
Abstract

A famous result by Alan Turing dating back to 1936 is that a 
general algorithm solving the halting problem on a Turing 
machine for all possible inputs and programs cannot exist – 
the halting problem is undecidable.
Formally, an undecidable problem is a decision problem for 
which one cannot construct a single algorithm that will 
always provide a correct answer in finite time. In [1], M. Wolf 
et al. have initiated a discussion whether undecidability 
occurs in quantum information theory, and have shown that 
reachability of fidelity threholds falls into the class of 
undecidable problems.
In this work, we show that very natural, apparently simple 
problems in quantum measurement theory can be 
undecidable even if their classical analogues are decidable. 
Undecidability appears as a genuine quantum property. The 
problem we consider is to determine whether sequentially 
used identical Stern-Gerlach-type measurement devices, 
giving rise to a tree of possible outcomes, have outcomes 
that never occur. Finally, we sketch implications for 
measurement-based quantum computing and studies of 
quantum many-body models.
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Main Theorem
The QMOP is undecidable. That is, there exists 
no algorithm which gives the correct answer in finite 
time in all instances of the problem.

However, the analogous classical problem is 
decidable, even in its most general version (slightly 
more general than the quantum setup).

The main reason for the more complex quantum 
behaviour is destructive interference: classical 
transitition matrices have non-negative entries, which 
reduces the MOP to the simpler matrix mortality problem 
for matrices with non-negative entries (MMP≥0).

The Setup

 
 Consider a quantum measurement device with K  outcomes, 

described by Kraus operators {A1, . . . , AK}. In a sequence of n
measurements, this device is applied iteratively: every output is 
fed into an identical device as input.

 Every run of the experiment gives a sequence of outcomes 
(j1, j2, . . . , jn)  with all ji ∈ {1, . . . ,K}.  The probability of 

each sequence depends on the input ρ.

 Question: Is there any sequence of outcomes 
(j1, j2, . . . , jn)  that has probability zero for every 

input? This problem turns out to be 
undecidable in the quantum case, but 

decidable in the classical case.

Outlook: Undecidability, a 
frequent phenomenon?

As shown in [1], it is undecidable whether a small set of 
noisy gates allows to create a state which overcomes 
some pre-given fidelity threshold with respect to a 
given target state. Several other candidates for 
undecidable questions in QIT are suggested.

Resources for quantum computation [4,5] - or ground 
states in many-body-sytems - are often described by 
matrix product states (MPS),

These involve products of matrices, similar as in the 
setting above. Thus, some natural properties of 
measurements on those states are undecidable as well.

Due to superactivation, computation of many quantum 
channel capacities involves infinite-dimensional 
optimization problems. This suggests that some channel 
capacities might be noncomputable.
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Formal decision problem:

The Classical Version:
 The (non-selective) action of a classical channel on 
probability vectors is given by a d× d stochastic 
matrix Q :

 If the measurement is selective with K  outcomes, 
we have a decomposition of Q into „substochastic“ 
matrices Q1, . . . , Qk with non-negative entries:

 Measuring repeatedly, the probability of obtaining 
outcomes (j1, . . . , jn) on input distribution p is
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Definition [Quantum Measurement                
Occurrence Problem (QMOP)]:

Given a description of a measurement device in terms 
of K Kraus operators {A1, . . . , AK} ⊂ Qd×d

, decide 
whether, in the setting described above, there exists 
any finite sequence {j1, . . . , jn}  which can never be 
observed (i.e. has probability zero), even if the input 
state has full rank. |ψn� =

�

x1,...,xn

�xn|A[xn−1] . . . A[x1]|0�|x1, . . . , xn�

A taste of the proof:
Matrix Mortality

The proof uses the classical result that the so-called Matrix 
Mortality Problem [2,3] is undecidable. In more detail:

Matrix Mortality Problem (MMP). Given a 
finite set of matrices {M1, . . . ,Mk},  decide whether 
any finite product will give the zero matrix -- that is, 
whether there is any finite sequence (j1, . . . , jn) such 
that the matrix product Mjn . . .Mj2Mj1 = 0.

Depending on what kind of matrices are allowed, the 
problem turns out to be either decidable or undecidable:

The MMP is undecidable for integer matrices.

In other words, there is no single algorithm which, given a 
finite list of integer matrices of arbitrary size, decides whether 
they generate the zero matrix -- at least no algorithm which 
supplies the correct answer in all instances of the problem.

It turns out that the problem is already undecidable for 
fixed matrix size und number:

The MMP is undecidable for 8 integer 3x3-matrices.

This fact is the main ingredient in the proof that the 
QMOP (quantum measurement occurrence problem) is 
undecidable: the probability of obtaining outcome sequence  
(j1, . . . , jn) on input state ρ is

This is zero if and only if the matrix product 
Ajn . . . Aj1 = 0. The main technical difficulty is to encode 
a given instance of the MMP into valid Kraus operators 
(describing the QMOP) which are normalized.

Surprisingly, it turns out that

The MMP is decidable for non-negative matrices.

This observation proves that the classical version of the 
measurement problem is decidable.

Prob(j1, . . . , jn) = tr
�
Ajn . . . Aj1ρA

†
j1
. . . A†
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�
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(p1, . . . , pd)
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T
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K�

i=1
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Prob(j1, . . . , jn) =
d�

i=1

(Qjn . . . Qj1p)i .
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