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are described by quantum theory; instead our postulates
will allow us to derive their structure as represented by
quantum theory.

Our postulates are as follows:

1. Classical Decomposability: Every state of a
physical system can be represented as a probabilis-
tic mixture of perfectly distinguishable states of
maximal knowledge (“pure states”).

2. Strong Symmetry: Every set of perfectly dis-
tinguishable pure states of a given size can be re-
versibly transformed to any other such set of the
same size.

3. No Higher-Order Interference: The interfer-
ence pattern between mutually exclusive “paths”
in an experiment is exactly the sum of the patterns
which would be observed in all two-path subexper-
iments, corrected for overlaps.

4. Observability of Energy: There is non-trivial
continuous reversible time evolution, and the gen-
erator of every such evolution can be associated
to an observable (“energy”) which is a conserved
quantity.

Before discussing their physical interpretation and mo-
tivation in more detail, we point out that all of our pos-
tulates refer to single systems only. This is in contrast to
earlier reconstructions of quantum theory [40, 41, 46, 48]
which rely heavily on properties of composite systems.
Our motivation to rely on single systems is as follows. It
is not clear that the notion of subsystems and their com-
position, as it is often used in information-theoretic cir-
cuit diagrams and category-theoretic considerations, has
fundamental physical significance. Quantum field theo-
ries, for example, need not have this kind of structure.
Assigning subsystems may turn out to be a derived con-
cept, contingent on the ability of an observer to control
certain degrees of freedom in isolation from others, and
independent of possibly more fundamental divisibility no-
tions such as bosonic or fermionic particles.

Moreover, there has recently been a surge of inter-
est in finding compelling physical principles that explain
the specific contextuality behavior of quantum theory as
compared to other probabilistic theories. This line of
research aims at analyzing the single-system analogue
of quantum non-locality, and understanding its specific
characteristics in terms of principles such as “consistent
exclusivity” [52]. Our results also contribute to this line
of research by showing that Postulates 1 and 2 are suffi-
cient to guarantee that systems satisfy consistent exclu-
sivity.

We do not claim that our postulates are the only rea-
sonable ones, but we think that they – like other recent
reconstructions – are more natural than the usual ab-
stract formulations which simply presume Hilbert spaces,
complex numbers, and operators. Moreover, as we dis-
cuss below, we think that our formulation is especially

FIG. 1: Higher-order interference. Consider a particle

which can pass one of M (here: M = 4) slits, where some

of the slits may be blocked by the experimenter (indicated

by the black bars). After passing the multi-slit setup, the

particle may trigger a certain event, for example the click of

a detector localized in a certain area of the screen. We are

interested in the probability pJ of the event, given that slits

J ⊂ {1, 2, . . . ,M} are open (for example p23 in the depicted

setup).

Classically, the probability of such an event given that all

four slits are open, p1234, equals p1 + p2 + p3 + p4, where pi
is the probability assuming than only slit i is open. This

is violated in quantum theory due to interference. How-

ever, even in quantum theory, the total probability can be

computed from contributions of pairs of slits only: we have

p1234 = p12+p13+p14+p23+p24+p34−2p1−2p2−2p3−2p4.
It is in this sense that quantum theory has second-, but no

third- or higher-order interference. The definition of interfer-

ence that we use is not restricted to spatially arranged slits,

but is formulated generally for any set of M perfectly distin-

guishable alternatives in a probabilistic theory.

suitable in the search for interesting and physically rea-
sonable modifications of quantum theory; that is, state
spaces that are not described by the Hilbert space formal-
ism but are otherwise consistent and physically plausible.
Comparison to other reconstructions can help uncover

logical relations between physical structures of our world.
For example, our fourth postulate (observability of en-
ergy) is used to rule out non-complex Hilbert spaces in
this work; in other reconstructions, this role is usually
played by the the postulate of tomographic locality, which
states that joint states on composite systems are uniquely
determined by local measurement statistics and their cor-
relations. Thus, one may argue that there is a logical re-
lationship between tomographic locality and observabil-
ity of energy, and thus ultimately with the fact that we
observe Hamiltonian mechanics in our world.
We will now give a short discussion of the interpreta-

tion of our postulates.
To clarify the terms in Postulate 1, a set of states is

perfectly distinguishable if there is a measurement whose
outcomes can be paired one-to-one with the states so that
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effectively 2-level systems, therefore “bits”, cf. Lemma 19

in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical
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1. Interference: Sorkin's hierarchy

1

2

"click"

probability of event,
if slits             are open

pi,j,... :=
i, j, . . .

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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1. Interference: Sorkin's hierarchy
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1. Interference: Sorkin's hierarchy
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R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).



1. Interference

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

1. Interference: Sorkin's hierarchy

1

2

"click"

probability of event,
if slits             are open

pi,j,... :=
i, j, . . .

p1,2

Classical probability theory: 

Quantum theory: 

p1,2 = p1 + p2.

p1,2 �= p1 + p2. Interference!

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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1. Interference: Sorkin's hierarchy

1

2

"click"

probability of event,
if slits             are open

pi,j,... :=
i, j, . . .

3

Surprisingly (?),
quantum theory satisfies

p1,2,3 = p1,2 + p1,3 + p2,3

−p1 − p2 − p3.

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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1. Interference: Sorkin's hierarchy

1

2

"click"

probability of event,
if slits             are open

pi,j,... :=
i, j, . . .

3

Surprisingly (?),
quantum theory satisfies

p1,2,3 = p1,2 + p1,3 + p2,3

−p1 − p2 − p3.

No 3rd-order interference in QT!

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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1. Interference: Sorkin's hierarchy

Sorkin:

In any case, the important thing from the standpoint of interpretation is that

the electron follows one and only one path, not somehow two at once. If probabilities

are involved, it is only because the path is not determined in advance, just as it is

initially undetermined in a classical stochastic process.

Given the failure of the sum rule I(A, B) = 0, it is clear that quantum prob-

abilities cannot be interpreted in the same manner that classical ones are wont to

be interpreted, in terms of (actual or fictitious) ensemble frequencies. How they

should be interpreted is a question to which I will return briefly below, and more

at length in another place [8]. Here, my main purpose is to discuss the sum-rules

themselves.

Quantum measure theory and its generalizations

What ordinarily makes it difficult to regard quantum mechanics as in essence a

modified form of probability theory, is the peculiar fact that it works with complex

“amplitudes” rather than directly with probabilities, the former being more like

square roots of the latter. To put this peculiarity in context, consider the following

series of symmetric set-functions, which generalize the interference term I(A, B)

introduced above. (Notice that all the sets A, B, C · · · which occur here are mutually

disjoint.)

I1(A) ≡ |A|

I2(A, B) ≡ |A " B|− |A|− |B|

I3(A, B, C) ≡ |A " B " C|− |A " B|− |B " C|− |A " C| + |A| + |B| + |C|,

or in general,

In(A1, A2, · · · , An) ≡ |A1 " A2 " · · ·An|

−
∑

|(n − 1)sets| +
∑

|(n − 2)sets| · · ·

±
n∑

j=1

|Aj| (1)

5

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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Classical probability theory: 

Quantum theory: I2 �= 0, I3 = I4 = . . . = 0.

I2 = I3 = I4 = . . . = 0.

R. D. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9, 3119-3128 (1994).
C. Ududec, H. Barnum, and J. Emerson, Three slit experiments and the structure of quantum theory,
Found. Phys. 41, 396-405 (2011).
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Experimental tests for higher-order interference
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(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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ε = I3 − zerocount;

κ :=
ε

δ
;

δ = |I12|+ |I13|+ |I23|,
I12 = p12 − p1 − p2 etc.
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Experimental tests for higher-order interference
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(U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs)

Here, d is the sum of the absolute values of the
double-slit interference terms, and k can be seen
as the ratio of an unexpected three-path inter-
ference term to the expected two-path interference
term. If d = 0, then e = 0 trivially, and one deals
with classical probabilities instead of quantum
behavior. Thus, a nonzero d ensures that we are in
a quantum mechanical regime. In an experiment,
we never measure probabilities directly, but only
absolute frequencies of photon occurrences. The
quantity k is independent of the total particle flux
onto the slits as long as it is constant in time.

To measure k in various optical power re-
gimes, we used different types of photon sources.
Figure 2 shows details of the experimental setup.
We used a laser attenuated to a power level of a
few microwatts down to ~200 fW (single-photon
level) as well as heralded single photons (~40,000
photons/s) created by spontaneous parametric
downconversion (5).

At the photon-counting level, the detection
mechanism is based on a silicon avalanche photo-
diode (APD), and thus the particle-like nature of
light is incorporated in the experiments. At the

microwatt level, a series of measurements was
performed with a standard optical power meter,
using a silicon photodiode. The power meter mea-
surements investigated the optical regime in which
particle character is not of concern. In all cases we
performed a large number of measurements at
fixed points in the diffraction pattern [fig. S1 in
(5)]. In addition, we have also performedmeasure-
ments to check the variation of k as a function of
detector position. Born’s rule would predict that
k should be independent of detector position. How-
ever, systematic errors may vary with the position
and therefore are seen to bring a variation in the
measured value of k at different detector posi-
tions even in our experiment. Nonetheless, the
mean k is within the bounds set by the attendant
errors at each such detector position.

The typical distributions of measured values
of k are shown in Fig. 3, with photon streams
from a laser attenuated to different levels (Fig. 3,
A and B) and from a heralded single-photon
source (Fig. 3C). k is calculated from the mea-
sured interference intensities for the eight inde-
pendent slit combinations at a fixed position.

The order of the eight slit combinations was
chosen randomly for reducing systematic influ-
ences on k caused by slow variations of the
photon flux. Each combination in a run was
measured for a certain photon-count integration
time, and up to 100 runs were cycled to obtain a
statistically significant sample of k values. Among
the many positions in the diffraction pattern, we
chose the central maximum of the triple-slit
combination (yielding the maximum number of
coincidence photon counts) to obtain our data
(5). For the single-photon source, we measured
at each slit combination until the trigger count
reached 30 million, which was a good com-
promise between accumulating a statistically sig-
nificant number of coincidences for the different
slit combinations and ensuring a low drift of the
photon source between measurements.

With a null experiment, a very careful analysis
of random and systematic errors must be under-
taken, as our bound on the amount of three-path
interference will be directly related to the level of
experimental uncertainty. Among the random
errors in our setup, thermal and acoustic fluctua-
tions cause the source fluxes to vary in time. In
addition, detection efficiency and optical align-
ment can change. In particular, there will be some
mechanical vibration of the thin (25 mm) slotted
steel membrane apertures, causing a variable slit
transmission due to near-field diffraction. In addi-
tion, for power meter measurements, the instru-
mental error is added to the above error sources,
whereas for photon counting, the Poissonian dis-
tributed counting error is the dominating fluctua-
tion.Because of the randomnature of the individual
errors, we used Gaussian error propagation to
estimate the error ofk, wherewe used the standard
variances of the individual measurement values
calculated from a large number of repetitions of
the experiments. In some cases where we ob-
served a drift in the rates, we found the Allen
variance of the values to be a better estimator for
error propagation. This is justifiable because k is
calculated from eight measurements taken in
direct succession, and the variance between
subsequent samples of each quantity pA, pB, etc.,
is therefore the most suitable error estimator.

Once we understand the random errors, we
can characterize the systematic errors. Our exper-
iment and the measurement of k are convenient,
as they neither require the slits to be identical nor
require the transmission values to be perfectly
1 and 0. On the other hand, what matters is the
absence of correlation or systematic variation in
how the slits behave while switching between slit
combinations. Note that the size of the slits and
the wavelength make independent shutters diffi-
cult to insert, and we used a static opening mask
plate in front of the actual slits for blocking and
unblocking the individual slits.

Our approach can potentially introduce un-
wanted correlations between the switching of dif-
ferent combinations. This occurred in our case; a
fault in the blocking mask in the BC combination
caused opening B to be shifted off its nominal

Fig. 2. Experimental set-
up used for the measure-
ment of k. (A) Creation of
heralded single photons
from a periodically poled
potassium titanyl phosphate
(PPKTP) nonlinear crystal
pumped by a 405-nm laser
diode. Parametric downcon-
verted photons are emitted
as pairs at 810 nm and are
coupled into a single-mode
fiber (SMF). Photon detec-
tion (D1) in the trigger output
heraldsa singlephoton,which
is then sent through the
diffraction slits. (B) A pulsed
titanium-sapphire (Ti-Sa)
laser is attenuated and cou-
pled into a SMF. The atten-
uation is realized by the
combination of a half-wave
plate (l/2) and a polarizing
beamsplitter (PBS), com-
bined with neutral filters
and an intensity stabilizer.
(C) Schematic of the three-
slit experiment where the
photons from the source go
through themovable block-
ing mask with the eight com-
binations and then through
the slit mask, which has the three slits cut into it. We keep the slit mask stationary, whereas the blocking
mask consists of bigger and wider slits that open up the various slit combinations as it moves up and
down. In this way, we ensure that the same set of slits is used for measuring the different combinations,
thus eliminating any dependence on the slit properties. The diffracted light is condensed vertically with a
cylindrical lens (CL) onto a multimode fiber (MMF, core size 62.5 mm), ~180 mm from the slits. This fiber
(movable along the diffraction pattern) acts as an aperture to probe the interferences. The collected
photons are detected either with an avalanche photodiode (D2) whose signals are recorded with a time
counter, or with an optical power meter (PD), both connected to a computer. For heralded single photons,
detections are conditioned on the detection of a trigger photon.
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ε = I3 − zerocount;

κ :=
ε

δ
;

δ = |I12|+ |I13|+ |I23|,
I12 = p12 − p1 − p2 etc.

Result: κ ≤ 10−2.
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Experimental tests for higher-order interference

Presentation in Bad Honnef 2014:

Result: κ ≤ 10−4.
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p1,2,3 = p1,2 + p1,3 + p2,3

−p1 − p2 − p3.
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Which natural GPTs have 3rd-order interference?

Some "artificial" GPTs exhibit order-3 interference:

pure states of the model. The three edges of the triangle (which we denote by Ωij) are the
other faces, and are analogous to two-level classical systems. We also have that for each
face F̃ of ΩA, there is a face F of the cone S+(A) such that F̃ = F ∩H.

Now define three projections Pi (i = 1, 2, 3) onto the faces Fi (which are generated by
the vertices ωi), with positive kernels Fjk (j, k �= i), and further take P123 = IR4. These
four projections are in fact filters, and the Pi form a size three mask. Finally, the filters
defined by Pjk = Pj +Pk will be projections onto the faces Fjk. Since lin{F̃12, F̃13, F̃23} just
gives the plane defined by (x, y, t = 0, z = 1) (in which the central triangle is embedded),
it is clear that S+(A) � lin{F12, F13, F23}; the linear span of these faces is missing the t

dimension. Therefore, any normalized state which is not in the central triangle will exhibit
third order interference with respect to the generalized slit system generated by {Pi}3i=1.

Figure 4.4: The triangular pillow state space discussed above, and in Chapter 8 of [7]. Pure

states on the smooth top or bottom parts of the pillow will display third-order interference

with respect to a 3-slit mask defined by the pure states of the central embedded triangle.

It is possible to construct many more similar examples simply by replacing the central

triangle embedded in R2 with a direct sum of an n-ball and an m-ball embedded in Rn+m

(see Chapter 8 of [7] for more detail). For example, for n = m = 3, the resulting state

space can roughly be considered as a direct sum of two qubits (or a four-level system with

a kind of super-selection rule) with an extra degree of freedom (t in the example above).

The subset of states which are in the ‘quantum’ sector all have t = 0.

One important point about the above type of construction is that the pure states of

the initial state space (the triangle of the triangular pillow) are of a different type than the

pure states on the top and bottom of the smooth part of the pillow. In particular, these

theories display a high degree of asymmetry. In particular, it is not difficult to convince

oneself that the filters, Pjk, defined on the triangular pillow are in fact mixing, and further,

the triagular pillow is not bit-symmetric.

88

C. Ududec, Perspectives on the Formalism of Quantum Theory,
PhD thesis, University of Waterloo, 2012.

But what natural generalizations of QT
could we test for in experiments?
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CPT QT ???

K = N1 K = N2 K = N3

Would naturally fit into the
Wootters-Hardy scheme K = Nr...

L. Hardy, Quantum Theory From Five
Reasonable Axioms, arXiv:quant-ph/0101012

Hyperdecoherence?

Despite lots of work, no concrete
construction of state space so far...

L. Hardy, J. Barrett, M. Zyczkowski, J. Oppen-
heim, MM, ...



1. Interference

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Density cubes? Density tensors?

... but there are a few hints:



1. Interference

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Density cubes? Density tensors?

... but there are a few hints:

B. Dakic, T. Paterek, and C. Brukner, Density cubes and higher-order
interference theories, New J. Phys. 16, 023028 (2014).Density cubes and higher-order interference theories 12

Figure 3. Stronger than quantum temporal correlations. The horizontal lines denote
three possible paths a system can take, which can be thought to be represented by states
e1, e2, and e3 of the main. The evolution is driven by transformation T of Eq. (16)
and we define the dichotomic observable with outcomes +1 (red detector indicates
system in state e1) and −1 (green detector indicates system not in the state e1). The
numbers close to the detectors describe the probabilities of finding the system to have
a particular outcome at various stages of evolution (if no measurement is performed
at the earlier stage). The system is measured successively at various pairs of time
instances in order to establish two-point temporal correlations that enter into the
Leggett-Garg inequality of Eq. (18). The evolution allows violation of the inequality
more than what is permitted in the quantum theory (see main text).

and hence K = 3. Therefore, the experiments measuring temporal correlations and the

strength of violation of the Leggett-Garg inequality can serve as tests of the cube theory.

3.7. Higher-level systems

In general the N -level system can be represented by a Hermitian cube ρijk where

i, j, k = 1 . . .N . The hermiticity condition implies that all the elements ρiij and ρijj are

real, and as it follows from the previous discussion are the “quantum” part of the state.

Genuine non-quantum elements are those ρijk ∈ C where all three indices are different
and they define 2

(

N
3

)

independent real parameters. In total a density cube of a N -level

system has

D(N) = N2 − 1 + 2

(

N

3

)

(19)

real parameters. The non-trivial dynamics can be generated by combining the operation

T defined in the previous section to different sets of three paths.

Note that the theory of density cubes violates the assumption of local tomography.

This assumption holds both in classical and quantum physics and asserts that the state

of a composite system can be fully determined by combining data from measurements

that determine the states of subsystems. Therefore, the number of parameters K(NAB)
describing an unnormalised state of a composite system AB satisfies K(NAB) ≤
K(NA)K(NB), where K(NA) and K(NB) are the number of real parameters required

to describe an unnormalised state of systems A and B [18, 38]. In the theory of density

cubes this assumption is violated. As an example, consider the theory of density cubes

Density cubes violate
"Tsirelson bound of
temporal correlations"
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and hence K = 3. Therefore, the experiments measuring temporal correlations and the

strength of violation of the Leggett-Garg inequality can serve as tests of the cube theory.

3.7. Higher-level systems

In general the N -level system can be represented by a Hermitian cube ρijk where

i, j, k = 1 . . .N . The hermiticity condition implies that all the elements ρiij and ρijj are

real, and as it follows from the previous discussion are the “quantum” part of the state.

Genuine non-quantum elements are those ρijk ∈ C where all three indices are different
and they define 2

(

N
3

)

independent real parameters. In total a density cube of a N -level

system has

D(N) = N2 − 1 + 2

(

N

3

)

(19)

real parameters. The non-trivial dynamics can be generated by combining the operation

T defined in the previous section to different sets of three paths.

Note that the theory of density cubes violates the assumption of local tomography.

This assumption holds both in classical and quantum physics and asserts that the state

of a composite system can be fully determined by combining data from measurements

that determine the states of subsystems. Therefore, the number of parameters K(NAB)
describing an unnormalised state of a composite system AB satisfies K(NAB) ≤
K(NA)K(NB), where K(NA) and K(NB) are the number of real parameters required

to describe an unnormalised state of systems A and B [18, 38]. In the theory of density

cubes this assumption is violated. As an example, consider the theory of density cubes

Density cubes violate
"Tsirelson bound of
temporal correlations"

G. Niestegge, Three-slit experiments and quantum nonlocality,
Found. Phys. 43(6), 805-812 (2013).

Absence of 3rd-order interference, together with a "con-
ditional probability calculus", implies the Tsirelson bound.
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QT CPT

boxworld
All GPTs

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory.
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QT CPT

boxworld
All GPTs

1. Every state belongs to a "classical subsystem",
2. lots of reversible dynamics,
3. no 3rd-order interference, and
4. energy is observable.
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Jordan

?New solutions?
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Well-defined math problem: classify those state spaces!
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory.

We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy Specker's Principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• but two pure states can generate a 3-level subsystem (unlike QT),
• they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.

QT CPT
Jordan

?
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H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory.

QT CPT
Jordan

?We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy the LO1 principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• like QT, they allow for filters that are important in thermodynamics,
• but they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.
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An axiomatic approach (arXiv:1403.4147)

H. Barnum, MM, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory.

Do they exist? If yes:
natural models, experimentally testable against QT.

QT CPT
Jordan

?We know a lot about these theories:

• Unlike QT, they have 3rd-order interference,
• like QT, their elementary propositions are an orthomodular lattice,
• like QT, they satisfy the LO1 principle for contextuality,
• like QT, all bit subsystems are Euclidean ball state spaces,
• like QT, they allow for filters that are important in thermodynamics,
• but they violate the covering property of quantum logic,
• like QT, they should allow for powerful computation.
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A further interference experiment

Recall this experiment:

They are not only testing for higher-order interference, but also:

VOLUME 42- 12 MARCH 1979 NUMBER 11

Proposed Test for Complex versus Quaternion Quantum Theory
Asher Peres

DePartment of Hsysics, Technion-Israel Institgte of Technology, Haifa, Israel
(Received 7 December 1978)

If scattering amplitudes are ordinary complex numbers (not quaternions) then there is
a universal algebraic relationship between the six coherent cross sections of any three
scatterers (taken singly and pairwise). A violation of this relationship would indicate
either that scattering amplitudes are quaternions, or that the superposition principle
fails. Some experimental tests are proposed, involving neutron diffraction by crystals
made of three different isotopes, neutron interferometry, and X&-meson regeneration.

Quantum theory rests on the superposition prin-
ciple' which asserts that the states of a physical
system can be represented as the elements of a
linear manifold. That is, if g, and P, are two
possible states of a system and c, and c2 are ar-
bitrary numbers, then c,(,+c,g, is also a pos-
sible state of that system. It is usually taken for
granted that the coefficients c, and c, are com-
plex numbers. However, it is possible to imag-
ine a real quantum theory' or one based on qua-
ternions. ' ' In this article, I show how it is pos-
sible to distinguish experimentally between real,
complex, and quaternion quantum theories.
Real quantum theory, although logically con-

sistent, can be easily ruled out for our world'.
e.g. , complex coefficients are needed in order
to combine linearly polarized photons into cir-
cularly polarized ones. ' More generally, cor-
respondence with classical physics leads to the
commutation relations [p,q] =i@. A formal test,
which will later be extended to distinguish be-
tween complex and quaternion quantum theories,
is the following.
Consider a beam of particles impinging on a

scatterer. Let g, represent the state of the scat-
tered particles, i.e., g, is the difference between
the actual state g and the state (, which we would
have if the scatterer were absent. Assume that

g, is normalized to unit flux. Now, set a detector
at a distance R from the scatterer and let y/R
represent the state for a unit Qux of particles
passing through that detector. Then the cross
section for scattering into our detector is defined
as

where (X, g,) denotes the scalar product of the
states y and P, . If this scalar product is a com-
plex number, we can write

(X, g, )=a, exp(iq, ),
so that

Similar formulas hold for quaternion quantum
theory, with exp(iy, ) replaced by unimodular
quaternion.
Consider now a different scatterer, with scat-

tering amplitude

(X, q, )=a, exp(~, ).
We have likewise

202=a2 .
Finally, if both scatterers are present, we have
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A further interference experiment

A. Peres, Proposed Test for Complex versus Quaternionic Quantum Theory, Phys. Rev. Lett. 42, 11 (1979).

1

2

"click"

3

ρBy measuring combinations
of single- and double-slit
statistics, one can infer
whether ρ is complex or
quaternionic.
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⇒ study general-probabilistic interference experiments
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A. Peres, Proposed Test for Complex versus Quaternionic Quantum Theory, Phys. Rev. Lett. 42, 11 (1979).

1

2

"click"

3

ρBy measuring combinations
of single- and double-slit
statistics, one can infer
whether ρ is complex or
quaternionic.

⇒ study general-probabilistic interference experiments

See Andy's
talk !!
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A further interference experiment

A. Peres, Proposed Test for Complex versus Quaternionic Quantum Theory, Phys. Rev. Lett. 42, 11 (1979).

1

2

"click"

3

ρBy measuring combinations
of single- and double-slit
statistics, one can infer
whether ρ is complex or
quaternionic.

⇒ study general-probabilistic interference experiments

⇒ we will now see that relativity enforces complex QT!
(sometimes)
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are described by quantum theory; instead our postulates
will allow us to derive their structure as represented by
quantum theory.

Our postulates are as follows:

1. Classical Decomposability: Every state of a
physical system can be represented as a probabilis-
tic mixture of perfectly distinguishable states of
maximal knowledge (“pure states”).

2. Strong Symmetry: Every set of perfectly dis-
tinguishable pure states of a given size can be re-
versibly transformed to any other such set of the
same size.

3. No Higher-Order Interference: The interfer-
ence pattern between mutually exclusive “paths”
in an experiment is exactly the sum of the patterns
which would be observed in all two-path subexper-
iments, corrected for overlaps.

4. Observability of Energy: There is non-trivial
continuous reversible time evolution, and the gen-
erator of every such evolution can be associated
to an observable (“energy”) which is a conserved
quantity.

Before discussing their physical interpretation and mo-
tivation in more detail, we point out that all of our pos-
tulates refer to single systems only. This is in contrast to
earlier reconstructions of quantum theory [40, 41, 46, 48]
which rely heavily on properties of composite systems.
Our motivation to rely on single systems is as follows. It
is not clear that the notion of subsystems and their com-
position, as it is often used in information-theoretic cir-
cuit diagrams and category-theoretic considerations, has
fundamental physical significance. Quantum field theo-
ries, for example, need not have this kind of structure.
Assigning subsystems may turn out to be a derived con-
cept, contingent on the ability of an observer to control
certain degrees of freedom in isolation from others, and
independent of possibly more fundamental divisibility no-
tions such as bosonic or fermionic particles.

Moreover, there has recently been a surge of inter-
est in finding compelling physical principles that explain
the specific contextuality behavior of quantum theory as
compared to other probabilistic theories. This line of
research aims at analyzing the single-system analogue
of quantum non-locality, and understanding its specific
characteristics in terms of principles such as “consistent
exclusivity” [52]. Our results also contribute to this line
of research by showing that Postulates 1 and 2 are suffi-
cient to guarantee that systems satisfy consistent exclu-
sivity.

We do not claim that our postulates are the only rea-
sonable ones, but we think that they – like other recent
reconstructions – are more natural than the usual ab-
stract formulations which simply presume Hilbert spaces,
complex numbers, and operators. Moreover, as we dis-
cuss below, we think that our formulation is especially

FIG. 1: Higher-order interference. Consider a particle

which can pass one of M (here: M = 4) slits, where some

of the slits may be blocked by the experimenter (indicated

by the black bars). After passing the multi-slit setup, the

particle may trigger a certain event, for example the click of

a detector localized in a certain area of the screen. We are

interested in the probability pJ of the event, given that slits

J ⊂ {1, 2, . . . ,M} are open (for example p23 in the depicted

setup).

Classically, the probability of such an event given that all

four slits are open, p1234, equals p1 + p2 + p3 + p4, where pi
is the probability assuming than only slit i is open. This

is violated in quantum theory due to interference. How-

ever, even in quantum theory, the total probability can be

computed from contributions of pairs of slits only: we have

p1234 = p12+p13+p14+p23+p24+p34−2p1−2p2−2p3−2p4.
It is in this sense that quantum theory has second-, but no

third- or higher-order interference. The definition of interfer-

ence that we use is not restricted to spatially arranged slits,

but is formulated generally for any set of M perfectly distin-

guishable alternatives in a probabilistic theory.

suitable in the search for interesting and physically rea-
sonable modifications of quantum theory; that is, state
spaces that are not described by the Hilbert space formal-
ism but are otherwise consistent and physically plausible.
Comparison to other reconstructions can help uncover

logical relations between physical structures of our world.
For example, our fourth postulate (observability of en-
ergy) is used to rule out non-complex Hilbert spaces in
this work; in other reconstructions, this role is usually
played by the the postulate of tomographic locality, which
states that joint states on composite systems are uniquely
determined by local measurement statistics and their cor-
relations. Thus, one may argue that there is a logical re-
lationship between tomographic locality and observabil-
ity of energy, and thus ultimately with the fact that we
observe Hamiltonian mechanics in our world.
We will now give a short discussion of the interpreta-

tion of our postulates.
To clarify the terms in Postulate 1, a set of states is

perfectly distinguishable if there is a measurement whose
outcomes can be paired one-to-one with the states so that

1. Interference
Sorkin's hierarchy
Density tensor theories?
An axiomatic approach

2. GPTs and spacetime
Relativistic constraints on interference experiments
Quantum theory and the dimensionality of space
Reverse-engineering physics
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effectively 2-level systems, therefore “bits”, cf. Lemma 19

in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical
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Relativistic constraints on interference experiments

R, C, H, OTwo-level state spaces of quantum theory over
are special cases of ball state spaces:
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Relativistic constraints on interference experiments

Two-level state spaces of quantum theory over
are special cases of ball state spaces:

R, C, H, O 5

FIG. 1: Figure taken from Ref. [25]. State spaces of a generalized
spin or generalized bit (two-level system). The minimal number of
real parameters d is needed to specify the (mixed) state completely.
From left to right: A classical bit with one parameter (the weight p
in the mixture of two bit values), a real bit with two real parame-
ters (state ρ ∈ D(R2) is represented by 2 × 2 real density matrix), a
qubit (quantum bit) with three real parameters (state ρ ∈ D(C2) is
represented by 2×2 complex density matrix) and a and a generalized
bit for which d real parameters are needed to specify the state. In
the classical limit, a theory of elementary system with d parameters
gives rise to physics of macroscopic, classical “fields” embedded in
d-dimensional physical space (see main text).

mension higher than three? Following previous discussions
one can expect that the elementary (two-level) system with the
d-dimensional sphere S(d−1) as state space gives rise to coher-
ent states and “magnetic fields” embedded in a d-dimensional
Euclidean space in the macroscopic limit. Such an elemen-
tary system is non-quantum because it represents a two-level
system with more than three degrees of freedom. Within the
information-theoretic framework of generalized theories, such
generalized bit (here called “generalized spin”) is derived as
the most natural generalization of qubit – the system that is
fundamentally limited to the content of one bit of informa-
tion25,57. Other information-theoretic approaches lead to the
derivation of the same class of systems, e.g. by adopting in-
formation causality60 or continuous reversible dynamics26,28.
The state of generalized spin is represented by a vector in

a d-dimensional real space, x = (x1, . . . , xd). The probability
P1(x, y) to obtain the spin along direction y when the state is
prepared along direction x is expressed trough the generalized
Born rule25:

P1(x, y) =
1
2
(1 + xTy). (7)

The set of pure states satisfy P(x, x) = 1 and is represented
by a unit sphere Sd−1 in d-dimensions (see Figure 1). The
characteristic feature differentiating between the theories is
the number d of parameters required to describe the state com-
pletely. For example, classical probability has one parameter,
real quantum mechanics has two, complex (standard) quan-
tum mechanics has three and the one based on quaternions has
five parameters. A lower-order theory of the single system can
always be embedded in a higher-order ones in the same way
in which classical theory of a bit can be embedded in qubit
theory.
Following the operational approach we assume that the

continuous reversible transformations of macroscopic devices
acting upon the system generates the continuous reversible
transformation of the state of the system. Therefore, the set
of physical transformations is a continuous (Lie) group. Fur-
thermore, if an arbitrary reversible transformation of the states
can be realized manipulating the macroscopic device, then the
group of physical transformations is transitive on a sphere61,62,
i.e. any pure state can be transformed to any other in a con-
tinuous fashion. We will consider minimal group transitive
on Sd−1, which is thus necessarily within the set of physical
transformations (see Appendix B). The existence of such “re-
versible transformations of macroscopic devices” is usually
assumed ad hoc. The aim of this work is exactly to show that
they do no always exist, if the macroscopic devices are not
considered “outside” of the theory, but are required to be ob-
tained from within it in the classical limit.

B. Generalized Spin-Coherent States

Generalized spin-coherent states can be straightforwardly
introduced in generalized probabilistic theories. For every di-
mension d, they are collections of N equally prepared gener-
alized spins. The preparation can be parameterized by a di-
rection "n in a d-dimensional space. Equations (4) and (5),
derived in quantum theory, remain valid here as well. In the
macroscopic limit of large N, the effective description of the
coherent states is that of classical vectors embedded in a d-
dimensional Euclidian space. We address here the question
of whether generalized spin coherent states can generate non-
trivial dynamics of individual spins in the space, similarly as
the one given by equation (6). We will next show that with
pairwise invariant interaction between elementary spins this
is not possible except when d = 3. We then discuss possible
generalizations of our approach to multi-spin invariant inter-
actions that might give rise to non-trivial dynamics in higher-
dimensional spaces.

IV. DYNAMICS AND MACROSCOPIC LIMIT

A. The composite system

In order to describe interactions between two or more gen-
eralized spins we need to introduce a representation of the
composite system. One of the characteristics of both clas-
sical and quantum probabilistic theory is the local tomogra-
phy48–51, namely the property that the global state of a com-
posite system is completely determined by the statistics of lo-
cal measurements. For example, a state of two classical bits
"p = (p00, p01, p10, p11), where e.g. p01 denotes the probability
to obtain “spin up” on the first spin and “spin down” on the
second one, can be equivalently represented by three numbers
(x, y, t):

x = p00 + p01 − p10 − p11, (8)
y = p00 − p01 + p10 − p11, (9)
t = p00 − p01 − p10 + p11. (10)

from B. Dakic, C. Brukner, arXiv:1307.3984

d=5
d=9
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FIG. 1: Figure taken from Ref. [25]. State spaces of a generalized
spin or generalized bit (two-level system). The minimal number of
real parameters d is needed to specify the (mixed) state completely.
From left to right: A classical bit with one parameter (the weight p
in the mixture of two bit values), a real bit with two real parame-
ters (state ρ ∈ D(R2) is represented by 2 × 2 real density matrix), a
qubit (quantum bit) with three real parameters (state ρ ∈ D(C2) is
represented by 2×2 complex density matrix) and a and a generalized
bit for which d real parameters are needed to specify the state. In
the classical limit, a theory of elementary system with d parameters
gives rise to physics of macroscopic, classical “fields” embedded in
d-dimensional physical space (see main text).
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one can expect that the elementary (two-level) system with the
d-dimensional sphere S(d−1) as state space gives rise to coher-
ent states and “magnetic fields” embedded in a d-dimensional
Euclidean space in the macroscopic limit. Such an elemen-
tary system is non-quantum because it represents a two-level
system with more than three degrees of freedom. Within the
information-theoretic framework of generalized theories, such
generalized bit (here called “generalized spin”) is derived as
the most natural generalization of qubit – the system that is
fundamentally limited to the content of one bit of informa-
tion25,57. Other information-theoretic approaches lead to the
derivation of the same class of systems, e.g. by adopting in-
formation causality60 or continuous reversible dynamics26,28.
The state of generalized spin is represented by a vector in

a d-dimensional real space, x = (x1, . . . , xd). The probability
P1(x, y) to obtain the spin along direction y when the state is
prepared along direction x is expressed trough the generalized
Born rule25:

P1(x, y) =
1
2
(1 + xTy). (7)

The set of pure states satisfy P(x, x) = 1 and is represented
by a unit sphere Sd−1 in d-dimensions (see Figure 1). The
characteristic feature differentiating between the theories is
the number d of parameters required to describe the state com-
pletely. For example, classical probability has one parameter,
real quantum mechanics has two, complex (standard) quan-
tum mechanics has three and the one based on quaternions has
five parameters. A lower-order theory of the single system can
always be embedded in a higher-order ones in the same way
in which classical theory of a bit can be embedded in qubit
theory.
Following the operational approach we assume that the

continuous reversible transformations of macroscopic devices
acting upon the system generates the continuous reversible
transformation of the state of the system. Therefore, the set
of physical transformations is a continuous (Lie) group. Fur-
thermore, if an arbitrary reversible transformation of the states
can be realized manipulating the macroscopic device, then the
group of physical transformations is transitive on a sphere61,62,
i.e. any pure state can be transformed to any other in a con-
tinuous fashion. We will consider minimal group transitive
on Sd−1, which is thus necessarily within the set of physical
transformations (see Appendix B). The existence of such “re-
versible transformations of macroscopic devices” is usually
assumed ad hoc. The aim of this work is exactly to show that
they do no always exist, if the macroscopic devices are not
considered “outside” of the theory, but are required to be ob-
tained from within it in the classical limit.

B. Generalized Spin-Coherent States

Generalized spin-coherent states can be straightforwardly
introduced in generalized probabilistic theories. For every di-
mension d, they are collections of N equally prepared gener-
alized spins. The preparation can be parameterized by a di-
rection "n in a d-dimensional space. Equations (4) and (5),
derived in quantum theory, remain valid here as well. In the
macroscopic limit of large N, the effective description of the
coherent states is that of classical vectors embedded in a d-
dimensional Euclidian space. We address here the question
of whether generalized spin coherent states can generate non-
trivial dynamics of individual spins in the space, similarly as
the one given by equation (6). We will next show that with
pairwise invariant interaction between elementary spins this
is not possible except when d = 3. We then discuss possible
generalizations of our approach to multi-spin invariant inter-
actions that might give rise to non-trivial dynamics in higher-
dimensional spaces.

IV. DYNAMICS AND MACROSCOPIC LIMIT

A. The composite system

In order to describe interactions between two or more gen-
eralized spins we need to introduce a representation of the
composite system. One of the characteristics of both clas-
sical and quantum probabilistic theory is the local tomogra-
phy48–51, namely the property that the global state of a com-
posite system is completely determined by the statistics of lo-
cal measurements. For example, a state of two classical bits
"p = (p00, p01, p10, p11), where e.g. p01 denotes the probability
to obtain “spin up” on the first spin and “spin down” on the
second one, can be equivalently represented by three numbers
(x, y, t):

x = p00 + p01 − p10 − p11, (8)
y = p00 − p01 + p10 − p11, (9)
t = p00 − p01 − p10 + p11. (10)
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d=5
d=9

All of them are 2-level state spaces ("hyperbits").
M. Pawlowski and A. Winter, Hyperbits: The information quasiparticles, Phys. Rev. A 85, 022331 (2012).
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   → their structures are closely related!
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Quantum theory and spacetime

Plausible hypothesis:

QT

spacetime

spacetime

QT

unknown
fundamental

theory

spacetime QT

OR OR

• Recall Borivoje Dakic's talk...

• ... and Mauro d'Ariano's talk. 

"The classical limit of a physical theory and the dimensionality of space"

"Information-theoretic principles for QT and QFT" → relativistic covariance emergent.

To me, crucial hint is the spin-1/2 particle:



2. GPTs and spacetime

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Quantum theory and spacetime

spatial rotations

transformations of the
probabilistic state

1:1



2. GPTs and spacetime

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Quantum theory and spacetime

spatial rotations

transformations of the
probabilistic state

1:1

Most physicists are too
used to it to wonder...



2. GPTs and spacetime

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Quantum theory and spacetime

spatial rotations

transformations of the
probabilistic state

1:1

Most physicists are too
used to it to wonder...



2. GPTs and spacetime

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Quantum theory and spacetime

spatial rotations

transformations of the
probabilistic state

1:1

Most physicists are too
used to it to wonder...

MM and Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach,
New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Question: Could a similar 1:1 relation also hold in other
spatial dimensions d≠3 and other probabilistic theories?
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Formulate as information-theoretic task:
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to
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II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Formulate as information-theoretic task:

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems
    are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and
    continuously in time.



2. GPTs and spacetime

 Interference and spacetime: What GPTs can teach us about physics                                                  Markus P. Müller

Quantum theory and spacetime

MM and Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach,
New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems
    are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and
    continuously in time.

Theorem: Then the spatial dimension must be d=3, the systems are qubits, and 
pairs of these systems are quantum 4-level systems evolving unitarily in time.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems
    are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and
    continuously in time.

One more Theorem: If "spatial direction"                            is replaced by "spatial
orientation"                      then there is no solution (for topological reasons).

x ∈ Rd, |x| = 1,
X ∈ SO(d),
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effectively 2-level systems, therefore “bits”, cf. Lemma 19

in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical

Physicist Alice wants to determine the
angle between two measurement devices.
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effectively 2-level systems, therefore “bits”, cf. Lemma 19

in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical

Physicist Alice wants to determine the
angle between two measurement devices.

Problem: She doesn't have rulers,
protractors etc. (maybe her laboratory
space doesn't even have a metric!)
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in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical

Physicist Alice wants to determine the
angle between two measurement devices.

Problem: She doesn't have rulers,
protractors etc. (maybe her laboratory
space doesn't even have a metric!)

Solution: There is a protocol to determine
the angle from comparing measurement
outcome probabilities on (random) states.
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Spatial coordinates from probabilities

MM and Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach,
New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Appendix C

4

effectively 2-level systems, therefore “bits”, cf. Lemma 19

in the appendix). We will not specify by what type of

physical object they are carried – a direction bit could, for

example, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y ∈ Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (ω) to obtain the i-th outcome depends

only on the direction bit state ω and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R ∈ SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected to

any SO(d) rotation. Due to some symmetry of the de-

vice, its orientation in space (locally in the lab) may be

described by a unit vector y ∈ Rd
, |y| = 1, choosing some

arbitrary but fixed coordinate system in the local labo-

ratory. Instead of naively thinking of the whole device

as “pointing in direction y”, we may also think that one

of the device’s components is a vectorial physical quan-

tity which determines the type of measurement that is

performed. A standard example in three dimensions is

given by a Stern-Gerlach device, where y is the direction

of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is

trivial, and thus no one-dimensional rotation can map

the unit vector +1 ∈ R1
to the unit vector −1 ∈ R1

. In

order to allow Bob to collimate his device in all directions

also in d = 1, we will thus silently replace SO(1) by

O(1) = {1,−1} in all of the following.

Since the measurement which is performed by the de-

vice may depend on its direction y in space, it is denoted

My. In the following, by a “direction”, we shall always

mean a unit vector in Rd
. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (ω) are

continuous in the direction y.

Physically, we assume that we can perform a rotation

R ∈ SO(d) to the measurement device without touch-

ing the direction bit; this transforms My to MRy, but

leaves the bit’s state ω invariant. The fact that the out-

come probabilities are altered, from M(i)
y (ω) to M(i)

Ry(ω),
should be understood as a result of the change in the

relative orientation of the bit and the device. Thus,

even though direction bits are considered as informa-

tional “black boxes” with arbitrary physical realization,

we are forced to adopt the interpretation that direction

bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from

quantum mechanics. Suppose that, after rotating the

measurement device by R, we do not perform the mea-

surement, but instead rotate the joint system of direction
bit and measurement device back by R−1

. If it is phys-

ically unclear how to do this in practice, we can just

imagine performing a passive coordinate transformation.

Since this transformation does not change the relative

direction of the system and measurement apparatus, it

does not alter the outcome probabilities. However, by

changing to the new coordinate system, MRy has been

transformed back to My, hence the direction bit state

must have changed from ω to some other state ω�
such

thatM(i)
y (ω�

) = M(i)
Ry(ω). The state transformation ω �→

ω�
can be physically undone (by rotating the joint system

again by R), hence it must be an element of the group

of reversible transformations on Ωd. We call it GR−1 ,

such that we can switch from the “Heisenberg” to the

“Schrödinger” picture via

M(i)
Ry(ω) = M(i)

y (GR−1ω).

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction

bit state space.

Now suppose we have a situation where two agents (Al-

ice and Bob) reside in distant laboratories as depicted in

Fig. 1. Imagine that Alice holds an actual physical vector

x ∈ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information

to Bob. Since Alice and Bob have never met, they have

never agreed on a common coordinate system. Thus, it is

useless for Bob if Alice sends him a classical description

of x, because he does not know what coordinate system

the description is referring to.

However, if Bob holds a measurement device as in

Fig. 4, Alice can send him a direction bit in some state

ω. As usual in information theory (taking into account

the statistical definition of states), we analyze the prop-

erties of a single state ω by considering many identical

Physicist Alice wants to determine the
angle between two measurement devices.

Problem: She doesn't have rulers,
protractors etc. (maybe her laboratory
space doesn't even have a metric!)

Solution: There is a protocol to determine
the angle from comparing measurement
outcome probabilities on (random) states.

⇒ Probabilities deliver Euclidean structure for free.
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Reverse-engineering physics

Let's understand physics by analyzing
how its parts (logically) work together.

The Bloch ball is 3-dimensional because of...
• ... Minkowski structure on interferometers?
• ... locally-tomographic continuous interaction?
• ... 3-dimensionality of space?
• ... "observability of energy", that is, the possibility of
        Hamiltonian dynamics? (Cf. Howard's talk.)

There cannot be two independent reasons for a single fact.
Ultimately, all those points must be fundamentally related.
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• The quest for higher-order interference theories is
   experimentally relevant, and still open...
• ... an axiomatic approach might help.

H. Barnum, MM, and C. Ududec, arXiv:1403.4147

• In some situations, relativity forces the Bloch ball to be 3D.
• Spacetime and quantum theory are closely related, and
   GPTs allow us to prove rigorous results on this.

MM and Ll. Masanes, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Thank you!


