A resource-theoretic approach to thermodynamics

Markus P. Müller

Departments of Applied Mathematics and Philosophy, Western U

Drawing by Lidia del Rio, http://www.itp.phys.ethz.ch/itp/itp/people/delriol

Outline

1. Motivation

What is a resource theory? Why and how thermo as a RT?

- 2. The resource theory of athermality Definition, results, surprises.
- 3. Extracting work from absence of correlations How to do more by knowing less...

A resource-theoretic approach to thermodynamics

1. Motivation

A resource-theoretic approach to thermodynamics

1. Motivation

A resource-theoretic approach to thermodynamics

1. Motivation

A resource-theoretic approach to thermodynamics

Alice and Bob are very far apart, so

- they can only act locally on the particle pair,
- can only produce new states of the form $|\varphi_A\rangle|\psi_B\rangle$,
- can talk on the telephone.

1. Motivation

A resource-theoretic approach to thermodynamics

Alice and Bob are very far apart, so

- they can only act locally on the particle pair,
- can only produce new states of the form $|\varphi_A\rangle|\psi_B\rangle$,
- can exchange classical information.

1. Motivation

A resource-theoretic approach to thermodynamics

Alice and Bob are very far apart, so

- they can only act locally on the particle pair,
- can only produce new states of the form $|\varphi_A\rangle|\psi_B\rangle$,
- can exchange classical information.

Under these restrictions, what can they do?

For example, can they transform $|\varphi\rangle \longrightarrow |\psi\rangle$?

1. Motivation

A resource-theoretic approach to thermodynamics

Alice and Bob are very far apart, so

- they can only act locally on the particle pair,
- can only produce new states of the form $|\varphi_A\rangle|\psi_B\rangle$,
- can exchange classical information.

Under these restrictions, what can they do? For example, can they transform $|\varphi\rangle \longrightarrow |\psi\rangle$?

1. Motivation

A resource-theoretic approach to thermodynamics

Free states / objects: $|\varphi_A\rangle|\psi_B\rangle$ (all other states are resources). Allowed transformations: local operations + classical communication

1. Motivation

A resource-theoretic approach to thermodynamics

Free states / objects: $|\varphi_A\rangle|\psi_B\rangle$ (all other states are resources). Allowed transformations: local operations + classical communication

Questions: can we transform $|\psi_1\rangle$ to $|\psi_2\rangle$? How many copies of $|\psi_1\rangle$ do we need to obtain *n* copies of

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

Free operations: cutting, mixing etc. Free objects: water, electricity,...?

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

Free operations: cutting, mixing etc. Free objects: water, electricity,...?

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

Free operations: cutting, mixing etc. Free objects: water, electricity,...?

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

Free operations: cutting, mixing etc. Free objects: water, electricity,...?

Resource theory of chemistry

1. Motivation

A resource-theoretic approach to thermodynamics

Resource theory of cooking

Free operations: cutting, mixing etc. Free objects: water, electricity,...?

Resource theory of chemistry

Category-theoretic formulation: B. Coecke, T. Fritz, R. W. Spekkens, A mathematical theory of resources,

arXiv:1409.5531

1. Motivation

A resource-theoretic approach to thermodynamics

1. Motivation

A resource-theoretic approach to thermodynamics

Thought experiment: single particle in a box

1. Motivation

A resource-theoretic approach to thermodynamics

Thought experiment: single particle in a box

State of particle:

$$\left(\begin{array}{c} \operatorname{Prob}(L) \\ \operatorname{Prob}(R) \end{array}\right)$$

1. Motivation

A resource-theoretic approach to thermodynamics

Thought experiment: single particle in a box

State of particle:

 $\left(\begin{array}{c} \operatorname{Prob}(L) \\ \operatorname{Prob}(R) \end{array}\right)$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Know for sure the particle is left → can extract energy by expansion

1. Motivation

Thought experiment: single particle in a box

State of particle:

 $\left(\begin{array}{c} \operatorname{Prob}(L) \\ \operatorname{Prob}(R) \end{array}\right)$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Know for sure the particle is left → can extract energy by expansion

1. Motivation

Thought experiment: single particle in a box

1. Motivation

A resource-theoretic approach to thermodynamics

Thought experiment: single particle in a box

1. Motivation

A resource-theoretic approach to thermodynamics

Markus P. Müller

Western

Thought experiment: single particle in a box

Erasing 1 bit of information costs work.

1. Motivation

A resource-theoretic approach to thermodynamics

This suggests that

- the objects of the theory are the observer's states of knowledge, i.e. probability distributions (on microstates),
- the free transformations are the microscopically reversible transformations (e.g. $L \leftrightarrow R$),

1. Motivation

This suggests that

- the objects of the theory are the observer's states of knowledge, i.e. probability distributions (on microstates),
- the free transformations are the microscopically reversible transformations (e.g. $L \leftrightarrow R$),

• the free states are $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ or more generally $\begin{pmatrix} 1/1 \\ \vdots \\ 1/N \end{pmatrix}$

Something's missing: $\begin{pmatrix} p_1 \\ \vdots \\ p_N \end{pmatrix}$ and energies $\begin{pmatrix} E_1 \\ \vdots \\ E_N \end{pmatrix}$.

1. Motivation

A resource-theoretic approach to thermodynamics

This suggests that

- the objects of the theory are the observer's states of knowledge, i.e. probability distributions (on microstates),
- the free transformations are the microscopically reversible energy-preserving transformations (e.g. $L \leftrightarrow R$),
- the free states are $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ or more generally

the thermal states (Gibbs states)

$$\frac{1}{Z} \left(\begin{array}{c} e^{-E_1/(k_B T)} \\ \vdots \\ e^{-E_N/(k_B T)} \end{array} \right)$$

1. Motivation

A resource-theoretic approach to thermodynamics

Why?

1. Motivation

A resource-theoretic approach to thermodynamics

Why?

The inverse process is not dynamically impossible, but hard for us to implement.

→ Thermodynamics derives from limited knowledge about the physical system (thus, lack of control), together with energy conservation and microscopic reversibility.

1. Motivation

Why?

R.T.: maximal generality; clear mathematical "rules of the game"

Reproduces and refines results of standard non-equilibrium thermodynamics.

1. Motivation

A resource-theoretic approach to thermodynamics

Outline

1. Motivation

What is a resource theory? Why and how thermo as a RT?

- 2. The resource theory of athermality Definition, results, surprises.
- 3. Extracting work from absence of correlations How to do more by knowing less...

1. Motivation

A resource-theoretic approach to thermodynamics

Outline

1. Motivation

What is a resource theory? Why and how thermo as a RT?

2. The resource theory of athermality

Definition, results, surprises.

3. Extracting work from absence of correlations

How to do more by knowing less...

2. Resource theory of athermality

2. Resource theory of athermality: precise definition

Remember:

- the objects of the theory are the observer's states of knowledge, i.e. probability distributions (on microstates),
- the free transformations are the microscopically reversible energy-preserving transformations (e.g. $L \leftrightarrow R$),
- the free states are $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ or more generally

the thermal states (Gibbs states)

$$r = \frac{1}{Z} \left(\begin{array}{c} e^{-E_1/(k_B T)} \\ \vdots \\ e^{-E_N/(k_B T)} \end{array} \right)$$

2. Resource theory of athermality

2. Resource theory of athermality: precise definition

Remember:

- the objects of the theory are the observer's states of knowledge, i.e. probability distributions (on microstates),
- the free transformations are the microscopically reversible energy-preserving transformations (e.g. $L \leftrightarrow R$),

• the free states are $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ or more generally

the thermal states (Gibbs states)

$$=\frac{1}{Z}\left(\begin{array}{c}e^{-E_1/(k_BT)}\\\vdots\\e^{-E_N/(k_BT)}\end{array}\right)$$

The resulting transformations are called thermal operations:

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

 $\beta := 1/(k_B T)$ is now fixed.

Definition. A map Φ on a physical system S is a *thermal operation* if there is another (ancilla) system A with energy levels (E_1, \ldots, E_N) and thus Gibbs state $\gamma_A = (e^{-\beta E_1}, \ldots, e^{-\beta E_n})/Z$, and an energy-preserving permutation π on SA such that

 $\Phi(p_S) = (\pi[p_S \otimes \gamma_A])_S.$

2. Resource theory of athermality
$\beta := 1/(k_B T)$ is now fixed.

Definition. A map Φ on a physical system S is a *thermal operation* if there is another (ancilla) system A with energy levels (E_1, \ldots, E_N) and thus Gibbs state $\gamma_A = (e^{-\beta E_1}, \dots, e^{-\beta E_n})/Z$, and an energy-preserving permutation π on SA such that

 $\Phi(p_S) = (\pi[p_S \otimes \gamma_A])_S.$

Slightly more general: catalytic thermal operation.

A resource-theoretic approach to thermodynamics

Completely general: $p_S = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ could mean

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

To be applicable, microstates should have well-defined energy... ... and those of identical energy should be permutable dynamically

2. Resource theory of athermality

To be applicable, microstates should have well-defined energy... ... and those of identical energy should be permutable dynamically

2. Resource theory of athermality

To be applicable, microstates should have well-defined energy... ... and those of identical energy should be permutable dynamically

2. Resource theory of athermality

One can also allow quantum coherences, $\alpha |0\rangle + \beta |1\rangle$

→ (quantum) thermodynamics "at the nano scale"

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

One can also allow quantum coherences, $\alpha |0\rangle + \beta |1\rangle$

→ (quantum) thermodynamics, not necessarily "at the nano scale"

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Work extraction: what is the largest possible W such that

within the rules of the resource theory?

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Work extraction: what is the largest possible W such that

by a catalytic thermal operation?

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

by a catalytic thermal operation?

2. Resource theory of athermality

by a catalytic thermal operation, if we allow a small probability $\varepsilon > 0$ of error?

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

by a catalytic thermal operation, if we allow a small probability $\varepsilon > 0$ of error?

Work cost: what is the smallest possible W such that

A resource-theoretic approach to thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

where F_{α} is the Rényi α -free energy:

$$F_{\alpha}(p_S) = k_B T \left(\frac{\operatorname{sgn} \alpha}{\alpha - 1} \log \sum_{i} p_i^{\alpha} \exp\left(\frac{-E_i(1 - \alpha)}{k_B T}\right) \right) - k_B T \log Z,$$

and
$$F_1(p_S) = F(p_S) = \langle E \rangle - k_B T S(p_S)$$

is the "standard" free energy.

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1, 0)$ and two identical energies, $W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1,0)$ and two identical energies,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}!$

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1,0)$ and two identical energies,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}$! $F_0 \qquad F = F_1 \qquad F_{\infty}$ work

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

Landauer's Principle: if $p_S = (1,0)$ and two identical energies,

$$W_{\text{extr}} = W_{\text{cost}} = k_B T \ln 2.$$

However, in general $W_{extr}^{\varepsilon} \ll W_{cost}^{\varepsilon}$! F_0 $F = F_1$ F_{∞} work

Fundamental thermodynamical irreversibility!

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

But: in the thermodynamic limit,
$$n \text{ independent copies of } p_S$$

$$\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$$

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Theorem: The extractable work and work cost are

$$W_{\text{extr}} = k_B T \left(F_0^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

$$W_{\text{cost}} = k_B T \left(F_{\infty}^{\varepsilon}(p_S) - F(\gamma_S) \right),$$

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles eat bath, temperature eat bath, temperature eat bath, temperature eat bath, temperature heat bath, temperature T 2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles at bath temperature ideal gas; $\frac{W_{\text{extr}}}{n} = \frac{W_{\text{cost}}}{n} = F(p_S) - F(\gamma_S).$ heat bath, temperature T 2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Work extraction and work cost *n* independent copies of p_S But: in the thermodynamic limit, $\lim_{n \to \infty} \frac{1}{n} F_{\alpha}^{\varepsilon}(p_S^{\otimes n}) = F(p_S).$ n independent single particles ideal gas; $\frac{W_{\text{extr}}}{n} = \frac{W_{\text{cost}}}{n} = F(p_S) - F(\gamma_S).$ thermodynamical reversibility emerges ! heat bath, temperature T 2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

ideal gas;

$$\frac{W_{\text{extr}}}{n} = \frac{W_{\text{cost}}}{n} = F(p_S) - F(\gamma_S).$$
thermodynamical
reversibility
emerges !

Remember: nowhere have we actually used that we have a gas.

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

The second law(s)

Theorem: A transition $p_S \to p'_S$ is possible if and only if $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All a-free energies must go down!

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Theorem: A transition $p_S \to p'_S$ is possible if and only if $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All a-free energies must go down!

Consequence: some states are incomparable, i.e. neither $p_S \rightarrow p'_S$ nor $p'_S \rightarrow p_S$.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Theorem: A transition $p_S \to p'_S$ is possible if and only if $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All a-free energies must go down!

Consequence: some states are incomparable, i.e.

neither $p_S \to p'_S$ nor $p'_S \to p_S$.

Again, in the thermodynamic limit, it all collapses to $F(p_S) \ge F(p'_S)$.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Theorem: A transition $p_S \to p'_S$ is possible if and only if $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

All a-free energies must go down!

Consequence: some states are incomparable, i.e.

neither $p_S \to p'_S$ nor $p'_S \to p_S$.

Again, in the thermodynamic limit, it all collapses to $F(p_S) \ge F(p'_S)$. Constant $E \Rightarrow$ entropy cannot decrease.

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

2. Resource theory of athermality

A resource-theoretic approach to thermodynamics

Outline

1. Motivation

What is a resource theory? Why and how thermo as a RT?

2. The resource theory of athermality

Definition, results, surprises.

3. Extracting work from absence of correlations

How to do more by knowing less...

2. Resource theory of athermality

Outline

1. Motivation

What is a resource theory? Why and how thermo as a RT?

- 2. The resource theory of athermality Definition, results, surprises.
- 3. Extracting work from absence of correlations

How to do more by knowing less...

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

with Michele Pastena (Heidelberg)

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

with Michele Pastena (Heidelberg)

In standard thermodynamics, correlations are costly:

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

with Michele Pastena (Heidelberg)

In standard thermodynamics, correlations are costly:

Comes from subadditivity of entropy:

 $S(p_{AB}) \le S(p_A) + S(p_B).$

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

with Michele Pastena (Heidelberg)

In standard thermodynamics, correlations are costly:

Comes from subadditivity of entropy:

 $S(p_{AB}) \le S(p_A) + S(p_B).$

Simple intuition: correlations \rightarrow agents know more than just individual states \rightarrow can exploit that

A resource-theoretic approach to thermodynamics

with Michele Pastena (Heidelberg)

In standard thermodynamics, correlations are costly:

Comes from subadditivity of entropy:

 $S(p_{AB}) \le S(p_A) + S(p_B).$

Simple intuition: correlations \rightarrow agents know more than just individual states \rightarrow can exploit that

One can "extract work from correlations".

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Resource theory ("single-shot thermodynamics"): recall as below.

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Resource theory ("single-shot thermodynamics"): recall as below. Constrained by infinitely many "2nd laws": $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics
Resource theory ("single-shot thermodynamics"): recall as below. Constrained by infinitely many "2nd laws": $F_{\alpha}(p_S) \ge F_{\alpha}(p'_S)$ for all $\alpha \ge 0$.

Intuition: it should be even more difficult to do this instead:

A resource-theoretic approach to thermodynamics

Intuition: it should be even more difficult to do this instead:

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Intuition: it should be even more difficult to do this instead:

But: **Theorem**: This process is possible if and only if $F(p_S) \ge F(p'_S)$.

MM and M. Pastena, arXiv:1409.3258

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Intuition: it should be even more difficult to do this instead:

But: **Theorem**: This process is possible if and only if $F(p_S) \ge F(p'_S)$.

It's actually easier - stochastic independence can be "burnt like a fuel"!

MM and M. Pastena, arXiv:1409.3258

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Didn't our intuition say the opposite??

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Didn't our intuition say the opposite??

However, in the resource theory of athermality, there is more then just "the" free energy.

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Didn't our intuition say the opposite??

However, in the resource theory of athermality, there is more then just "the" free energy.

For all $a \neq 1$ there are correlations with $F_{\alpha}(p_{AB}) < F_{\alpha}(p_A) + F_{\alpha}(p_B).$

A resource-theoretic approach to thermodynamics

Didn't our intuition say the opposite??

However, in the resource theory of athermality, there is more then just "the" free energy.

For all $a \neq 1$ there are correlations with $F_{\alpha}(p_{AB}) < F_{\alpha}(p_A) + F_{\alpha}(p_B).$

Knowling less makes you "less *a*-confused" and allows you to do more.

3. Work from absence of correlations

A resource-theoretic approach to thermodynamics

Conclusions

- There are good reasons for formulating thermodynamics as a resource theory.
- Very general approach; reproduces standard thermo results in the thermodynamic limit, but refines them.
- Produces sometimes very surprising results for "small" systems → does nature do that?

Markus P. Müller

A resource-theoretic approach to thermodynamics

Conclusions

- There are good reasons for formulating thermodynamics as a resource theory.
- Very general approach; reproduces standard thermo results in the thermodynamic limit, but refines them.
- Produces sometimes very surprising results for "small" systems → does nature do that?

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

MM and M. Pastena, arXiv:1409.3258

A resource-theoretic approach to thermodynamics

Conclusions

- There are good reasons for formulating thermodynamics as a resource theory.
- Very general approach; reproduces standard thermo results in the thermodynamic limit, but refines them.
- Produces sometimes very surprising results for "small" systems → does nature do that?

M. Horodecki and J. Oppenheim, *Fundamental limitations for quantum and nanoscale thermodynamics*, Nature Communications **4**, 2059 (2013).

F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, *The second laws of quantum thermodynamics*, Proc. Natl. Acad. Sci. USA **112** (2015)

MM and M. Pastena, arXiv:1409.3258

A resource-theoretic approach to thermodynamics