Concentration of measure for quantum states with a fixed expectation value (arXiv:1003.4982)

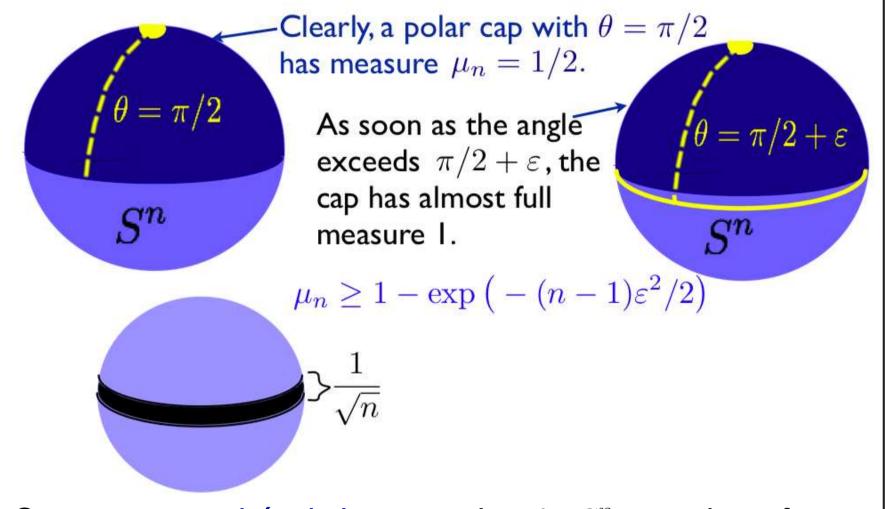
Markus Müller^{1,2,3}, David Gross⁴, and Jens Eisert³

¹Institute of Mathematics, Technical University of Berlin, 10623 Berlin, Germany ²Perimeter Institute for Theoretical Physics, Ontario N2L 2Y5, Canada ³Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany ⁴Institute for Theoretical Physics, Leibniz University Hannover, 30167 Hannover, Germany

Given some observable H on a finite-dimensional quantum system, we investigate the typical properties of random state vectors $|\psi\rangle$ that have a fixed expectation value $\langle \psi | H | \psi \rangle = E$ with respect to H. Under some conditions on the spectrum, we prove that this manifold of quantum states shows a concentration of measure phenomenon: any continuous function on this set is almost everywhere close to its mean. We also give a method to estimate the corresponding expectation values analytically, and we prove a formula for the reduced density matrix in the case that H is a sum of local observables.

Concentration of measure in quantum	Our result: a simple example	No concentration in the Ising model
 • What do random quantum states look like? 	On the bipartite Hilbert space $A \otimes B$ with $A = \mathbb{C}^3$ and $B = \mathbb{C}^n$	Let $H = \frac{1}{2} \sum_{i=1}^{m} (1 + Z_i)$, i.e. <i>m</i> non-interacting $\frac{1}{2}$ -spins (Ising
• Drawing a pure state in \mathbb{C}^d randomly wrt. the unitarily invariant measure corresponds to picking a point on the unit	and Hamiltonian $H = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix} \otimes 1_B$, choose a state $ \psi\rangle$ in	model). Choose a state $ \psi\rangle$ randomly under $\langle \psi H \psi \rangle = \alpha m$ with $0 < \alpha \le \frac{1}{2}$ fixed. Then:

sphere S^{2d-1} in \mathbb{R}^{2d} . In high dimensions, most of the $\mathbb{C}^3 \otimes \mathbb{C}^n$ randomly under the constraint $\langle \psi | H | \psi \rangle = \frac{3}{2}$. uniform measure on the sphere is strongly concentrated around any equator.



• Consequence: Lévy's Lemma. Let $f : S^n \to \mathbb{R}$ be a function with $\|\nabla f\| \leq \eta$ and a point $x \in S^n$ chosen uniformly at random. Then,

 $\operatorname{Prob}\{|f(x) - \mathbb{E}f| > \varepsilon\} \le 2\exp\left(-c(n+1)\varepsilon^2/\eta^2\right),$

where $c := (9\pi^3 \ln 2)^{-1}$ is a constant.

• Sample application: Most bipartite quantum states are highly entangled [1]. Let $|\psi\rangle$ be a random pure state on $A \otimes B$, with $d_B \ge d_A \ge 3$. Then

 $\operatorname{Prob}\left\{S(\psi_A) < \log d_A - \alpha - \beta\right\} \le \exp\left(-\frac{(d_A d_B - 1)c\alpha^2}{(\log d_A)^2}\right),$

• With high prob., reduced state $\psi^A := \text{Tr}_B |\psi\rangle \langle \psi|$ is close to

$$\psi^A \approx \rho_c := \frac{1}{12} \begin{pmatrix} 5 + \sqrt{7} & 0 & 0 \\ 0 & 2(4 - \sqrt{7}) & 0 \\ 0 & 0 & -1 + \sqrt{7} \end{pmatrix}.$$

• More in detail, we have

$$\operatorname{Prob}\left\{\|\psi^{A} - \rho_{c}\|_{2} > 3\sqrt{8}\left(t + \frac{59}{\sqrt[4]{n}}\right)\right\} \leq 369960 \, n^{\frac{3}{2}} \times e^{-\frac{3}{64}n\left(t - \frac{1}{4n}\right)^{2} + 4\sqrt{n}}.$$

• Note: reduced state is not a Gibbs state in general!

Special case of generalization of Lévy's Lemma for quadratic submanifolds. Ready to generalize to other non-linear constraints.

• Physics siginificance: Several authors [5, 6] have suggested to define a "quantum microcanonical ensemble" as in this example above: given a Hamiltonian H, fix the energy expectation value E and consider the "mean energy" ensemble"

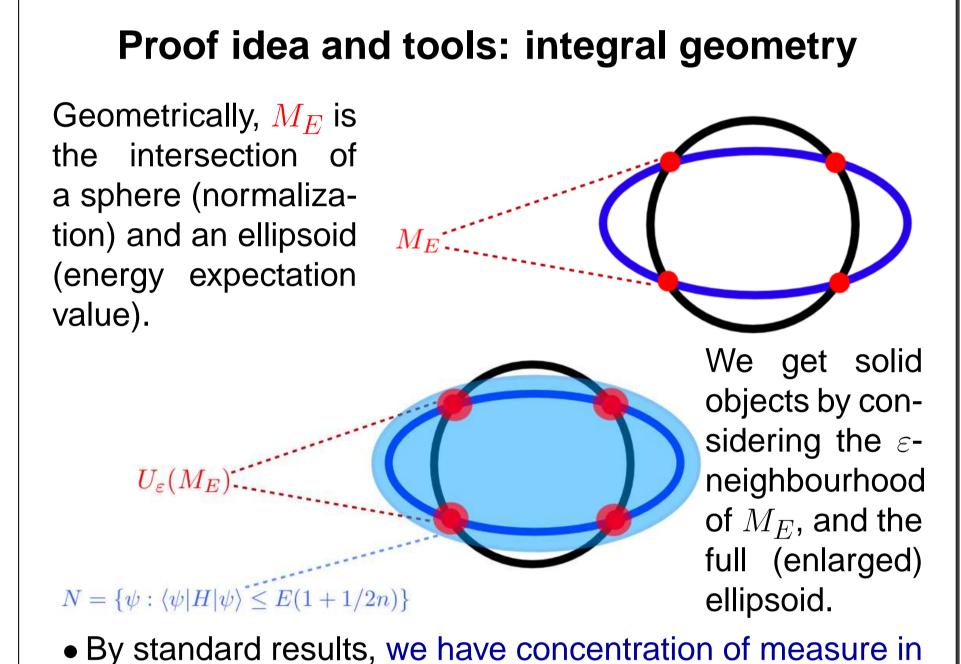
 $M_E := \{ |\psi\rangle \in \mathbb{C}^n \mid \langle \psi | H | \psi \rangle = E, \quad \|\psi\| = 1 \}.$

• In physics terms: we prove typicality for this mean energy ensemble (under some conditions on the spectrum); for The resulting mean energy ensemble does not concentrate exponentially in the dimension $n = 2^m$ (as in Lévy's Lemma) unless $\alpha = \frac{1}{2}$.

Instead, the best we can hope for is concentration of the form

Prob
$$\{|f - \bar{f}| > t\} \le b \cdot \exp\left(-\mathcal{O}(n^{H(\alpha)})t^2\right),$$

where $H(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha) \le 1$ is the binary entropy function.

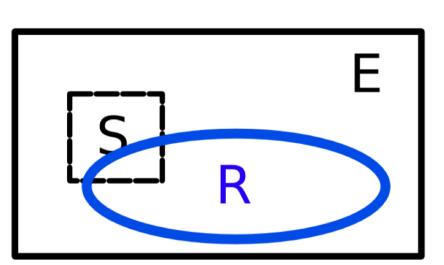


where $\beta = \frac{d_A}{d_B \ln 2}$, and $c = (8\pi^2 \ln 2)^{-1}$.

• Most famous application: M. Hastings' counterexample to the additivity conjecture [2].

... and typicality in statistical mechanics

Consider a subspace $\mathcal{H}_R \subset$ $\mathcal{H}_S \otimes \mathcal{H}_E$. Example: S=system, E=environment, R=subspace spanned by global energy eigenstates in $[E - \Delta E, E + \Delta E].$



Statistical mechanics recipe: equidistribution on R gives "microcanonical ensemble" $\Omega_S := \operatorname{Tr}_E(\mathbf{1}_R/d_R)$. Popescu et al. [3] use measure concentration to prove the following: • Given fixed $|\psi\rangle \in \mathcal{H}_R$, the reduced state is $\psi_S :=$

- $\mathrm{Tr}_E |\psi\rangle \langle \psi|.$
- It turns out that for "almost all" $|\psi\rangle$, it holds $\psi_S \approx \Omega_S$. In more detail, if $|\psi\rangle$ is drawn randomly in R, then

$$\operatorname{Prob}\left\{\|\psi_S - \Omega_S\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right\} \le 2\exp\left(-Cd_R\varepsilon^2\right),$$

where $C = 1/18\pi^3$, $d_R = \dim \mathcal{H}_R$, $d_S = \dim \mathcal{H}_S$.

• In this sense, most single pure quantums states locally look like the ensemble average.

some models, we show that typicality does not hold (see Ising model).

Main result in detail

If H's eigenvalues are E_1, E_2, \ldots, E_n , then M_E is invariant wrt. energy shifts $E'_k := E_k + s$, E' := E + s. While the arithmetic mean $E_A := \frac{1}{n} \sum_k E_k$ is shifted as well (i.e. $E'_A = 1$ $E_A + s$), the harmonic mean $E_H := \left(\frac{1}{n}\sum_k \frac{1}{E_k}\right)^{-1}$ changes in a non-linear way. Choosing s appropriately, we can shift the energies such that $E' = E'_H$ if $E_{min} < E < E_A$.

Main Theorem 1. Suppose that $E > E_{min}$ is an arbitrary energy value such that E is not too close to the "infinite" temperature" energy E_A , i.e.

$$E \leq E_A - \frac{\pi(E_{max} - E_{min})}{\sqrt{2(n-1)}}.$$

If $f: M_E \to \mathbb{R}$ is any function with $\|\nabla f\| \leq \lambda$ and median f, then the value $f(\psi)$ evaluated on a randomly chosen state $|\psi\rangle \in M_E$ satisfies

 $\operatorname{Prob}\left\{|f(\psi) - \bar{f}| > \lambda t\right\} \le a \cdot n^{\frac{3}{2}} \cdot e^{-cn\left(t - \frac{1}{4n}\right)^2 + \varepsilon \sqrt{n}}.$

The constants a, c and ε depend on the spectrum. They can be determined in the following way: • Find an energy shift (which is always possible, see above) such that $E' = \left(1 + \frac{1}{n}\right) \left(1 + \frac{\varepsilon}{\sqrt{n}}\right) E'_H$ for some $\varepsilon > 0$ which is arbitrary, but must be large enough such that the constant *a* (described below) is positive. • Compute $c = \frac{3E'_{min}}{64E'}$, $E'_Q := \left(\frac{1}{n}\sum_k {E'_k}^{-2}\right)^{-\frac{1}{2}}$, and $a = \frac{1}{2}$ $3040 E'_{max}{}^2 \left[E'^2 \left(1 - \frac{E'^2}{\varepsilon^2 E'_Q{}^2} \right) \right]^{-1}.$

the full ellipsoid N.

- If $U_{\varepsilon}(M_E)$ covers a lot of N, then M_E "inherits" measure concentration from the surrounding ellipsoid N.
- This is the case if $\mathbb{E}_N ||x||^2 \approx 1$, such that "most" points in N are close to the sphere. It turns out that E must be close to the harmonic energy E_H such that this is true.

This proof strategy is inspired by M. Gromov [7]. To estimate the volume of $U_{\varepsilon}(X)$ for $X \subseteq M_E$, we use an analog of Buffon's needle experiment: the Crofton formula [8]

$$\int_{L_r} \mu_{r+q-n}(M \cap L_r) \, dL_r = \sigma \mu_q(M)$$

relates the volume of q-dim. submanifolds $M \subset \mathbb{R}^n$ with the average vol. of intersections with random hyperplanes L_r .

References

- [1] P. Hayden, D.W. Leung, and A. Winter, Comm. Math. Phys. 265, 95 (2006).
- [2] M.B. Hastings, Nature Physics 5, 255 (2009).
- [3] S. Popescu, A.J. Short, and A. Winter, Nature Physics **2**, 754 (2006).
- [4] S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).
- [5] D.C. Brody, D.W. Hook, and L.P. Hughston, Proc. R. Soc. A **463**, 2021 (2007).

Under additional assumptions on the spectrum, Goldstein et al. [4] show that Ω_S is a Gibbs state, i.e. $\Omega_S \sim e^{-\beta H}$.

However, treating all states in subspaces R in equal footing is sometimes criticized as unphysical ("nature lives in a small corner of Hilbert space"). Hence it makes sense to ask for similar results for more natural subsets of states R:

Problem: What if the restriction R is not given by a subspace, but by a *nonlinear* constraint? As a physical example, what if the mean energy $\langle \psi | H | \psi \rangle$ is fixed instead – do similar results hold?

Moreover, we have a formula to estimate the value of the median f which appears above.

[6] C.M. Bender, D.C. Brody, and D.W. Hook, J. Phys. A 38, L607 (2005).

[7] M. Gromov, *Metric structures for Riemannian and Non-*Riemannian spaces (Mod. Birkhäuser Classics, 2007).

[8] L.A. Santaló, Integral geometry and geometric probability (Addison-Wesley, 1972).