A Hamiltonian for the zeros of the Riemann zeta function

Markus P. Müller
Departments of Applied Mathematics and Philosophy, UWO Perimeter Institute for Theoretical Physics, Waterloo Joint work with Carl Bender and Dorje Brody

alternative title: How interesting but trivial results get terribly overhyped

Physicists make major breakthrough towar of Riemann hypothesis

By Sarah Cox - Senior Media Relations Officer
24 Mar 2017

A Hamiltonian for the zeros of the Riemann zeta function

Markus P. Müller
Departments of Applied Mathematics and Philosophy, UWO Perimeter Institute for Theoretical Physics, Waterloo Joint work with Carl Bender and Dorje Brody

Outline

1. The Riemann hypothesis
2. How to add a non-integer number of terms

$$
\sum_{n=1}^{-\frac{1}{2}} \frac{1}{n}=-2 \log 2
$$

3. Combining both: the "Riemann operator"

$$
R=\hat{X} \hat{p}+\hat{p} \hat{X}
$$

1. The Riemann hypothesis

For $\operatorname{Re}(s)>1$, the Riemann zeta function is defined as

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

1. The Riemann hypothesis

For $\operatorname{Re}(s)>1$, the Riemann zeta function is defined as

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Diverges at $s=1$.

1. The Riemann hypothesis

For $\operatorname{Re}(s)>1$, the Riemann zeta function is defined as

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Diverges at $s=1$.
Leonhard Euler evaluated this function at even integers:

$$
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945}, \quad \zeta(2 n)=\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

1. The Riemann hypothesis

For $\operatorname{Re}(s)>1$, the Riemann zeta function is defined as

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Diverges at $s=1$.
Leonhard Euler evaluated this function at even integers:

$$
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945}, \quad \zeta(2 n)=\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

Extending the definition of the zeta function

Riemann showed that there exists a unique extension of $\zeta(s)$ to an analytic function on all of $\mathbb{C} \backslash\{1\}$:

Extending the definition of the zeta function

Riemann showed that there exists a unique extension of $\zeta(s)$ to an analytic function on all of $\mathbb{C} \backslash\{1\}$:

Extending the definition of the zeta function

Riemann showed that there exists a unique extension of $\zeta(s)$ to an analytic function on all of $\mathbb{C} \backslash\{1\}$:

Functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) .
$$

Extending the definition of the zeta function

Riemann showed that there exists a unique extension of $\zeta(s)$ to an analytic function on all of $\mathbb{C} \backslash\{1\}$:

Functional equation $\quad \zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$.
$\Rightarrow \zeta(-2)=\zeta(-4)=\zeta(-6)=\ldots=0 \quad$ the "trivial zeros"

The zeros of the Riemann zeta function

$$
\Rightarrow \zeta(-2)=\zeta(-4)=\zeta(-6)=\ldots=0 \quad \text { the "trivial zeros" }
$$

The zeros of the Riemann zeta function

$$
\Rightarrow \zeta(-2)=\zeta(-4)=\zeta(-6)=\ldots=0 \quad \text { the "trivial zeros" }
$$

It is well-known that all other zeros (the "non-trivial zeros") must lie in the critical strip $0<\operatorname{Re}(s)<1$:

Source: mathworld.wolfram.com

Source: en.wikipedia.org

The zeros of the Riemann zeta function

$$
\Rightarrow \zeta(-2)=\zeta(-4)=\zeta(-6)=\ldots=0 \quad \text { the "trivial zeros" }
$$

It is well-known that all other zeros (the "non-trivial zeros") must lie in the critical strip $0<\operatorname{Re}(s)<1$:

Source: mathworld.wolfram.com

Source: en.wikipedia.org

Riemann hypothesis: all non-trivial zeros have real part 1/2.

The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.

The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.

-Why is it important?

The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.
-Why is it important?
If true, then many consequences for the distribution of prime numbers. For example,

$$
\begin{aligned}
&|\pi(x)-\operatorname{Li}(x)|<\frac{1}{8 \pi} \sqrt{x} \log x \quad \text { for all } x \geq 2657 \\
& \text { where } \\
& \pi(x)=\# \text { of primes } \leq x \\
& \operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}
\end{aligned}
$$

The Riemann hypothesis

Riemann hypothesis: all non-trivial zeros have real part 1/2.
-Why is it important?
If true, then many consequences for the distribution of prime numbers. For example,

$$
|\pi(x)-\operatorname{Li}(x)|<\frac{1}{8 \pi} \sqrt{x} \log x \quad \text { for all } x \geq 2657,
$$

where $\pi(x)=\#$ of primes $\leq x$,

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t} .
$$

- Evidence

Numerically, true for first 10^{13} zeros.
Conrey 1989: at least $2 / 5$ of all zeros lie on the critical line.

The Riemann zeros and operator theory?

The Riemann zeros and operator theory?

The Riemann zeros and operator theory?

Hilbert-Pólya conjecture (early 20th century):

Are the Riemann zeros

$$
s_{n}=\frac{1}{2}+i E_{n}
$$

with E_{n} the eigenvalues of an unbounded selfadjoint operator?

The Riemann zeros and operator theory?

Hilbert-Pólya conjecture

 (early 20th century):Are the Riemann zeros

$$
s_{n}=\frac{1}{2}+i E_{n}
$$

with E_{n} the eigenvalues of an unbounded selfadjoint operator?

Proof idea: Find an operator $H=H^{\dagger}$ that has eigenvalues $i\left(2 s_{n}-1\right)$ with s_{n} the non-trivial Riemann zeros. Then the Riemann hypothesis follows.

The Riemann zeros and operator theory?

Montgomery ~1973: spacing statistics of the Riemann zeros corresponds to that of GUE random matrices
 self-adjoint matrices with Gaussian entries

The Riemann zeros and operator theory?

Montgomery ~1973: spacing statistics of the Riemann zeros

 corresponds to that of GUE random matrices
numerics by Odlyzko, 1987: normalized distribution of spacings.
blue=first 10^{5} Riemann zeros, black=eigenvalues of random GUE matrices.

The Riemann zeros and operator theory?

The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after operator is a quantization of the classical Hamiltonian $H=x p$.

The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after operator is a quantization of the classical Hamiltonian $H=x p$.

Evidence: hand-waving arguments about supposed physical properties of that operator, based on analytic/numerical results about the Riemann zeta function. E.g. GUE is supposed to describe systems that are not timereversal symmetric, and that's also true for $H=x p$.

The Riemann zeros and operator theory?

Berry and Keating 1999: Conjecture that the sought-after operator is a quantization of the classical Hamiltonian $H=x p$.

Evidence: hand-waving arguments about supposed physical properties of that operator, based on analytic/numerical results about the Riemann zeta function. E.g. GUE is supposed to describe systems that are not timereversal symmetric, and that's also true for $H=x p$.

Simplest quantization: $H=\hat{x} \hat{p}+\hat{p} \hat{x}$.

$$
\begin{array}{ll}
\hat{x} f(x)=x \cdot f(x), & \hat{p} f(x)=-i \partial_{x} f(x) . \\
\text { position operator } & \text { momentum operator }
\end{array}
$$

Outline

1. The Riemann hypothesis

$1 /|\zeta(z)|$

2. How to add a non-integer number of terms

$$
\sum_{n=1}^{-\frac{1}{2}} \frac{1}{n}=-2 \log 2
$$

3. Combining both: the "Riemann operator"

$$
R=\hat{X} \hat{p}+\hat{p} \hat{X}
$$

Outline

1. The Riemann hypothesis

2. How to add a non-integer number of terms

$$
\sum_{n=1}^{-\frac{1}{2}} \frac{1}{n}=-2 \log 2
$$

3. Combining both: the "Riemann operator"

$$
R=\hat{X} \hat{p}+\hat{p} \hat{X}
$$

How to add a non-integer number of terms ("Fractional Sums")

How to add a non-integer number of terms ("Fractional Sums")

My home town as a teenager...

Morsbrunn
150 cows, 90 people, 3 dunghills, divided by a big moat
-> boring
-> fractional sums

How to add a non-integer number of terms ("Fractional Sums")

My home town as a teenager...

$$
\begin{aligned}
\sum_{n=1}^{1} \frac{1}{n} & =1 \\
\sum_{n=1}^{2} \frac{1}{n} & =1+\frac{1}{2} \\
\sum_{n=1}^{3} \frac{1}{n} & =1+\frac{1}{2}+\frac{1}{3}
\end{aligned}
$$

How to add a non-integer number of terms ("Fractional Sums")

My home town as a teenager...

Morsbrunn

150 cows, 90 people, 3 dunghills, divided by a big moat
-> boring
-> fractional sums

$\sum_{n=1}^{1} \frac{1}{n}=1$
$\sum_{n=1}^{2} \frac{1}{n}=1+\frac{1}{2}$
$\sum_{n=1}^{3} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}$
$3.5 \sum_{n=1}^{x} \frac{1}{n}$

How to add a non-integer number of terms ("Fractional Sums")

My home town as a teenager...

Morsbrunn

150 cows, 90 people, 3 dunghills, divided by a big moat
-> boring
-> fractional sums

$\sum_{n=1}^{1} \frac{1}{n}=1$
$\sum_{n=1}^{2} \frac{1}{n}=1+\frac{1}{2}$
$\sum_{n=1}^{3} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}$
${ }^{3} 5 \sum_{n=1}^{x} \frac{1}{n}$
5

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

$$
\sum_{n=1}^{x} \frac{1}{n}+\sum_{n=x+1}^{x+N} \frac{1}{n}=\sum_{n=1}^{N} \frac{1}{n}+\sum_{n=N+1}^{N+x} \frac{1}{n}
$$

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

$$
\sum_{n=1}^{x} \frac{1}{n}+\sum_{n=x+1}^{x+N} \frac{1}{n}=\sum_{n=1}^{N} \frac{1}{n}+\sum_{n=N+1}^{N+x} \frac{1}{n}
$$

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

"shift the problem to infinity"

$$
\sum_{n=1}^{x} \frac{1}{n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+x}\right)
$$

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

"shift the problem to infinity"

$$
\sum_{n=1}^{x} \frac{1}{n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+x}\right)
$$

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

"shift the problem to infinity"

$$
\sum_{n=1}^{-1 / 2} \frac{1}{n}=-2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\right)=-2 \log 2
$$

How to add a non-integer number of terms ("Fractional Sums")

Idea: Whatever $\sum_{n=1}^{-1 / 2} \frac{1}{n}$ is, it should still respect $\sum_{a}^{b}+\sum_{b+1}^{c}=\sum_{a}^{c}$.

"shift the problem to infinity"

$$
\sum_{n=1}^{x} \frac{1}{n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+x}\right)
$$

General theory

General theory

Start with the well-known identities for polynomials

$$
\sum_{n=1}^{x} 1=x, \quad \sum_{n=1}^{x} n=\frac{x(x+1)}{2}, \quad \sum_{n=1}^{x} n^{2}=\frac{x(x+1)(2 x+1)}{6}, \ldots
$$

and postulate that they hold for all $x \in \mathbb{C}$.

General theory

Start with the well-known identities for polynomials

$$
\sum_{n=1}^{x} 1=x, \quad \sum_{n=1}^{x} n=\frac{x(x+1)}{2}, \quad \sum_{n=1}^{x} n^{2}=\frac{x(x+1)(2 x+1)}{6}, \ldots
$$

and postulate that they hold for all $x \in \mathbb{C}$.

General theory

Start with the well-known identities for polynomials

$$
\sum_{n=1}^{x} 1=x, \quad \sum_{n=1}^{x} n=\frac{x(x+1)}{2}, \quad \sum_{n=1}^{x} n^{2}=\frac{x(x+1)(2 x+1)}{6}, \ldots
$$

and postulate that they hold for all $x \in \mathbb{C}$.

there exists a sequence of polynomials $\left(p_{n}\right)_{n \in \mathbb{N}}$ of fixed degree σ such that for every $x \in U$,

$$
\left|f(n+x)-p_{n}(n+x)\right| \longrightarrow 0 \quad \text { as } n \rightarrow+\infty .
$$

General theory

Start with the well-known identities for polynomials

$$
\sum_{n=1}^{x} 1=x, \quad \sum_{n=1}^{x} n=\frac{x(x+1)}{2}, \quad \sum_{n=1}^{x} n^{2}=\frac{x(x+1)(2 x+1)}{6}, \ldots
$$

and postulate that they hold for all $x \in \mathbb{C}$.

there exists a sequence of polynomials $\left(p_{n}\right)_{n \in \mathbb{N}}$ of fixed degree σ such that for every $x \in U$,

$$
\left|f(n+x)-p_{n}(n+x)\right| \longrightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

E.g. \sqrt{x} and $\log x$ are asymptotically constant.

Some consequences

$$
\begin{array}{lc}
\prod_{n=1}^{x} n=x!=\Gamma(x+1) . & \sum_{n=x}^{-x} \frac{1}{n}=\pi \cot (\pi x)
\end{array}
$$

Some consequences

$$
\prod_{n=1}^{x} n=x!=\Gamma(x+1) . \quad \sum_{n=x}^{-x} \frac{1}{n}=\pi \cot (\pi x)
$$

$$
\sum_{n=0}^{x} q^{n}=\frac{q^{x+1}-1}{q-1} \quad(|q|<1)
$$

$$
\sum_{n=1}^{-1 / 2} n^{a}=\left(2-2^{-a}\right) \zeta(-a)
$$

$$
\sum_{n=0}^{c}\binom{c}{n} x^{n}=(1+x)^{c} \quad(|x|<1, c \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\})
$$

$\sum_{n=1}^{-1 / 2}(\log n)(\log n!)=\frac{\gamma^{2}}{4}+\frac{\gamma_{1}}{2}-\frac{\pi^{2}}{48}+\frac{\log ^{2} 2}{2}-\frac{\log ^{2} \pi}{8}$

Some consequences

$$
\begin{aligned}
& \prod_{n=1}^{x} n=x!=\Gamma(x+1) . \quad \sum_{n=x}^{-x} \frac{1}{n}=\pi \cot (\pi x) \quad x \in \mathbb{C} \\
& \sum_{n=0}^{x} q^{n}=\frac{q^{x+1}-1}{q-1} \quad(|q|<1) \quad \sum_{n=1}^{-1 / 2} n^{a}=\left(2-2^{-a}\right) \zeta(-a) \\
& \sum_{n=0}^{c}\binom{c}{n} x^{n}=(1+x)^{c} \quad(|x|<1, c \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\})
\end{aligned}
$$

$\sum_{n=1}^{-1 / 2}(\log n)(\log n!)=\frac{\gamma^{2}}{4}+\frac{\gamma_{1}}{2}-\frac{\pi^{2}}{48}+\frac{\log ^{2} 2}{2}-\frac{\log ^{2} \pi}{8}$

MM and Dierk Schleicher, American Math. Monthly 118 (2011).

Summation operator

On the space of asymptotically polynomial functions, we get an operator Σ with

$$
(\Sigma f)(x):=\sum_{n=1}^{x} f(n)
$$

The difference operator $(\Delta f)(x):=f(x)-f(x-1)$ is an inverse:

$$
\Delta \Sigma=1, \quad \Sigma \Delta f(x)=f(x)-f(0)
$$

Outline

1. The Riemann hypothesis

2. How to add a non-integer number of terms

$$
\sum_{n=1}^{-\frac{1}{2}} \frac{1}{n}=-2 \log 2
$$

3. Combining both: the "Riemann operator"

$$
R=\hat{X} \hat{p}+\hat{p} \hat{X}
$$

Outline

1. The Riemann hypothesis
2. How to add a non-integer number of terms

$$
\sum_{n=1}^{-\frac{1}{2}} \frac{1}{n}=-2 \log 2
$$

3. Combining both: the "Riemann operator"

$$
R=\hat{X} \hat{p}+\hat{p} \hat{X}
$$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \quad \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n)
$$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{gathered}
\hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{gathered}
$$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{gathered}
\hat{X}:=\sum \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{gathered}
$$

What are the eigenvalues and eigenfunctions of R ?

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{gathered}
\hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{gathered}
$$

What are the eigenvalues and eigenfunctions of R ?

$$
\begin{aligned}
\Delta R & =\Delta \Sigma \hat{x} \Delta \hat{p}+\Delta \hat{p} \Sigma \hat{x} \Delta \\
& =(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta
\end{aligned}
$$

$$
\text { note: } \Delta \hat{p}=\hat{p} \Delta
$$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{aligned}
& \hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
& R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{aligned}
$$

What are the eigenvalues and eigenfunctions of R ?

$$
\begin{aligned}
\Delta R & =\Delta \Sigma \hat{x} \Delta \hat{p}+\Delta \hat{p} \Sigma \hat{x} \Delta \\
& =(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta
\end{aligned}
$$

note: $\Delta \hat{p}=\hat{p} \Delta$
$R f(x)=\lambda \quad f(x)$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{aligned}
& \hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
& R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{aligned}
$$

What are the eigenvalues and eigenfunctions of R ?

$$
\begin{aligned}
\Delta R & =\Delta \Sigma \hat{x} \Delta \hat{p}+\Delta \hat{p} \Sigma \hat{x} \Delta \\
& =(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta
\end{aligned}
$$

note: $\Delta \hat{p}=\hat{p} \Delta$
$\Delta R f(x)=\lambda \Delta f(x)$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{aligned}
& \hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
& R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{aligned}
$$

What are the eigenvalues and eigenfunctions of R ?

$$
\begin{aligned}
\Delta R & =\Delta \Sigma \hat{x} \Delta \hat{p}+\Delta \hat{p} \Sigma \hat{x} \Delta \\
& =(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta \\
\Delta R f(x)=\lambda \Delta f(x) & \Rightarrow(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta f(x)=\lambda \Delta f(x)
\end{aligned}
$$

The "Riemann operator"

When studying fractional sums, it's kind of natural to "pull the multiplication operator inside the sum":

$$
\begin{aligned}
& \hat{X}:=\Sigma \hat{x} \Delta, \quad \text { such that } \hat{X} \sum_{n=1}^{x} f(n)=\sum_{n=1}^{x} n \cdot f(n) . \\
& R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \hat{p}=-i \partial_{x} \text { as before. }
\end{aligned}
$$

What are the eigenvalues and eigenfunctions of R ?

$$
\begin{aligned}
\Delta R= & \Delta \Sigma \hat{x} \Delta \hat{p}+\Delta \hat{p} \Sigma \hat{x} \Delta \\
= & (\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta \\
\Delta R f(x)=\lambda \Delta f(x) & \Rightarrow(\hat{x} \hat{p}+\hat{p} \hat{x}) \Delta f(x)=\lambda \Delta f(x) \Rightarrow \Delta f(x) \sim x^{-s} .
\end{aligned}
$$

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.

The "Riemann operator"

$\begin{aligned} R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad \text { eigenfunctions satisfy } & \Delta f(x)=x^{-s} . \\ & \Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C .\end{aligned}$

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.

Boundary condition: $\quad f(0)=0(=C)$

$$
\Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C
$$

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.

Boundary condition: $f(0)=0(=C)$

$$
\Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C
$$

Using $\quad \frac{\partial}{\partial x} \sum_{n=1}^{x} n^{z}=-z \zeta(1-z)+z \sum_{n=1}^{x} n^{z-1}$

$$
R f_{s}(x)=i(2 s-1) f_{s}(x)+i(1-s) \zeta(s)
$$

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.

Boundary condition: $f(0)=0(=C)$

$$
\Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C
$$

Using

$$
\begin{aligned}
\frac{\partial}{\partial x} \sum_{n=1}^{x} n^{z} & =-z \zeta(1-z)+z \sum_{n=1}^{x} n^{z-1} \\
R f_{s}(x) & =i(2 s-1) f_{s}(x)+i(1-s) \zeta(s)
\end{aligned}
$$

$f_{s}(x)$ is eigenfunction if and only if $\zeta(s)=0$.

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.

Boundary condition: $f(0)=0(=C)$

$$
\Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C
$$

Using

$$
\begin{aligned}
\frac{\partial}{\partial x} \sum_{n=1}^{x} n^{z} & =-z \zeta(1-z)+z \sum_{n=1}^{x} n^{z-1} \\
R f_{s}(x) & =i(2 s-1) f_{s}(x)+i(1-s) \zeta(s)
\end{aligned}
$$

$f_{s}(x)$ is eigenfunction if and only if $\zeta(s)=0$.
Grow sublinearly for non-trivial zeros, at least quadratically for trivial.

The "Riemann operator"

$R:=\hat{X} \hat{p}+\hat{p} \hat{X}, \quad$ eigenfunctions satisfy $\quad \Delta f(x)=x^{-s}$.
Boundary condition: $f(0)=0(=C)$

$$
\Rightarrow f(x)=\sum_{n=1}^{x} n^{-s}+C
$$

Using

$$
\begin{aligned}
\frac{\partial}{\partial x} \sum_{n=1}^{x} n^{z} & =-z \zeta(1-z)+z \sum_{n=1}^{x} n^{z-1} \\
R f_{s}(x) & =i(2 s-1) f_{s}(x)+i(1-s) \zeta(s) .
\end{aligned}
$$

$f_{s}(x)$ is eigenfunction if and only if $\zeta(s)=0$.
Grow sublinearly for non-trivial zeros, at least quadratically for trivial.
\longrightarrow restrict to subspace of sublinear functions. Then:

The "Riemann operator"

$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
on a space of "asymptotically constant" functions has eigenvalues

$$
i\left(2 s_{n}-1\right),
$$

where the s_{n} are the non-trivial Riemann zeros.

The "Riemann operator"

$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
on a space of "asymptotically constant" functions has eigenvalues

$$
i\left(2 s_{n}-1\right),
$$

where the s_{n} are the non-trivial Riemann zeros.

The eigenvalues are all real if and only of the Riemann hypothesis is true.

The "Riemann operator"

$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
on a space of "asymptotically constant" functions has eigenvalues

$$
i\left(2 s_{n}-1\right),
$$

where the s_{n} are the non-trivial Riemann zeros.

The eigenvalues are all real if and only of the Riemann hypothesis is true.
R has exactly the form conjectured by Berry and Keating.

The "Riemann operator"

$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
on a space of "asymptotically constant" functions has eigenvalues

$$
i\left(2 s_{n}-1\right),
$$

where the s_{n} are the non-trivial Riemann zeros.

The eigenvalues are all real if and only of the Riemann hypothesis is true.
R has exactly the form conjectured by Berry and Keating.
Don't know if there's an inner product such that $R=R^{\dagger}$.

Many years later...

2015: visited Dorje Brody in London UK

Many years later...

2015: visited Dorje Brody in London UK

Some handwaving but exciting physics ideas about R :

Many years later...

2015: visited Dorje Brody in London UK

Some handwaving but exciting physics ideas about R :

- Formally, it holds $\Delta=1-e^{-i \hat{p}}$.
- Modifying the boundary condition, can write the operator as

$$
R=\frac{1}{\mathbf{1}-e^{-i \hat{p}}}(\hat{x} \hat{p}+\hat{p} \hat{x})\left(\mathbf{1}-e^{-i \hat{p}}\right)
$$

Many years later...

2015: visited Dorje Brody in London UK

Some handwaving but exciting physics ideas about R :

- Formally, it holds $\Delta=1-e^{-i \hat{p}}$.
- Modifying the boundary condition, can write the operator as

$$
R=\frac{1}{1-e^{-i \hat{p}}}(\hat{x} \hat{p}+\hat{p} \hat{x})\left(\mathbf{1}-e^{-i \hat{p}}\right)
$$

- Relation of R to "PT-symmetric quantum mechanics"

2015: visited Dorje Brody in London UK

Some handwaving but exciting physics ideas about R :

- Formally, it holds $\Delta=1-e^{-i \hat{p}}$.
- Modifying the boundary condition, can write the operator as

$$
R=\frac{1}{\mathbf{1}-e^{-i \hat{p}}}(\hat{x} \hat{p}+\hat{p} \hat{x})\left(\mathbf{1}-e^{-i \hat{p}}\right)
$$

- Relation of R to "PT-symmetric quantum mechanics"
- Handwaving "self-orthogonality" argument why eigenvalues real.

Many years later...

2015: visited Dorje Brody in London UK

Some handwaving but exciting physics ideas about R :

- Formally, it holds $\Delta=1-e^{-i \hat{p}}$.
- Modifying the boundary condition, can write the operator as

$$
R=\frac{1}{\mathbf{1}-e^{-i \hat{p}}}(\hat{x} \hat{p}+\hat{p} \hat{x})\left(\mathbf{1}-e^{-i \hat{p}}\right)
$$

- Relation of R to "PT-symmetric quantum mechanics"
- Handwaving "self-orthogonality" argument why eigenvalues real.

Conclusions

- No progress on the Riemann hypothesis...

Conclusions

- No progress on the Riemann hypothesis...
- ... but we made an interesting discovery:

Conclusions

- No progress on the Riemann hypothesis...
- ... but we made an interesting discovery:
$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
has eigenvalues $i\left(2 s_{n}-1\right)$.
The eigenvalues are all real
if and only of the Riemann hypothesis is true.
As conjectured by Berry and Keating; relation to $\sum_{1}^{x}, x \in \mathbb{C}$.

Conclusions

- No progress on the Riemann hypothesis...
- ... but we made an interesting discovery:
$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
has eigenvalues $i\left(2 s_{n}-1\right)$.
The eigenvalues are all real
if and only of the Riemann hypothesis is true.
As conjectured by Berry and Keating; relation to $\sum_{1}^{x}, x \in \mathbb{C}$.
- C. M. Bender, D. C. Brody, MM, Phys. Rev. Lett. 118, 130201 (2017)
- Older papers with Dierk Schleicher: see mpmueller.net

Conclusions

- No progress on the Riemann hypothesis...
- ... but we made an interesting discovery:
$R=\hat{X} \hat{p}+\hat{p} \hat{X} \quad$ with boundary condition $f(0)=0$
has eigenvalues $i\left(2 s_{n}-1\right)$.
The eigenvalues are all real
if and only of the Riemann hypothesis is true.
As conjectured by Berry and Keating; relation to $\sum_{1}^{x}, x \in \mathbb{C}$.
- C. M. Bender, D. C. Brody, MM, Phys. Rev. Lett. 118, 130201 (2017)
- Older papers with Dierk Schleicher: see mpmueller.net

Thank you!

