·� is the oper-
ator norm. That is, the boundary terms only contribute
a vanishing energy density. All mathematical details are
given in the appendix.

While we aim at statements for finite regions Λn,
the thermodynamic limit n → ∞ becomes impor-
tant as a proof tool and an indicator of phase transi-
tions [12, 13]. States ω on the infinite lattice Zν are given
by consistent families of density matrices (ωΛ)Λ⊂Zνfinite,
with ωΛ = TrΛ�\Λ ωΛ� if Λ ⊆ Λ�. Translation-
invariant states ω on Zν have entropy density s(ω) :=
limn→∞

1
|Λn|S(ωΛn), with S(ρ) = −tr(ρ log ρ) the von

Neumann entropy. For given interaction Φ, they have
energy density u(ω) := limn→∞

1
|Λn| tr(ωΛnHΛn). A

characteristic quantity for any interaction Φ and β > 0 is
the equilibrium Helmholtz free energy density fth(β) :=
(−1/β) limn→∞

1
|Λn| log tr exp(−βHΛn). It holds

fth(β) = inf{f(ω) | ω translation-invariant state},

where f(ω) := u(ω) − s(ω)/β is the Helmholtz free en-
ergy density [12] of state ω. For finite Λ, the Gibbs state
at inverse temperature β is ρBC

Λ (β) := exp(−βHBC
Λ )/Z,

with Z the normalization. A translation-invariant state
ω on the infinite lattice is by definition a Gibbs state at in-
verse temperature β if it minimizes the free energy den-
sity, i.e. if f(ω) = fth(β). This definition is equivalent to
the well-known KMS condition [15]. For every β, there
is at least one Gibbs state (“phase”) ωβ on the infinite
lattice; however, if the lattice dimension is ν ≥ 2, there
may be more than one. Consequently, we say that there

is a unique phase around inverse temperature β if there is a
small interval around β such that for all β� in that inter-
val, there is only one Gibbs state at inverse temperature
β�. A given energy density value u will be called thermal

if it is strictly larger than umin and smaller than umax,
where umin := limn→∞ λmin(HΛn)/|Λn| with λmin the

smallest eigenvalue, and umax := limn→∞ tr(HΛn)/|Λn|.
If u is thermal, then there is exactly one inverse temper-
ature β ≡ β(u) > 0 such that u(ωβ) = u [12].

Canonical typicality. As suggested in [3], we now show
that the Gibbs ensemble arises in quantum lattice sys-
tems due to entanglement between small subsystems
and the remainder. Consider any interaction Φ and ther-
mal energy density u such that there is a unique phase
around inverse temperature β = β(u). For δ > 0, we can
define a microcanonical subspace

T
p
n := span {|E� | u− δ ≤ E/|Λn| ≤ u} ,

where H
p
Λn

|E� = E|E� denotes the periodic boundary
condition energy eigenstates on the global region Λn.
Choose any pure state |ψ� ∈ T

p
n at random according

to the unitarily invariant measure. Then:

Theorem 1. For any ε ≥ 0, the probability p that a state

|ψ� ∈ T
p
n sampled according to the unitarily invariant mea-

sure satisfies

����TrΛn\Λ |ψ��ψ|− TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

≥ ε+∆n,Λ

is doubly-exponentially small in the lattice size |Λn|; that

is, p ≤ exp
�
−ε2 exp(|Λn|s+ o(|Λn|))

�
, where s = s(ωβ)

is the entropy density of the corresponding Gibbs state,

and ∆n,Λ is a sequence of positive real numbers with

limn→∞ ∆n,Λ = 0 for every fixed Λ. Here, β can either be

set equal to β(u) as defined above, or equal to the solution of

tr(Hp
Λn

ρpΛn
(β))/|Λn| = u (which depends on n).

As illustrated in Fig. 1, if n is large, then almost all
pure states |ψ� in an energy window subspace will be
locally almost indistinguishable from the Gibbs state at
the corresponding temperature, since the one-norm dis-
tance �ρ − σ�1 = 2maxP=P †=P 2 |tr(ρP ) − tr(σP )| be-
ing small means that ρ and σ give similar expectation
value for all possible measurements. The theorem does
not say how quickly ∆n,Λ tends to zero; we will come
back to the question of finite-size estimates later. Ear-
lier work [3, 9] attempted to prove that TrΛn\Λ |ψ��ψ| is
arbitrarily close to the local Gibbs state exp(−βHp

Λ)/Z.
However, this can only be true approximately if the in-
teraction across the boundary of Λ is very small [9],
yielding very restrictive conditions when the lattice di-
mension is larger than one. Our theorem shows that the
local Gibbs state has to be replaced by the reduction of
the global Gibbs state to obtain a valid formulation.

Before we turn to the proof, we note that the unitar-
ily invariant (Haar) measure in Theorem 1 can be re-
placed by a more physically realistic measure, namely
an η-approximate t-design [22, 24], for t = 8 and η =
exp(−|Λn|s + o(|Λn|)). Such t-designs are approxima-
tions to the Haar measure that can be efficiently gen-
erated in a time which is polynomial in the lattice size
|Λn|. It follows from the results of Low [23] that Theo-
rem 1 remains valid, however with a probability value

β(u)
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It has previously been suggested that small subsystems of closed quantum systems thermalize un-

der some assumptions; however, this has been rigorously shown so far only for systems with very

weak interaction between subsystems. In this work, we give a rigorous analytic proof of thermal-

ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary

strength. We clarify the physical picture by showing that subsystems relax towards the reduction

of the global Gibbs state, not the local Gibbs state. Moreover, we show that almost all pure states

with support on a small energy window are locally thermal in the sense of canonical typicality. We

derive our results from a statement on equivalence of ensembles generalizing earlier results by Lima,

and give numerical and analytic finite-size bounds, relating the Ising model to the finite de Finetti

theorem. Furthermore, we prove a weak version of the eigenstate thermalization hypothesis which

holds regardless of the integrability of the model.

How do closed quantum systems thermalize? Moti-

vated by new experimental [1] and numerical [2] meth-

ods, there has been renewed interest in this old ques-

tion in the last few years, with considerable theoretical

progress [3–9]. However, surprisingly many aspects of

thermalization are still not well understood, in particu-

lar the emergence of the Gibbs ensemble. While it was

suggested that typical pure quantum states in many-

body systems resemble thermal states on small subsys-

tems [3], this has only been proven under additional as-

sumptions for models with very weak interactions [9]

that make it difficult to understand thermalization in

systems of lattice dimension two or higher [7]. Similarly,

it was shown that small subsystems of closed quantum

systems equilibrate [4–8], but the equilibrium state will

not in general be thermal unless very specific conditions

are met.

In this work, we give rigorous analytic proofs of dy-

namical and kinematic formulations of thermalization

for interactions of finite range, but arbitrary strength. By

restricting to the special case of translation-invariant lat-

tice systems as in Fig. 1, we are able to prove the com-

mon belief that small subsystems are indeed close to a

thermal state in the strongest possible sense, without

further assumptions on the model. This also clarifies the

physical picture by showing that the resulting state will

in general not be the local Gibbs state, but the reduction

of the global system’s Gibbs state.

The price we pay to arrive at this result is that most

of our statements are asymptotic, without concrete

finite-size bounds. However, we give sharp analytic

bounds for the distance to the thermal state in the

non-interacting case, which already turns out to be a

non-trivial problem, and we give numerical finite-size

estimates in one lattice dimension. Furthermore, we

Figure 1: Canonical typicality. A rectangular lattice Λn evolves

according to a translation-invariant finite-range interaction Hamilto-

nian H
p
Λn

, where “p” is for periodic boundary conditions (the case of

arbitrary boundary conditions is treated in the appendix). If |ψ� is a

generic state occupying only energies E with u− δ ≤ E/|Λn| ≤ u,

then small subsystems Λ ⊂ Λn will, for large n, behave as if the full

system was in a Gibbs state of the corresponding temperature, for

all possible measurements in the subsystem. Dynamically, the same

will be true for |ψ(t)� for most times t if the initial state |ψ(0)� has

close to maximal occupation entropy.

prove a weak version of the eigenstate thermalization

hypothesis [30, 31], showing that individual eigenstates

are locally close to diagonal in the energy eigenbasis.

Setup and notation. We consider ν-dimensional cu-

bic lattices, and finite hyperrectangular regions Λ =
[λ1, µ1] × . . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the

interval of integers between λ and µ ≥ λ. In particu-

lar, we consider sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . .
that converge to the full infinite lattice Zν

; for example,

Draw a pure state
at random from the
microcanonical subspace

If there is a unique
phase around         then:

|ψ�

2

we may have the sequence of hypercubes Λn = [−n, n]ν .
The physical interpretation is that a region Λn describes
the actual physical system in the laboratory, and a sub-
region Λ ⊂ Λn describes a small subsystem, cf. Fig. 1.
The number of sites in a region Λ is denoted |Λ|.

Every lattice site carries a d-dimensional Hilbert space
Cd. Time evolution in Λn is determined by a Hamil-
tonian H

BC
Λn

with unspecified boundary conditions de-
noted BC. The Hamiltonian is characterized by an in-
teraction Φ, assigning to each finite region X ⊂ Zν

a self-adjoint operator Φ(X). The Hamiltonian with
open boundary conditions is then defined by HΛ :=�

X⊂Λ Φ(X); we assume translation-invariance, i.e.
Φ(X + y) equals Φ(X) up to translation to other lat-
tice sites, and finite-range, i.e. there is some r < ∞
such that Φ(X) = 0 whenever the diameter of X is
larger than r. In the following, we will exclude the
case that Φ is, up to physical equivalence [12], every-
where identically zero. We can add boundary terms to
HΛn to obtain some H

BC
Λn

, for example periodic bound-
ary conditions, Hp

Λn
. The only assumption will be that

�HBC
Λn

−HΛn�/|Λn| → 0 as n → ∞, where �·� is the oper-
ator norm. That is, the boundary terms only contribute
a vanishing energy density. All mathematical details are
given in the appendix.

While we aim at statements for finite regions Λn,
the thermodynamic limit n → ∞ becomes impor-
tant as a proof tool and an indicator of phase transi-
tions [12, 13]. States ω on the infinite lattice Zν are given
by consistent families of density matrices (ωΛ)Λ⊂Zνfinite,
with ωΛ = TrΛ�\Λ ωΛ� if Λ ⊆ Λ�. Translation-
invariant states ω on Zν have entropy density s(ω) :=
limn→∞

1
|Λn|S(ωΛn), with S(ρ) = −tr(ρ log ρ) the von

Neumann entropy. For given interaction Φ, they have
energy density u(ω) := limn→∞

1
|Λn| tr(ωΛnHΛn). A

characteristic quantity for any interaction Φ and β > 0 is
the equilibrium Helmholtz free energy density fth(β) :=
(−1/β) limn→∞

1
|Λn| log tr exp(−βHΛn). It holds

fth(β) = inf{f(ω) | ω translation-invariant state},

where f(ω) := u(ω) − s(ω)/β is the Helmholtz free en-
ergy density [12] of state ω. For finite Λ, the Gibbs state
at inverse temperature β is ρBC

Λ (β) := exp(−βHBC
Λ )/Z,

with Z the normalization. A translation-invariant state
ω on the infinite lattice is by definition a Gibbs state at in-
verse temperature β if it minimizes the free energy den-
sity, i.e. if f(ω) = fth(β). This definition is equivalent to
the well-known KMS condition [15]. For every β, there
is at least one Gibbs state (“phase”) ωβ on the infinite
lattice; however, if the lattice dimension is ν ≥ 2, there
may be more than one. Consequently, we say that there

is a unique phase around inverse temperature β if there is a
small interval around β such that for all β� in that inter-
val, there is only one Gibbs state at inverse temperature
β�. A given energy density value u will be called thermal

if it is strictly larger than umin and smaller than umax,
where umin := limn→∞ λmin(HΛn)/|Λn| with λmin the

smallest eigenvalue, and umax := limn→∞ tr(HΛn)/|Λn|.
If u is thermal, then there is exactly one inverse temper-
ature β ≡ β(u) > 0 such that u(ωβ) = u [12].

Canonical typicality. As suggested in [3], we now show
that the Gibbs ensemble arises in quantum lattice sys-
tems due to entanglement between small subsystems
and the remainder. Consider any interaction Φ and ther-
mal energy density u such that there is a unique phase
around inverse temperature β = β(u). For δ > 0, we can
define a microcanonical subspace

T
p
n := span {|E� | u− δ ≤ E/|Λn| ≤ u} ,

where H
p
Λn

|E� = E|E� denotes the periodic boundary
condition energy eigenstates on the global region Λn.
Choose any pure state |ψ� ∈ T

p
n at random according

to the unitarily invariant measure. Then:

Theorem 1. For any ε ≥ 0, the probability p that a state

|ψ� ∈ T
p
n sampled according to the unitarily invariant mea-

sure satisfies

����TrΛn\Λ |ψ��ψ|− TrΛn\Λ
exp(−βHp

Λn
)

Z

����
1

≥ ε+∆n,Λ

is doubly-exponentially small in the lattice size |Λn|; that

is, p ≤ exp
�
−ε2 exp(|Λn|s+ o(|Λn|))

�
, where s = s(ωβ)

is the entropy density of the corresponding Gibbs state,

and ∆n,Λ is a sequence of positive real numbers with

limn→∞ ∆n,Λ = 0 for every fixed Λ. Here, β can either be

set equal to β(u) as defined above, or equal to the solution of

tr(Hp
Λn

ρpΛn
(β))/|Λn| = u (which depends on n).

As illustrated in Fig. 1, if n is large, then almost all
pure states |ψ� in an energy window subspace will be
locally almost indistinguishable from the Gibbs state at
the corresponding temperature, since the one-norm dis-
tance �ρ − σ�1 = 2maxP=P †=P 2 |tr(ρP ) − tr(σP )| be-
ing small means that ρ and σ give similar expectation
value for all possible measurements. The theorem does
not say how quickly ∆n,Λ tends to zero; we will come
back to the question of finite-size estimates later. Ear-
lier work [3, 9] attempted to prove that TrΛn\Λ |ψ��ψ| is
arbitrarily close to the local Gibbs state exp(−βHp

Λ)/Z.
However, this can only be true approximately if the in-
teraction across the boundary of Λ is very small [9],
yielding very restrictive conditions when the lattice di-
mension is larger than one. Our theorem shows that the
local Gibbs state has to be replaced by the reduction of
the global Gibbs state to obtain a valid formulation.

Before we turn to the proof, we note that the unitar-
ily invariant (Haar) measure in Theorem 1 can be re-
placed by a more physically realistic measure, namely
an η-approximate t-design [22, 24], for t = 8 and η =
exp(−|Λn|s + o(|Λn|)). Such t-designs are approxima-
tions to the Haar measure that can be efficiently gen-
erated in a time which is polynomial in the lattice size
|Λn|. It follows from the results of Low [23] that Theo-
rem 1 remains valid, however with a probability value
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yielding very restrictive conditions when the lattice di-
mension is larger than one. Our theorem shows that the
local Gibbs state has to be replaced by the reduction of
the global Gibbs state to obtain a valid formulation.

Before we turn to the proof, we note that the unitar-
ily invariant (Haar) measure in Theorem 1 can be re-
placed by a more physically realistic measure, namely
an η-approximate t-design [22, 24], for t = 8 and η =
exp(−|Λn|s + o(|Λn|)). Such t-designs are approxima-
tions to the Haar measure that can be efficiently gen-
erated in a time which is polynomial in the lattice size
|Λn|. It follows from the results of Low [23] that Theo-
rem 1 remains valid, however with a probability value

β(u)
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Full lattice       evolves unitarily: |ψ(t)� = exp(−itH
p
Λn

)|ψ(0)�

We show: if Shannon entropy of initial occupation numbers

pn = |�En|ψ(0)�|2

is close to maximal, in first order in 
then

for most times t.
TrΛn\Λ|ψ(t)��ψ(t)| ≈ TrΛn\Λ

exp(−βHp
Λn

)

Z

|Λn|,

Λn
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ETH (Deutsch '91, Srednicki '94):
Results could be significantly sharpened if

random/typical energy eigenstate|ψ� −→

Natural conjecture: If          is an
energy eigenstate on       , thenΛn

|E�

|E�

TrΛn\Λ|E��E| ≈ TrΛshell

exp(−βHΛ�)

Z
.

5

convergence properties.

Weak eigenstate thermalization. Consider the setup in Fig. 2. It would be desirable to remove condition (5), and
prove thermalization even on the level of individual energy eigenstates |E� of HΛn , in the sense that TrΛn\Λ |E��E| ≈
TrΛshell ρΛ�(β). This eigenstate thermalization hypothesis (ETH) [30, 31] cannot be literally true for all models we con-
sider: the non-interacting Ising model, where some eigenstates are product states, is a counterexample. Intuitively,
an additional assumption along the lines of non-integrability is needed. However, we can apply the Lieb-Robinson

Figure 2: Subregions of the whole lattice Λn. We enlarge Λ by setting Λ� = Λ ∪ Λshell, where Λshell contains all sites outside of Λ which
have distance l or less to Λ. The number of terms of HΛn that have support on both Λ� and Λn \ Λ� is denoted A, which quantifies the size of
the boundary area of Λ�.

bound [27–29], saying that for operators X and Y supported on finite regions X ,Y of distance ∆, there are constants
c, C, v > 0 with �[X(t), Y ]� ≤ C �X��Y �min{|X |, |Y|} e−c[∆−v|t|], where X(t) = e

iHΛn t
Xe

−iHΛn t. We can use this
to prove the following weak version of the ETH:

Theorem 4. There is a state ωE on Λ�
such that

��TrΛshell(ωE)− TrΛn\Λ |E��E|
��
1
≤ κ · e−c(l−r)/2

which is weakly diagonal in the eigenbasis {|e�} of HΛ� , i.e.

|�e1|ωE |e2�| ≤ e
−(l−r)(e1−e2)

2
/(8cv2)

,

where κ, c, v > 0 are constants, and r the range of interaction.

The ETH corresponds to the claim that ωE = ρΛ�(β). While we cannot prove this in general, our result shows that
both states share the property of being (close to) diagonal in the eigenbasis of HΛ� .

Conclusions. We have shown that small subsystems of closed translation-invariant quantum systems with
finite-range interaction thermalize, in the sense that they relax towards the reduction of the global Gibbs state. It
would be interesting to obtain more explicit finite-size bounds, but these may well depend on details of the specific
model or interaction. Similarly, an interesting open question is whether ωE in Theorem 4 has Boltzmann weights on
its diagonal. Rigorously answering this question in the positive, however, seems to require additional assumptions
along the lines of nonintegrability.

Acknowledgments. MM would like to thank Joe Emerson, Patrick Hayden, and Sandu Popescu for discussions in
early stages of this project, and Oscar Dahlsten for comments. Research at Perimeter Institute is supported in part by
the Government of Canada through NSERC and by the Province of Ontario through MRI. LM acknowledges support
from the EU ERC Advanced Grant NLST (PHYS RQ8784), EU Qessence project and the Templeton Foundation.
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