Quantum theory and spacetime: progress from principles

Markus P. Müller

Institute for Theoretical Physics, Heidelberg University (Germany)

Main message

Informationtheoretic principles

But also...

Formalism of quantum theory

Main message

Main message

Insights into the "architecture" of physics

Outline

1. Relativity and interference experiments

2. Quantum theory and the dimensionality of space

1. Relativity and interference experiments

The state space of a quantum bit is a 3D ball the Bloch ball.

$$
\cos \frac{\theta}{2}|\uparrow\rangle+e^{i \phi} \sin \frac{\theta}{2}|\downarrow\rangle
$$

1. Relativity and interference experiments

The state space of a quantum bit is a 3D ball the Bloch ball.

$$
\cos \frac{\theta}{2}|\uparrow\rangle+e^{i \phi} \sin \frac{\theta}{2}|\downarrow\rangle
$$

In most reconstructions of QT, it is

- first shown that a bit is a d-ball,
- then shown that $d=3$ (difficult!).

1. Relativity and interference experiments

Two-level state spaces ("bits") are naturally ball state spaces:

classical bit

quantum bit

1. Relativity and interference experiments

Two-level state spaces ("bits") are naturally ball state spaces:

$$
d=1
$$

classical
bit

quantum bit
$d=2,5,9$ are bits in quantum theory over $\mathbb{R}, \mathbb{H}, \mathbb{O}$.

1. Relativity and interference experiments

Two-level state spaces ("bits") are naturally ball state spaces:

classical bit
al

quantum bit
$d=2,5,9$ are bits in quantum theory over $\mathbb{R}, \mathbb{H}, \mathbb{O}$.
We will now show that relativity of simultaneity rules out all $d \geqq 4$!

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

North-pole state: particle definitely in upper branch.

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

South-pole state: particle definitely in lower branch.

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

State on equator $z=0$: probability $1 / 2$ for each.

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

State on equator $z=0$: probability $1 / 2$ for each.
$p($ up $)=\frac{1}{2}(z+1)$

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

What transformations T can we perform locally in one arm...
... without any information loss?

\author{

1. Relativity + interference
}

Relativistic constraints on interference experiments

Joint work w/ Andy Garner \& Oscar Dahlsten:

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

$$
T \in \mathrm{SO}(d-1)
$$

T must be a rotation of the Bloch ball (reversible+linear)...
... and must preserve p (up), i.e. preserve the z-axis.

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

$$
T \in \mathrm{SO}(d-1)
$$

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

$$
T \in \mathrm{SO}(d-1)
$$

d-dim. "Bloch sphere"

Relativity: there is one frame of reference in which
T_{A} happens first, and then $T_{B} \ldots$

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

$$
T \in \mathrm{SO}(d-1)
$$

Relativity: ... and another one in which it's the other way around!

Relativistic constraints on interference experiments

Assumption: all maps of this kind are locally implementable.

$$
T \in \mathrm{SO}(d-1)
$$

Detector click statistics is Lorentz-invariant
$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \operatorname{SO}(d-1)$.

Relativistic constraints on interference experiments

$\Rightarrow \quad d \leq 3$
(In fact, $d=3$, otherwise no "phase transformations" exist at all.)

Detector click statistics is Lorentz-invariant
$\Rightarrow T_{A} T_{B}=T_{B} T_{A}$ for all $T_{A}, T_{B} \in \operatorname{SO}(d-1)$.

Relativistic constraints on interference experiments
$\Rightarrow d \leq 3$
(In fact, $d=3$, otherwise no "phase transformations" exist at all.)

Remarks:

Relativistic constraints on interference experiments

$\Rightarrow \quad d \leq 3$
(In fact, $d=3$, otherwise no "phase transformations" exist at all.)

Remarks:

- In several axiomatic reconstructions of QT, the fact that "SO(d-1) must be Abelian"
was a crucial intermediate proof step \rightarrow physical interpretation!
LI. Masanes and MM, A derivation of quantum theory from physical requirements, New J. Phys. 13 (2011)
LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, arXiv:1111.4060.

Relativistic constraints on interference experiments

$\Rightarrow d \leq 3$
(In fact, $d=3$, otherwise no "phase transformations" exist at all.)

Remarks:

- In several axiomatic reconstructions of QT, the fact that "SO(d-1) must be Abelian" was a crucial intermediate proof step \rightarrow physical interpretation!
LI. Masanes and MM, A derivation of quantum theory from physical requirements, New J. Phys. 13 (2011)
LI. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, arXiv:1111.4060.
- Cf. original Popescu-Rohrlich box idea: Spacetime + probabilities are hard to combine \rightarrow their structures constrain each other!

Relativistic constraints on interference experiments

(In fact, $d=3$, otherwise no "phase transformations" exist at all.)

Remarks:

- Work in progress: consequences for actual interference experiments.

Proposed Test for Complex versus Quaternion Quantum Theory
Asher Peres
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel (Received 7 December 1978)

If scattering amplitudes are ordinary complex numbers (not quaternions) then there is a universal algebraic relationship between the six coherent cross sections of any three scatterers (taken singly and pairwise). A violation of this relationship would indicate either that scattering amplitudes are quaternions, or that the superposition principle fails. Some experimental tests are proposed, involving neutron diffraction by crystals made of three different isotopes, neutron interferometry, and K_{S}-meson regeneration.

Quantum theory and spacetime

Quantum theory and spacetime

Plausible scenarios:

spacetime

Quantum theory and spacetime

Plausible scenarios:

spacetime

spacetime
 unknown
 fundamental

 theory- See e.g. this result by Dakic and Brukner...
B. Dakic and C. Brukner, The classical limit of a physical theory and the dimensionality of space, arXiv:1307.3984
- ... or Mauro d'Ariano's approach.

Relativistic covariance emergent from underlying QCA.

Quantum theory and spacetime

Plausible scenarios:

spacetime

OR

spacetime
 unknown
 fundamental

 theory- See e.g. this result by Dakic and Brukner...
B. Dakic and C. Brukner, The classical limit of a physical theory and the dimensionality of space, arXiv:1307.3984
- ... or Mauro d'Ariano's approach.

Relativistic covariance emergent from underlying QCA.

To me, crucial hint is the spin-1/2 particle:

Quantum theory and spacetime

spatial rotations

transformations of the probabilistic state

Quantum theory and spacetime

quantum 2-level state space

classical 3-level state space

spatial rotations

transformations of the probabilistic state

Quantum theory and spacetime

quantum 2-level state space

classical 3-level state space

spatial rotations

transformations of the probabilistic state

C. F. von Weizsäcker's suggestion (>1954): Somehow, the Euclidean 3D structure of space follows from the qubit.

Quantum theory and spacetime

quantum 2-level state space

classical 3-level state space
spatial rotations

transformations of the probabilistic state

C. F. von Weizsäcker's suggestion (>1954): Somehow, the Euclidean 3D structure of space follows from the qubit.

Next part of talk:
Making some of this rigorous, via QIT tools.

2. Quantum theory and the dimensionality of space

2. Quantum theory and the dimensionality of space

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Formulate as information-theoretic task:

2. Quantum theory and the dimensionality of space

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Formulate as information-theoretic task:

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and continuously in time.

2. Quantum theory and the dimensionality of space

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Theorem: Then the spatial dimension must be $d=3$, the systems are qubits, and pairs of these systems are quantum 4-level systems evolving unitarily in time.

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and continuously in time.

2. Quantum theory and the dimensionality of space

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

One more Theorem: If "spatial direction" $x \in \mathbb{R}^{d},|x|=1$, is replaced by "spatial orientation" $X \in S O(d)$, then there is no solution (for topological reasons).

Suppose there is a probabilistic system such that...

1. Alice can encode any spatial direction into the state, but
2. any attempt to encode more results in information loss.
3. Coordinate transformations on pairs of these systems are uniquely determined by their action on single systems.
4. Pairs of these systems can interact reversibly and continuously in time.

Spatial geometry from probabilities

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Spatial geometry from probabilities

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Physicist Alice wants to determine the
 angle between two measurement devices.

Spatial geometry from probabilities

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Physicist Alice wants to determine the
 angle between two measurement devices.

Problem: She doesn't have rulers, protractors etc. (maybe her laboratory space doesn't even have a metric!)

Spatial geometry from probabilities

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Physicist Alice wants to determine the
 angle between two measurement devices.

Problem: She doesn't have rulers, protractors etc. (maybe her laboratory space doesn't even have a metric!)

Spatial geometry from probabilities

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

Physicist Alice wants to determine the
 angle between two measurement devices.

Problem: She doesn't have rulers, protractors etc. (maybe her laboratory space doesn't even have a metric!)

Solution: There is a protocol to determine the angle from comparing measurement outcome probabilities on (unknown) states.

\Rightarrow Probabilities deliver linearity structure for free.

A glimpse on the "architecture" of physics

The Bloch ball is 3-dimensional because of...

- ... relativity of simultaneity on interferometers?
- ... possibility of tomographically-local continuous interaction? And this allows for Stern-Gerlach-like behavior if space is 3D.

These facts constrain each other, and are thus somehow fundamentally related.

Conclusion

- Reconstructions of QT only first step in broader research program:
Study how QT and spacetime constrain each other.
arXiv:1206.0630

Thanks to:
Lluís Masanes, Andrew Garner, Oscar Dahlsten

Thank you!

