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still for <(s) > 1. The right hand side is properly defined on C � {0, 1} (because
!(x) = O(e�⇡x) as x ! 1) and invariant under the substitution s ! 1 � s : the
expected result follows.

Fig. 1 – The first ⇣ zeros : 1/|⇣| in the domain
�2 < � < 2, 10 < t < 50.

From the above theorem, the zeta
function admits trivial zeros at s =
�2,�4,�6, . . . corresponding to the
poles of �(s/2). All all non-trivial zeros
are confined in the critical strip 0  � 
1, and they are symmetrically positio-
ned about the real axis and the critical
line � = 1/2. The Riemann hypothesis
asserts that they all lie on this line.

One can define the argument of ⇣(s)
continuously along the line segments
from 2 to 2+it to 1/2+it. Then the num-
ber of such zeros ⇢ counted with multi-
plicities in 0 < =(⇢) < t is asymptoti-
cally (as shown by a calculus of residues)
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In particular, the mean spacing between ⇣ zeros at height t is is 2⇡/ log |t|.
The fact that there are no zeros on � = 1 led to the proof of the prime number

theorem, which states that
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which allows one to transfer the problem of the asymptotics of  to analytic pro-
perties of ⇣ : for c > 0, by a residues argument
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Source: P. Bourgade and J. P. Keating, Séminaire Poincaré XIV, 115-153 (2010).
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Leonhard Euler evaluated this

function at even integers:

Relation to 
prime numbers:
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) ⇣(�2) = ⇣(�4) = ⇣(�6) = . . . = 0 the "trivial zeros"

It is well-known that all other zeros (the "non-trivial zeros") must lie 
in the critical strip 0 < Re(s) < 1 :

Source: mathworld.wolfram.com Source: en.wikipedia.org
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) ⇣(�2) = ⇣(�4) = ⇣(�6) = . . . = 0 the "trivial zeros"

It is well-known that all other zeros (the "non-trivial zeros") must lie 
in the critical strip 0 < Re(s) < 1 :

Source: mathworld.wolfram.com Source: en.wikipedia.org

Riemann hypothesis: all non-trivial zeros have real part 1/2.
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Riemann hypothesis: all non-trivial zeros have real part 1/2.

• Why is it important?
If true, then many consequences for the distribution 
of prime numbers. For example,

|⇡(x)� Li(x)| < 1

8⇡

p
x log x for all x � 2657,

where ⇡(x) = # of primes  x,

Li(x) =

Z
x

2

dt

log t

.

• Evidence
Numerically, true for first         zeros.1013

Conrey 1989: at least 2/5 of all zeros lie on the critical line.
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Hilbert-Pólya conjecture 
(early 20th century):

Are the Riemann zeros

with      the eigenvalues

of an unbounded self-

adjoint operator?

En

Proof idea: Find an operator                that has eigenvalues 
                    with      the non-trivial Riemann zeros. 
                    Then the Riemann hypothesis follows.

H = H† i(2sn � 1)

sn =
1

2
+ i En

sn
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Montgomery ~1973: spacing statistics of the Riemann zeros 
corresponds to that of GUE random matrices

self-adjoint matrices with

Gaussian entries

numerics by Odlyzko, 1987: 
normalized distribution of 
spacings.


blue=first 105 Riemann zeros,

black=eigenvalues of random GUE matrices.
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reversal symmetric, and that's also true for  H = xp.
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Berry and Keating 1999: Conjecture that the sought-after 
operator is a quantization of the classical Hamiltonian H = xp.

Evidence: hand-waving arguments about supposed physical 
properties of that operator, based on analytic/numerical results

about the Riemann zeta function.

E.g. GUE is supposed to describe systems that are not time- 
reversal symmetric, and that's also true for  H = xp.

Simplest quantization: H = x̂p̂+ p̂x̂.

x̂f(x) = x · f(x), p̂f(x) = �i@

x

f(x).

position operator momentum operator
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Moreover, for arbitrary a, b ∈ C, we define

b

↔
∑

ν=a

p(ν) :=
b−a+1

↔
∑

ν=1

p(ν + a − 1) = P(b) − P(a − 1).

In this paper, we extend this concept to a larger class of functions as follows.

Definition 2 (Approximate Polynomial) Let U ⊂ C and σ ∈ N ∪ {−∞}. A func-
tion f :U → C will be called a (right) approximate polynomial of degree σ if the
following conditions are satisfied:

• all u ∈ U satisfy u + 1 ∈ U

• there exists a sequence of polynomials (pn)n∈N of fixed degree σ such that for
every x ∈ U ,

∣∣f (n + x) − pn(n + x)
∣∣ −→ 0 as n → +∞.

This is a semi-local condition and not too restrictive; only the behavior of f (x) as
Re(x) → +∞ matters. For example, every f : C → C with f (x) → 0 as Re(x) →
+∞ is approximately polynomial of degree −∞, and the functions f (x) = lnx and
f (x) = √

x on R+ are approximately polynomial of degree 0 (i.e., approximately
constant). The class of approximate polynomials is large enough for many interesting
applications.

Now comes our general definition of fractional sums. It uses the approximating
polynomials and their fractional sums as defined above. After the formal definition,
we try to motivate this definition and explain it in a number of special cases.

Definition 3 (Fractional Sum and Product) An approximate polynomial f :U → C
of degree σ ∈ N ∪ {−∞} will be called right summable if for all a, b + 1 ∈ U , the
limit

lim
n→∞

(
n+b

↔
∑

ν=n+a

pn(ν) +
n∑

ν=1

(
f (ν + a − 1) − f (ν + b)

)
)

exists. In this case, this limit will be the definition for the fractional sum of f from a

to b; we denote it by

b

→
∑

ν=a

f (ν) or briefly
b

→
∑

a

f.

Moreover, we can define fractional products by

b

→
∏

ν=a

f (ν) := exp

(
b

→
∑

ν=a

lnf (ν)

)

,

whenever lnf is right summable.

f
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On the space of asymptotically polynomial functions, we get 
an operator       with⌃

(⌃f)(x) :=
xX

n=1

f(n)

The difference operator                                                 is an inverse:(�f)(x) := f(x)� f(x� 1)

�⌃ = 1, ⌃�f(x) = f(x)� f(0)
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still for <(s) > 1. The right hand side is properly defined on C � {0, 1} (because
!(x) = O(e�⇡x) as x ! 1) and invariant under the substitution s ! 1 � s : the
expected result follows.

Fig. 1 – The first ⇣ zeros : 1/|⇣| in the domain
�2 < � < 2, 10 < t < 50.

From the above theorem, the zeta
function admits trivial zeros at s =
�2,�4,�6, . . . corresponding to the
poles of �(s/2). All all non-trivial zeros
are confined in the critical strip 0  � 
1, and they are symmetrically positio-
ned about the real axis and the critical
line � = 1/2. The Riemann hypothesis
asserts that they all lie on this line.

One can define the argument of ⇣(s)
continuously along the line segments
from 2 to 2+it to 1/2+it. Then the num-
ber of such zeros ⇢ counted with multi-
plicities in 0 < =(⇢) < t is asymptoti-
cally (as shown by a calculus of residues)

N (t) =
t

2⇡
log

t

2⇡e
+

1

⇡
arg ⇣

✓
1

2
+ it

◆
+

7

8
+ O

✓
1

t

◆
. (2)

In particular, the mean spacing between ⇣ zeros at height t is is 2⇡/ log |t|.
The fact that there are no zeros on � = 1 led to the proof of the prime number

theorem, which states that

⇡(x) ⇠
x!1

x

log x
, (3)

where ⇡(x) = |P \ J1, xK|. The proof makes use of the Van Mangoldt function,
⇤(n) = log p if n is a power of a prime p, 0 otherwise : writing  (x) =

P
nx

⇤(n),
(3) is equivalent to lim

x!1 (x)/x = 1, because obviously  (x)  ⇡(x) log x and, for
any " > 0,  (x) �P

x

1�"px

log p � (1� ")(log x)(⇡(x) + O(x1�")). Di↵erentiating
the Euler product for ⇣, if <(s) > 1,

�⇣
0

⇣
(s) =

X
n�1

⇤(n)

ns

,

which allows one to transfer the problem of the asymptotics of  to analytic pro-
perties of ⇣ : for c > 0, by a residues argument

1

2⇡i

Z
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s
ds = 0 if 0 < y < 1, 1 if y > 1,

hence
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the Euler product for ⇣, if <(s) > 1,

�⇣
0

⇣
(s) =

X
n�1

⇤(n)

ns

,

which allows one to transfer the problem of the asymptotics of  to analytic pro-
perties of ⇣ : for c > 0, by a residues argument

1

2⇡i

Z
c+i1

c�i1

ys

s
ds = 0 if 0 < y < 1, 1 if y > 1,

hence

 (x) =
1X

n=2

⇤(n)
1

2⇡i

Z
c+i1

c�i1

(x/n)s

s
ds

=
1

2⇡i

Z
c+it

c�it

✓
�⇣

0

⇣
(s)

◆
ds

xs

s
ds + O

✓
x log2 x

t

◆
, (4)

1/|⇣(z)|

� 1
2X

n=1

1

n
= �2 log 2

R = X̂p̂+ p̂X̂



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

What are the eigenvalues and eigenfunctions of R?

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

What are the eigenvalues and eigenfunctions of R?
�R = �⌃x̂�p̂+�p̂⌃x̂�

= (x̂p̂+ p̂x̂)�
�p̂ = p̂�note:

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

What are the eigenvalues and eigenfunctions of R?
�R = �⌃x̂�p̂+�p̂⌃x̂�

= (x̂p̂+ p̂x̂)�
�p̂ = p̂�note:

�Rf(x) = ��f(x)

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

What are the eigenvalues and eigenfunctions of R?
�R = �⌃x̂�p̂+�p̂⌃x̂�

= (x̂p̂+ p̂x̂)�
�p̂ = p̂�note:

�Rf(x) = ��f(x)

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller

When studying fractional sums, it's kind of natural to "pull the

multiplication operator inside the sum":

R :=

ˆXp̂+ p̂ ˆX, p̂ = �i@
x

as before.

What are the eigenvalues and eigenfunctions of R?
�R = �⌃x̂�p̂+�p̂⌃x̂�

= (x̂p̂+ p̂x̂)�
�p̂ = p̂�note:

�Rf(x) = ��f(x) ) (x̂p̂+ p̂x̂)�f(x) = ��f(x)

X̂ := ⌃x̂�, such that X̂

xX

n=1

f(n) =
xX

n=1

n · f(n).



The "Riemann operator"

3. Riemann operator

A Hamiltonian for the zeros of the Riemann zeta function                                                                                                 Markus P. Müller
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multiplication operator inside the sum":
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What are the eigenvalues and eigenfunctions of R?
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with boundary conditionR = X̂p̂+ p̂X̂ f(0) = 0

on a space of "asymptotically constant" functions has eigenvalues

i(2sn � 1),

where the       are the non-trivial Riemann zeros.sn

The eigenvalues are all real 
if and only of the Riemann hypothesis is true.

R has exactly the form conjectured by Berry and Keating.

Don't know if there's an inner product such that R = R†.
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�ip̂)

• Relation of R to "PT-symmetric quantum mechanics"
• Handwaving "self-orthogonality" argument why eigenvalues real.

Highly 
questionable...
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has eigenvalues i(2sn � 1).

As conjectured by Berry and Keating; relation to
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