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For Re(s) > 1, the Riemann zeta function is defined as
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For Re(s) > 1, the Riemann zeta function is defined as
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Extending the definition of the zeta function

Riemann showed that there exists a unigue extension of ((s)
to an analytic function on all of C\ {1} :
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Riemann showed that there exists a unique extension of ((s)
to an analytic function on all of C\ {1} :

Functional equation ((s) = 2°7° " sin (%S) I'(1—5)C(1—s).
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he zeros of the Riemann zeta function

= ((—2) =((—4) =((-6) =...=0 the "trivial zeros"

It is well-known that all other zeros (the "non-trivial zeros") must lie
in the critical strip 0 < Re(s) < 1:
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The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.

* Why is it important?

If true, then many consequences for the distribution
of prime numbers. For example,

1
Im(x) — Li(z)] < 8—\/§logx for all = > 2657,
T

where w(x) = % of primes <z,
Todt

Li(z) = —.
i(z) 5 logt
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The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.

* Why is it important?

If true, then many consequences for the distribution
of prime numbers. For example,

1
Im(x) — Li(z)] < 8—\/§logx for all = > 2657,
T

where w(x) = % of primes <z,
Todt
Li(x) = —.
2 logt
* Evidence

Numerically, true for first 10'3 zeros.

Conrey 1989: at least 2/5 of all zeros lie on the critical line.
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The Riemann zeros and operator theory?
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The Riemann zeros and operator theory?
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The Riemann zeros and operator theory?

e > weeeeeerr  Hilbert-Polya conjecture
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Proof idea: Find an operator H = H' that has eigenvalues i(2s,, — 1)

with s, the non-trivial Riemann zeros.
Then the Riemann hypothesis follows.
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The Riemann zeros and operator theory?

Montgomery ~1973: spacing statistics of the Riemann zeros
corresponds to that of GUE random matrices

\ self-adjoint matrices with

Gaussian entries
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The Riemann zeros and operator theory?

Montgomery ~1973: spacing statistics of the Riemann zeros
corresponds to that of GUE random matrices

\ self-adjoint matrices with

12 | (Gaussian entries

numerics by Odlyzko, 1987:
normalized distribution of
spacings.

08
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density

blue=first 10° Riemann zeros,
black=eigenvalues of random GUE matrices.
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The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after
operator is a quantization of the classical Hamiltonian H = zp.
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The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after
operator is a quantization of the classical Hamiltonian H = zp.

Evidence: hand-waving arguments about supposed physical
properties of that operator, based on analytic/numerical results
about the Riemann zeta function.

E.g. GUE is supposed to describe systems that are not time-
reversal symmetric, and that's also true for H = xp.
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The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after
operator is a quantization of the classical Hamiltonian H = zp.

Evidence: hand-waving arguments about supposed physical
properties of that operator, based on analytic/numerical results
about the Riemann zeta function.

E.g. GUE is supposed to describe systems that are not time-
reversal symmetric, and that's also true for H = xp.

Simplest quantization: H = zp + pi.

zf(x) =z f(z),  pflr)=—i0:f(z).

position operator momentum operator
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How to add a non-integer number of terms ("Fractional Sums")

My home town as a teenager...
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How to add a non-integer number of terms ("Fractional Sums")

Morsbrunn

150 cows, 90 people, 3 dunghills,
divided by a big moat
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How to add a non-integer number of terms ("Fractional Sums")
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Idea: Whatever E — I8, It should still respect g + E = E :
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How to add a non-integer number of terms ("Fractional Sums")
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General theory

Start with the well-known identities for polynomials

1)(2x

i:l - in: :1:(:1:2 1)7 zw:n2 _ x(x
n=1 n=1 n=1

and postulate that they hold for all = € C.
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General theory

Start with the well-known identities for polynomials
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1 =ux, n = : n° = s

and postulate that they hold for all = € C.
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This works if f is asymptotically polynomial: ne— N1

there exists a sequence of polynomials (p,),en of fixed degree o such that for
every x € U,

if(n +x)—pp(n+x)] — 0 asn— +o0.
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General theory

Start with the well-known identities for polynomials

T

- r(r+1 N, zz+1)2zr+1
lex, Z:ln: (2 ), z_:ln = ( )6( ),

n=1

and postulate that they hold for all = € C.

-+ N

N—oo > flR)+ ) f(n):Zf(n)

n—1 n=s+14 n=1
\/ Vv > pn(n)

This works if f is asymptotically polynomial: ne— N1

there exists a sequence of polynomials (p,),en of fixed degree o such that for
every x € U,

if(n +x)—pp(n+x)] — 0 asn— +o0.

SRR

E.g. v/x and log x are asymptotically constant.
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Some consequences
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Some consequences
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MM and Dierk Schleicher, American Math. Monthly 118 (2011).
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Summation operator

On the space of asymptotically polynomial functions, we get
an operator Y with

() (@) =) f(n)

he difference operator (Af)(x) := f(x) — f(x — 1) is an inverse:

AY =1,  YAf(z)= f(z)— f(0)
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The "Riemann operator”

When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function Markus P. Muller



The "Riemann operator”

When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=X#A, such that )A(Zf(n) = Zn - f(n).
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n=1
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When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
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The "Riemann operator”

When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
AR = AXzAp+ ApXzA
= (2p+p2)A

note: Ap = pA
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When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
AR = AXzAp+ ApXzA
= (2p+p2)A

Rf(z) =X f(x)
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When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
AR = AXzAp+ ApXzA
= (2p+p2)A

note: Ap = pA
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The "Riemann operator”

When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
AR = AXzAp+ ApXzA
= (2p+p2)A

note: Ap = pA

ARf(z) = AMf(z) = (2p + pT)Af(x) = AA f(x)
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The "Riemann operator”

When studying fractional sums, it's kind of natural to "pull the
multiplication operator inside the sum":

X :=%%A, such that )A(Zf(n) = Zn - f(n).
n=1

n=1
R = Xﬁ +]3X, p = —10, as before.

What are the eigenvalues and eigenfunctions of R?
AR = AXzAp+ ApXzA
= (2p+p2)A

note: Ap = pA

ARf(z) = AAf(x) = (@p+p2)Af(x) = AAf(z) = Af(x) ~ 2%,

3. Riemann operator
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The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.
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The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.

T

= f(x) = Zn_S—I—C’.

n=1
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The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.

T

= f(x) = Zn_S—I—C.

n=1

Boundary condition: f(0) =0 (=C)
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The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.

= f(x) = n~—° 4+ C.
Boundary condition: f(0) =0 (=C) @) nz::l

Using Zn = —2z((1 — 2) —I-ZZTL

Rf(x) = i(25 — 1) fu(@) +i(1 — 5)C(s).
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The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"

€T ) —
Boundary condition: f(0) =0 (=C) —
Using Zn = —2z((1 — 2) —I-ZZTL

Rf(x) = i(25 — 1) fu(@) +i(1 — 5)C(s).

fs(z) is eigenfunction if and only if {(s) = 0.

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function Markus P. Muller



The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.

= f(x) = n~—° 4+ C.
Boundary condition: f(0) =0 (=C) @) nz::l

Using Zn = —2z((1 — 2) —I-ZZTL

Rf(x) = i(25 — 1) fu(@) +i(1 — 5)C(s).

fs(z) is eigenfunction if and only if {(s) = 0.

Grow sublinearly for non-trivial zeros, at least quadratically for trivial.

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function Markus P. Muller



The "Riemann operator”

R:= Xp+pX, eigenfunctions satisfy Af(x) =a"°.

= f(x) = n—°+ C.
Boundary condition: f(0) =0 (=C) @) nz::l

Using Zn = —2z((1 — 2) —I-ZZTL

Rf(x) = i(25 — 1) fu(@) +i(1 — 5)C(s).

fs(z) is eigenfunction if and only if {(s) = 0.

Grow sublinearly for non-trivial zeros, at least quadratically for trivial.

— restrict to subspace of sublinear functions. Then:
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The "Riemann operator”

R=Xp+pX  with boundary condition f(0) =0
on a space of "asymptotically constant” functions has eigenvalues
i(2s, — 1),

where the s,, are the non-trivial Riemann zeros.

The eigenvalues are all real
If and only of the Riemann hypothesis is true.

R has exactly the form conjectured by Berry and Keating.

Don't know if there's an inner product such that R = R'.
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Some handwaving but exciting physics ideas about R:

» Formally, it holds A =1 —¢e .
» Modifying the boundary condition, can write the operator as

1 PNy, —ip Highly
- e D (xp T px)(l € Zp) questionable...

* Relation of R to "PT-symmetric quantum mechanics/
- Handwaving "self-orthogonality" argument why eigenvalues real.
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- C. M. Bender, D. C. Brody, MM, Phys. Rev. Lett. 118, 130201 (2017)

* Older papers with Dierk Schleicher: see mpmueller.net

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function Markus P. Muller


http://mpmueller.net

Conclusions

* No progress on the Riemann hypothesis...

* ... but we made an interesting discovery:
R=Xp+pXxX  with boundary condition f(0) =0

has eigenvalues (2s, — 1).

The eigenvalues are all real
If and only of the Riemann hypothesis is true.

As conjectured by Berry and Keating; relation to Z, r e C.
1

- C. M. Bender, D. C. Brody, MM, Phys. Rev. Lett. 118, 130201 (2017)

* Older papers with Dierk Schleicher: see mpmueller.net

Thank you!
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