# Thermalization and canonical typicality in translation-invariant quantum lattice systems

Markus Müller\*

Institute for Theoretical Physics, Heidelberg University (Germany)

joint work with Emily Adlam, Lluís Masanes, Nathan Wiebe

### arXiv:1312.7420





### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



Outline

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

very sketchy overview

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



Outline

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

very sketchy overview

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems

### on blackboard

Outline

Thermalization and canonical typicality in translation-invariant quantum lattice systems

We prove our results by combining

### Traditional mathematical physics techniques

- Quasilocal algebra
- KMS-Gibbs states
- Equivalence of ensembles
- Thermodynamic limit

## More recent quantum information techniques

- Random pure quantum states
- Concentration of measure
- Quantum pseudorandomness
- Lieb-Robinson bounds



#### Outline

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### 1. How do quantum systems thermalize?



 $|\psi(t)\rangle = \exp(-iHt)|\psi(0)\rangle$ 



E. Schrödinger



J. von Neumann



1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### 1. How do quantum systems thermalize?



 $|\psi(t)\rangle = \exp(-iHt)|\psi(0)\rangle$ 



E. Schrödinger



J. von Neumann

- New experimental methods (cold atoms in optical lattices),
- novel numerical techniques,
- new mathematical insights from quantum information theory.



1. Thermalization

### 1. How do quantum systems thermalize?



 $|\psi(t)\rangle = \exp(-iHt)|\psi(0)\rangle$ 



1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems

 $|\psi(t)\rangle \in R,$ 

for example



 $|\psi(t)\rangle = \exp(-iHt)|\psi(0)\rangle$ 

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems



 $R = \operatorname{span}\{|E\rangle \mid E_0 \le E \le E_0 + \Delta\}$ 





 $|\psi\rangle \in R,$ for example  $R = \operatorname{span}\{|E\rangle \mid E_0 \leq E \leq E_0 + \Delta\}$ 

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems





 $ert \psi 
angle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span} \{ ert E 
angle \mid E_0 \leq E \leq E_0 + \Delta \}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a "typical" / random state  $|\psi\rangle \in \mathbb{R}$ .

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).



Thermalization and canonical typicality in translation-invariant quantum lattice systems





 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ 

for example

 $R = \operatorname{span}\{|E\rangle \mid E_0 \le E \le E_0 + \Delta\}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a "typical" / random state  $|\psi\rangle \in \mathbf{R}$ .



All pure states in *R*: complex sphere. Can draw a random state by picking a random point.

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems





 $ert \psi 
angle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span} \{ ert E 
angle \mid E_0 \leq E \leq E_0 + \Delta \}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a "typical" / random state  $|\psi\rangle \in \mathbb{R}$ .

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).



Thermalization and canonical typicality in translation-invariant quantum lattice systems





 $ert \psi 
angle \in \mathbf{R} \subset S \otimes E,$ for example  $R = \operatorname{span}\{ ert E 
angle \mid E_0 \leq E \leq E_0 + \Delta \}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a "typical" / random state  $|\psi\rangle \in R$ . Since it is entangled,  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$  is typically mixed.

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).



Thermalization and canonical typicality in translation-invariant quantum lattice systems

1. Thermalization



 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span}\{|E\rangle \mid E_0 \le E \le E_0 + \Delta\}$  $H = H_S + H_E + H_{\text{int}}$ Thermalization from Consider a "typical" / random state  $|\psi\rangle \in \mathbf{R}$ . entanglement

Since it is entangled,  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$  is typically mixed.

**Goldstein et al.**: This state is actually thermal:  $\rho_S \approx \exp(-\beta H_S)/Z.$ 

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).

Thermalization and canonical typicality in translation-invariant quantum lattice systems

Markus P. Müller



 $\frac{1}{k_{\rm P}T}$ 



Thermalization and canonical typicality in translation-invariant quantum lattice systems



 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ 

for example

 $R = \operatorname{span}\{|E\rangle \mid E_0 \le E \le E_0 + \Delta\}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a random state  $|\psi\rangle \in \mathbb{R}$ . Let  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$ .

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).







 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span}\{|E\rangle \mid E_0 \leq E \leq E_0 + \Delta\}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a random state  $|\psi\rangle \in \mathbb{R}$ . Let  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$ .

**Theorem (Popescu et al.):** There is a state  $\Omega_S$  such that  $\operatorname{Prob}\left[\|\rho_S - \Omega_S\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right] \le 2 \exp(-d_R \varepsilon^2 / 559).$ 

S. Popescu, A. J. Short, and A. Winter, Nature Physics 2, 754 (2006).







 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span}\{|E\rangle \mid E_0 \leq E \leq E_0 + \Delta\}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a random state  $|\psi\rangle \in \mathbb{R}$ . Let  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$ .

**Theorem** (Popescu et al.): There is a state  $\Omega_S$  such that  $\operatorname{Prob}\left[\|\rho_S - \Omega_S\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right] \le 2 \exp(-d_R \varepsilon^2 / 559).$  **This state**  $\Omega_S$  is not thermal in general. S. Popescu, A. J. Short, and A. Winter, Nature Physics 2, 754 (2006).

1. Thermalization





 $|\psi\rangle \in \mathbb{R} \subset S \otimes E,$ 

for example

 $R = \operatorname{span}\{|E\rangle \mid E_0 \le E \le E_0 + \Delta\}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a random state  $|\psi\rangle \in \mathbb{R}$ . Let  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$ .

A. Riera, C. Gogolin, and J. Eisert, Phys. Rev. Lett. 108, 080402 (2012)



1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems



 $ert \psi 
angle \in \mathbb{R} \subset S \otimes E,$ for example  $R = \operatorname{span} \{ ert E 
angle \mid E_0 \leq E \leq E_0 + \Delta \}$  $H = H_S + H_E + H_{\operatorname{int}}$ 

Consider a random state  $|\psi\rangle \in \mathbb{R}$ . Let  $\rho_S := \text{Tr}_E |\psi\rangle \langle \psi|$ .

**Theorem** (Riera et al.): W/ high probability,  $\rho_S$  is close to thermal if • the spectrum of  $H_E$  satisfies some complicated conditions, and

• the interaction strength  $||H_{int}||$  is tiny.

Conditions not satisfied in most interesting models.

A. Riera, C. Gogolin, and J. Eisert, Phys. Rev. Lett. 108, 080402 (2012)

1. Thermalization





Specialize to translation-invariant models, finite-range interaction.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.

1. Thermalization





Specialize to translation-invariant models, finite-range interaction.

For example Heisenberg model:

$$H = -J \sum_{i=1}^{n-1} \vec{\sigma}_i \cdot \vec{\sigma}_{i+1} - h \sum_{i=1}^n \sigma_i^Z.$$



MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Specialize to translation-invariant models, finite-range interaction.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.

1. Thermalization





### Specialize to translation-invariant models, finite-range interaction.



Cubic lattice; e.g.  $\Lambda_n = [1, n] \times [1, n] \subset \mathbb{Z}^2$ . Hamiltonian  $H_{\Lambda_n}$ .

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



Thermalization and canonical typicality in translation-invariant quantum lattice systems



Specialize to translation-invariant models, finite-range interaction.



Cubic lattice; e.g.  $\Lambda_n = [1, n] \times [1, n] \subset \mathbb{Z}^2$ . Hamiltonian  $H_{\Lambda_n}$ .

Random state w/ energy density close to u.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.







Specialize to translation-invariant models, finite-range interaction.



 $|\psi\rangle \in$ 

Cubic lattice; e.g.  $\Lambda_n = [1, n] \times [1, n] \subset \mathbb{Z}^2$ . Hamiltonian  $H_{\Lambda_n}$ .

Random state w/ energy density close to u. Small subsystem  $\Lambda$ .

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.







Specialize to translation-invariant models, finite-range interaction.



Cubic lattice; e.g.  $\Lambda_n = [1, n] \times [1, n] \subset \mathbb{Z}^2$ . Hamiltonian  $H_{\Lambda_n}$ .

Random state w/ energy density close to u. Small subsystem  $\Lambda$ .

Assumption: at inverse temperature  $\beta$ corresponding to *u*, there is a unique phase.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems

density

Specialize to translation-invariant models, finite-range interaction.



Cubic lattice; e.g.  $\Lambda_n = [1, n] \times [1, n] \subset \mathbb{Z}^2$ . Hamiltonian  $H_{\Lambda_n}$ .

Random state w/ energy density close to u. Small subsystem  $\Lambda$ .

Assumption: at inverse temperature  $\beta$  corresponding to u, there is a unique phase.



Specialize to translation-invariant models, finite-range interaction.



| Theorem: Then, with high probability,                                                                                                                                      |    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| $\operatorname{Tr}_{\Lambda_n \setminus \Lambda}  \psi\rangle \langle \psi  \approx \operatorname{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta H_{\Lambda_n})}{Z},$ |    |  |  |  |  |
| and the distance goes to zero as $n \to \infty$ .                                                                                                                          |    |  |  |  |  |
| MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.                                                                                                                  |    |  |  |  |  |
| 1. Thermalization                                                                                                                                                          |    |  |  |  |  |
| hermalization and canonical typicality in translation-invariant quantum lattice systems Markus P Müller                                                                    | 77 |  |  |  |  |

Specialize to translation-invariant models, finite-range interaction.



Thermalization from entanglement

| <b>Theorem</b> : Then, with high probability,                                                                                                                                                                       |                   |  |  |                  |                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|------------------|----------------|--|--|
| $\mathrm{Tr}_{\Lambda_n \setminus \Lambda}  \psi\rangle \langle \psi  \approx \mathrm{Tr}_{\Lambda_n \setminus \Lambda} \frac{\exp(-\beta H_{\Lambda_n})}{Z},$<br>and the distance goes to zero as $n \to \infty$ . |                   |  |  |                  |                |  |  |
| MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.                                                                                                                                                           |                   |  |  |                  |                |  |  |
|                                                                                                                                                                                                                     | 1. Thermalization |  |  |                  |                |  |  |
| nermalization and canonical typicality in translation-invariant quantum lattice systems                                                                                                                             |                   |  |  | Markus P. Müller | F + 110118 -71 |  |  |

Similar results can be shown for dynamical thermalization.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Similar results can be shown for dynamical thermalization.

Using A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012) We show:

**Theorem:** If the initial state  $|\psi(0)\rangle$  occupies a large number of energy levels, and some other technical conditions are met, then

 $\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |\psi(t)\rangle \langle \psi(t)|$ 

is close to thermal for most times t.

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.

1. Thermalization

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Similar results can be shown for dynamical thermalization.

Using A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012) we show:



### Natural improvement: eigenstate thermalization



Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Natural improvement: eigenstate thermalization



### Natural improvement: eigenstate thermalization



### 

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



1. Thermalization

#### Thermalization and canonical typicality in translation-invariant quantum lattice systems

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems





2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



### Do global energy eigenstates locally look thermal?



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Do global energy eigenstates locally look thermal?



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Do global energy eigenstates locally look thermal?

### Eigenstate thermalization hypothesis

J. M. Deutsch, *Quantum statistical mechanics in a closed system*, Phys. Rev. A **43**, 2046 (1991). M. Srednicki, *Chaos and quantum thermalization*, Phys. Rev. E **50**, 888 (1994).



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Do global energy eigenstates locally look thermal?

As before, we should *not* expect that  $\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \approx \gamma_{\Lambda}$ where  $\gamma_{\Lambda} = \exp(-\beta H_{\Lambda})/Z$ .



2. Eigenstate therm.





2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



**Conjecture**: Under some additional assumptions on *H*,

$$\operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \approx \operatorname{Tr}_{\Lambda_{\mathrm{shell}}} \frac{\exp(-\beta H_{\Lambda'})}{Z},$$

and the distance goes to zero as  $n \rightarrow \infty$  and (more slowly)  $/ \rightarrow \infty$ .

We cannot prove this. But:

2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



**Theorem 4.** There is a state  $\omega_E$  on  $\Lambda'$  such that

$$\left\| \operatorname{Tr}_{\Lambda_{\mathrm{shell}}}(\omega_E) - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \right\|_1 \leq \kappa \cdot e^{-c(l-r)/2},$$

where  $\kappa = 2AJ(CA + 2)\sqrt{\frac{l-r}{8cv^2}}$  and  $J = \max_X ||h_X||$ , which is weakly diagonal in the eigenbasis  $\{|e\rangle\}$  of  $H_{\Lambda'}$ , i.e.

$$|\langle e_1 | \omega_E | e_2 \rangle| \le e^{-(l-r)(e_1 - e_2)^2 / (8cv^2)}.$$

MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



MM, E. Adlam, Ll. Masanes, and N. Wiebe, arXiv:1312.7420.



2. Eigenstate therm.



The other constants come from the Lieb-Robinson bound.



2. Eigenstate therm.



X, Y observables on  $\mathcal{X}, \mathcal{Y}$ .  $X(t) = e^{iHt} X e^{-iHt}$ .



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



X, Y observables on  $\mathcal{X}, \mathcal{Y}$ .  $X(t) = e^{iHt} X e^{-iHt}.$ 

Lieb-Robinson bound: there are constants c, C, v > 0 such that  $\| [X(t), Y] \| \leq C \| X \| \cdot \| Y \| \cdot \min\{ |\mathcal{X}|, |\mathcal{Y}|\} e^{-c(\Delta - v|t|)}.$ 



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



X, Y observables on  $\mathcal{X}, \mathcal{Y}$ .  $X(t) = e^{iHt} X e^{-iHt}.$ 

Lieb-Robinson bound: there are constants c, C, v > 0 such that  $\| [X(t), Y] \| \leq C \| X \| \cdot \| Y \| \cdot \min\{ |\mathcal{X}|, |\mathcal{Y}|\} e^{-c(\Delta - v|t|)}.$ 

→ finite speed of signal transmission in quantum systems with finite interaction range.



2. Eigenstate therm.



**Theorem 4.** There is a state  $\omega_E$  on  $\Lambda'$  such that

$$\left\| \operatorname{Tr}_{\Lambda_{\mathrm{shell}}}(\omega_E) - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \right\|_1 \leq \kappa \cdot e^{-c(l-r)/2},$$

where  $\kappa = 2AJ(CA + 2)\sqrt{\frac{l-r}{8cv^2}}$  and  $J = \max_X ||h_X||$ , which is weakly diagonal in the eigenbasis  $\{|e\rangle\}$  of  $H_{\Lambda'}$ , i.e.

$$|\langle e_1 | \omega_E | e_2 \rangle| \le e^{-(l-r)(e_1 - e_2)^2 / (8cv^2)}.$$



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Weak eigenstate thermalization: physical interpretation





2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Weak eigenstate thermalization: physical interpretation



• Lieb-Robinson: result will in  $\Lambda$  still look very much as if  $|E\rangle\langle E|$  evolved under the full Hamiltonian  $H_{\Lambda_n}$ 

$$\Rightarrow \mathrm{Tr}_{\Lambda_{\mathrm{shell}}} \omega_E \approx \mathrm{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E|.$$



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Weak eigenstate thermalization: physical interpretation



• Lieb-Robinson: result will in  $\Lambda$  still look very much as if  $|E\rangle\langle E|$  evolved under the full Hamiltonian  $H_{\Lambda_n}$ 

$$\Rightarrow \operatorname{Tr}_{\Lambda_{\mathrm{shell}}} \omega_E \approx \operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E|.$$

• Decoherence across boundary of  $\Lambda$ ' suppresses off-diag.:  $|e_1 - e_2| \gg 1 \Rightarrow |\langle e_1 | \omega_E | e_2 \rangle| \approx 0.$ 



2. Eigenstate therm.

### Weak eigenstate thermalization: proof sketch





2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Weak eigenstate thermalization: proof sketch



### Decoherence across boundary:

$$\langle e_1 | \omega_E | e_2 \rangle = \int dt \, g(t) \, e^{-i(e_1 - e_2)t} \, \langle e_1 | \operatorname{Tr}_{\bar{\Lambda}'}(|E\rangle \langle E|) | e_2 \rangle$$
$$= e^{-(e_1 - e_2)^2 \sigma^2 / 2} \langle e_1 | \operatorname{Tr}_{\bar{\Lambda}'}(|E\rangle \langle E|) | e_2 \rangle.$$



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### Weak eigenstate thermalization: proof sketch



Local similarity to eigenstate: long chain of inequalities.

$$\begin{aligned} \left\| e^{-iHt} e^{i(H-H_A)t} X e^{-i(H-H_A)t} e^{iHt} - X \right\|_{\infty} &= \left\| \int_0^t dt_1 \frac{\partial}{\partial t_1} \left( e^{-iHt_1} e^{i(H-H_A)t_1} X e^{-i(H-H_A)t_1} e^{iHt_1} \right) \right\|_{\infty} \\ &\leq \int_0^{|t|} dt_1 \left\| \left[ H_A , e^{iH_{\Lambda'}t_1} X e^{-iH_{\Lambda'}t_1} \right] \right\|_{\infty} .\end{aligned}$$

Use Lieb-Robinson bound.

2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



**Theorem 4.** There is a state  $\omega_E$  on  $\Lambda'$  such that

$$\left\| \operatorname{Tr}_{\Lambda_{\mathrm{shell}}}(\omega_E) - \operatorname{Tr}_{\Lambda_n \setminus \Lambda} |E\rangle \langle E| \right\|_1 \leq \kappa \cdot e^{-c(l-r)/2},$$

where  $\kappa = 2AJ(CA + 2)\sqrt{\frac{l-r}{8cv^2}}$  and  $J = \max_X ||h_X||$ , which is weakly diagonal in the eigenbasis  $\{|e\rangle\}$  of  $H_{\Lambda'}$ , i.e.

$$|\langle e_1 | \omega_E | e_2 \rangle| \le e^{-(l-r)(e_1 - e_2)^2 / (8cv^2)}.$$



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems



Need more assumptions. (Translation-invariance! Non-integrability?)



2. Eigenstate therm.

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



2. Eigenstate therm.

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems



3. Math. details

Thermalization and canonical typicality in translation-invariant quantum lattice systems

### 1. How do quantum systems thermalize?

New approaches to old questions Canonical typicality Dynamical thermalization

### 2. Weak eigenstate thermalization

Lieb-Robinson bounds Weak ETH: physical interpretation Weak ETH: proof sketch

### 3. Some math. details on part 1

Detailed theorems and proof sketches Finite-size bounds for non-interacting systems

### On blackboard.





3. Math. details

Thermalization and canonical typicality in translation-invariant quantum lattice systems