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Given some observable H on a finite-dimensional quantum system, we investigate the typical properties of random state vectors |ψ〉 that have a fixed
expectation value 〈ψ|H|ψ〉 = E with respect to H. Under some conditions on the spectrum, we prove that this manifold of quantum states shows
a concentration of measure phenomenon: any continuous function on this set is almost everywhere close to its mean. We also give a method to
estimate the corresponding expectation values analytically, and we prove a formula for the reduced density matrix in the case that H is a sum of local
observables.

Concentration of measure in quantum
information theory...

• What do random quantum states look like?

• Drawing a pure state in C
d randomly wrt. the unitarily in-

variant measure corresponds to picking a point on the unit
sphere S2d−1 in R

2d. In high dimensions, most of the
uniform measure on the sphere is strongly concentrated
around any equator.

• Consequence: Lévy’s Lemma. Let f : Sn → R be a func-
tion with ‖∇f‖ ≤ η and a point x ∈ Sn chosen uniformly
at random. Then,

Prob{|f (x)− Ef | > ε} ≤ 2 exp
(

−c(n + 1)ε2/η2
)

,

where c := (9π3 ln 2)−1 is a constant.

• Sample application: Most bipartite quantum states are
highly entangled [1]. Let |ψ〉 be a random pure state on
A⊗B, with dB ≥ dA ≥ 3. Then

Prob {S(ψA) < log dA − α− β} ≤ exp

(

−(dAdB − 1)cα2

(log dA)
2

)

,

where β = dA
dB ln 2, and c = (8π2 ln 2)−1.

• Most famous application: M. Hastings’ counterexample to
the additivity conjecture [2].

... and typicality in statistical mechanics

Consider a subspace HR ⊂
HS ⊗HE. Example:
S=system, E=environment,
R=subspace spanned by
global energy eigenstates in
[E −∆E,E + ∆E].

Statistical mechanics recipe: equidistribution on R gives
“microcanonical ensemble” ΩS := TrE(1R/dR). Popescu et
al. [3] use measure concentration to prove the following:
• Given fixed |ψ〉 ∈ HR, the reduced state is ψS :=
TrE|ψ〉〈ψ|.

• It turns out that for “almost all” |ψ〉, it holds ψS ≈ ΩS. In
more detail, if |ψ〉 is drawn randomly in R, then

Prob

{

‖ψS − ΩS‖1 ≥ ε +
dS
√

dR

}

≤ 2 exp
(

−CdRε2
)

,

where C = 1/18π3, dR = dimHR, dS = dimHS.

• In this sense, most single pure quantums states locally
look like the ensemble average.

Under additional assumptions on the spectrum, Goldstein et
al. [4] show that ΩS is a Gibbs state, i.e. ΩS ∼ e−βH .

However, treating all states in subspaces R in equal footing
is sometimes criticized as unphysical (“nature lives in a small
corner of Hilbert space”). Hence it makes sense to ask for
similar results for more natural subsets of states R:

Problem: What if the restriction R is not given by a sub-
space, but by a nonlinear constraint?
As a physical example, what if the mean energy
〈ψ|H|ψ〉 is fixed instead – do similar results hold?

Our result: a simple example
On the bipartite Hilbert space A⊗B with A = C

3 and B = C
n

and Hamiltonian H =







1
2
3






⊗ 1B, choose a state |ψ〉 in

C
3 ⊗ C

n randomly under the constraint 〈ψ|H|ψ〉 = 3
2.

• With high prob., reduced state ψA := TrB|ψ〉〈ψ| is close to

ψA ≈ ρc :=
1

12







5 +
√
7 0 0

0 2(4−
√
7) 0

0 0 −1 +
√
7






.

• More in detail, we have

Prob

{

‖ψA − ρc‖2 > 3
√
8

(

t +
59
4
√
n

)

}

≤ 369960n
3

2 ×

×e− 3

64
n(t− 1

4n)
2
+4

√
n.

• Note: reduced state is not a Gibbs state in general!

Special case of generalization of Lévy’s Lemma for
quadratic submanifolds. Ready to generalize to other
non-linear constraints.

• Physics siginificance: Several authors [5, 6] have sug-
gested to define a “quantum microcanonical ensemble” as
in this example above: given a Hamiltonian H, fix the en-
ergy expectation value E and consider the “mean energy
ensemble”

ME := {|ψ〉 ∈ C
n | 〈ψ|H|ψ〉 = E, ‖ψ‖ = 1}.

• In physics terms: we prove typicality for this mean energy
ensemble (under some conditions on the spectrum); for
some models, we show that typicality does not hold (see
Ising model).

Main result in detail

If H ’s eigenvalues are E1, E2, . . . , En, then ME is invariant
wrt. energy shifts E′

k := Ek + s, E′ := E + s. While the
arithmetic mean EA := 1

n

∑

kEk is shifted as well (i.e. E′
A =

EA + s), the harmonic mean EH :=





1

n

∑

k

1

Ek





−1

changes

in a non–linear way. Choosing s appropriately, we can shift
the energies such that E′ = E′

H if Emin < E < EA.

Main Theorem 1. Suppose that E > Emin is an arbitrary
energy value such that E is not too close to the “infinite
temperature” energy EA, i.e.

E ≤ EA − π(Emax − Emin)
√

2(n− 1)
.

If f :ME → R is any function with ‖∇f‖ ≤ λ and median
f̄ , then the value f (ψ) evaluated on a randomly chosen
state |ψ〉 ∈ME satisfies

Prob
{

|f (ψ)− f̄ | > λt
}

≤ a · n3

2 · e−cn(t− 1

4n)
2
+ε

√
n.

The constants a, c and ε depend on the spectrum. They
can be determined in the following way:

• Find an energy shift (which is always possible, see

above) such that E′ =
(

1 + 1
n

)

(

1 + ε√
n

)

E′
H for some

ε > 0 which is arbitrary, but must be large enough such
that the constant a (described below) is positive.

• Compute c =
3E ′

min
64E ′ , E′

Q :=
(

1
n

∑

kE
′
k
−2
)−1

2, and a =

3040E′
max

2

[

E′2
(

1− E ′2

ε2E ′
Q
2

)

]−1

.

Moreover, we have a formula to estimate the value of the
median f̄ which appears above.

No concentration in the Ising model

Let H =
1

2

m
∑

i=1

(1 + Zi), i.e. m non-interacting 1
2-spins (Ising

model). Choose a state |ψ〉 randomly under 〈ψ|H|ψ〉 = αm
with 0 < α ≤ 1

2 fixed. Then:

The resulting mean energy ensemble does not concen-
trate exponentially in the dimension n = 2m (as in Lévy’s
Lemma) unless α = 1

2.

Instead, the best we can hope for is concentration of the
form

Prob
{

|f − f̄ | > t
}

≤ b · exp
(

−O(nH(α)) t2
)

,

where H(α) = −α log2α− (1−α) log2(1−α) ≤ 1 is the binary
entropy function.

Proof idea and tools: integral geometry

Geometrically, ME is
the intersection of
a sphere (normaliza-
tion) and an ellipsoid
(energy expectation
value).

We get solid
objects by con-
sidering the ε-
neighbourhood
of ME, and the
full (enlarged)
ellipsoid.

• By standard results, we have concentration of measure in
the full ellipsoid N .

• If Uε(ME) covers a lot of N , then ME “inherits” measure
concentration from the surrounding ellipsoid N .

• This is the case if EN‖x‖2 ≈ 1, such that “most” points
in N are close to the sphere. It turns out that E must be
close to the harmonic energy EH such that this is true.

This proof strategy is inspired by M. Gromov [7]. To esti-
mate the volume of Uε(X) for X ⊆ME, we use an analog of
Buffon’s needle experiment: the Crofton formula [8]

∫

Lr
µr+q−n(M ∩ Lr) dLr = σµq(M )

relates the volume of q-dim. submanifolds M ⊂ R
n with the

average vol. of intersections with random hyperplanes Lr.
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