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Given some Hamiltonian H on a finite-dimensional quantum system, we investigate the typical properties of pure quantum states |ψ〉 that have a fixed
energy expectation value 〈ψ|H|ψ〉 = E with respect to H. Under some moderate conditions on the spectrum, we prove that this manifold of quantum
states shows a concentration of measure phenomenon: values of Lipschitz-continuous functions on the states are almost everywhere close to their
mean. Moreover, the resulting distribution can be efficiently sampled by drawing quantum states randomly with respect to a Boltzmann-Gaussian
amplitude distribution. We use this result to give explicit formulas for the reduced density matrix of typical states in bipartite quantum systems with
weak interaction, and discuss the dependence of concentration from the energy spectrum.

Concentration of measure in quantum
information theory...

• What do random quantum states look like?

• Drawing a pure state in C
d randomly wrt. the unitarily in-

variant measure corresponds to picking a point on the unit
sphere S2d−1 in R

2d. In high dimensions, most of the
uniform measure on the sphere is strongly concentrated
around any equator.

• Consequence: Lévy’s Lemma. Let f : Sn → R be a func-
tion with ‖∇f‖ ≤ η and a point x ∈ Sn chosen uniformly
at random. Then,

Prob{|f (x) − Ef | > ε} ≤ 2 exp
(

−c(n + 1)ε2/η2
)

,

where c := (9π3 ln 2)−1 is a constant.

• Sample application: Most bipartite quantum states are
highly entangled [1]. Let |ψ〉 be a random pure state on
A⊗B, with dB ≥ dA ≥ 3. Then

Prob {S(ψA) < log dA − α− β} ≤ exp

(

−(dAdB − 1)cα2

(log dA)2

)

,

where β = dA
dB ln 2, and c = (8π2 ln 2)−1.

• Most famous application: M. Hastings’ counterexample to
the additivity conjecture [2].

... and typicality in statistical mechanics

Consider a subspace HR ⊂
HS ⊗HE. Example:
S=system, E=environment,
R=subspace spanned by
global energy eigenstates in
[E − ∆E,E + ∆E].

Statistical mechanics recipe: equidistribution on R gives
“microcanonical ensemble” ΩS := TrE(1R/dR). Popescu et
al. [3] use measure concentration to prove the following:
• Given fixed |ψ〉 ∈ HR, the reduced state is ψS :=

TrE|ψ〉〈ψ|.
• It turns out that for “almost all” |ψ〉, it holds ψS ≈ ΩS. In

more detail, if |ψ〉 is drawn randomly in R, then

Prob

{

‖ψS − ΩS‖1 ≥ ε +
dS
√

dR

}

≤ 2 exp
(

−CdRε2
)

,

where C = 1/18π3, dR = dimHR, dS = dimHS.

• In this sense, most single pure quantums states locally
look like the ensemble average.

Under additional assumptions on the spectrum, Goldstein et
al. [4] show that ΩS is a Gibbs state, i.e. ΩS ∼ e−βH .

However, treating all states in subspaces R in equal footing
is sometimes criticized as unphysical (“nature lives in a small
corner of Hilbert space”). Hence it makes sense to ask for
similar results for more natural subsets of states R:

Problem: What if the restriction R is not given by a sub-
space, but by a nonlinear constraint?
As a physical example, what if the mean energy
〈ψ|H|ψ〉 is fixed instead – do similar results hold?

The mean energy ensemble ME

Several authors [5, 6] have suggested to define a “quantum
microcanonical ensemble” differently: instead of fixing the
energy subspace, fix the energy expectation value to equal
some value E:

ME := {|ψ〉 ∈ C
n | 〈ψ|H|ψ〉 = E, ‖ψ‖ = 1},

where H = H† is an arbitrary fixed Hamiltonian on C
n.

• This is not a subspace, but a submanifold of real dimen-
sion 2n− 2.

• As such, it carries a natural geometric volume measure
inherited from the unitarily invariant measure.

• It is the simplest example of a “non–linear ensemble”, nat-
ural to consider in quantum information and statistical me-
chanics. → prototype for more general situations

Problem: Can we prove concentration of measure (ana-
log of Lévy’s Lemma) for ME? If so, what do reduced
density matrices (and other properties) typically look
like?

Main Results

If H ’s eigenvalues are E1, E2, . . . , En, then ME is invariant
wrt. energy shifts E′

k := Ek + s, E′ := E + s. While the
arithmetic mean EA := 1

n

∑

kEk is shifted as well (i.e. E′
A =

EA + s), the harmonic mean EH :=





1

n

∑

k

1

Ek





−1

changes

in a non–linear way. Choosing s appropriately, we can shift
the energies such that E′ = E′

H if Emin < E < EA.

Main Theorem 1. Suppose that E > Emin is an arbitrary
energy value such that E is not too close to the “infinite
temperature” energy EA, i.e.

E ≤ EA − 2Emax√
2n− 1

(

√

log(2n− 1) +

√

π3

2

)

.

If f : ME → R is any function with ‖∇f‖ ≤ λ and median
f̄ , then the value f (ψ) evaluated on a randomly chosen
state |ψ〉 ∈ME satisfies

Prob
{

|f (ψ) − f̄ | > λt
}

≤ a · n3

2 · e−cn(t− 1

4n)
2
+ε

√
n.

The constants a, c and ε depend on the spectrum. They
can be determined in the following way:

• Find an energy shift (which is always possible, see

above) such that E′ =
(

1 + 1
n

)

(

1 + ε√
n

)

E′
H for some

ε > 0 which is arbitrary, but must be large enough such
that the constant a (described below) is positive.

• Compute c =
3E ′

min
64E ′ , E′

Q :=
(

1
n

∑

kE
′
k
−2
)−1

2, and a =

3040E′
max

2

[

E′2
(

1 − E ′2

ε2E ′
Q

2

)

]−1

.

Then, how do we compute the median f̄ on the energy man-
ifold ME? We can do it by integrating over an ellipsoid (in
spherical coordinates):

Main Theorem 2. The median f̄ can be estimated as
follows. Let N be the full ellipsoid of vectors z ∈ C

n with
〈z|H|z〉 ≤ E′

(

1 + 1
2n

)

, then

∣

∣f̄ − ENf
∣

∣ ≤ O
(

n−
1

4

)

,

where the exact constants depend on the spectrum. Ap-
plying this to the reduced density matrix elements ψA :=
TrB|ψ〉〈ψ| for random states |ψ〉 ∈ A⊗B with Hamiltonian
H = HA +HB yields in particular

ψA ≈ E′

n + 1











∑|B|
i=1

1
E

′A
1

+E
′B
i

0 0

0 . . . 0

0 0
∑|B|
i=1

1
E

′A
|A|+E

′B
i











with high probability, where {E ′A
i }i and {E ′B

j } are the en-
ergy eigenvalues of H ′

A and H ′
B respectively.

Thus, the typical reduced density matrix is not of the Gibbs
form in general.

A simple example

Suppose we have a bipartite Hilbert space A ⊗ B with A =

C
3, dimB = n, and a Hamiltonian H =







1
2

3






⊗ 1B.

• Choose ψ randomly under the constraint 〈ψ|H|ψ〉 = 3
2.

Then, the reduced density matrix ψA is typically close to

ρc :=
1

12







5 +
√

7 0 0

0 2(4 −
√

7) 0

0 0 −1 +
√

7






.

• More in detail, for all t > 0 and n ≥ 8193

Prob

{

∥

∥

∥ψA − ρc

∥

∥

∥

2
> 3

√
8

(

t +
59
4
√
n

)

}

≤ 369960n
3

2 ×

×e− 3

64
n(t− 1

4n)
2
+4

√
n.

Proof idea and tools: integral geometry

Geometrically, ME is
the intersection of
a sphere (normaliza-
tion) and an ellipsoid
(energy expectation
value).

We get solid
objects by con-
sidering the ε-
neighbourhood
of ME, and the
full (enlarged)
ellipsoid.

• By standard results, we have concentration of measure in
the full ellipsoid N .

• If Uε(ME) covers a lot of N , then ME “inherits” measure
concentration from the surrounding ellipsoid N .

• This is the case if EN‖x‖2 ≈ 1, such that “most” points
in N are close to the sphere. It turns out that E must be
close to the harmonic energy EH such that this is true.

This proof strategy is inspired by M. Gromov [7] and uses
techniques from geometric probability theory.

Approximate Gaussian sampling of ME

As a by–product, we get the following method to sample
points randomly from the energy manifold ME:

Draw |ψ〉 = (ψ1, . . . , ψn) randomly by choosing real and
imaginary part xk of each ψk ∈ C independently ac-
cording to the distribution with density proportional to

e−n
E′
k
E′x

2

k/2.

In the thermodynamic limit n → ∞, the resulting measure
gets close to the geometric volume measure on ME (as-
suming concentration depending on the spectrum). The er-
ror bounds can be given explicitly.
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