
Quantum theory and spacetime: 
progress from principles

Markus P.  Müller

Institute for Theoretical Physics, Heidelberg University (Germany)

?

TA

TB

up

low



Outline

Main message

Formalism of	


quantum theory

Information-	


theoretic	


principles But also…

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller



Outline

Main message

Formalism of	


quantum theory

Information-	


theoretic	


principles

Structure of	


spacetime

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller



Outline

Main message

Formalism of	


quantum theory

Information-	


theoretic	


principles

Structure of	


spacetime

Insights into the “architecture“ of physics

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller



1. Relativity and interference experiments

!
!
!
!
!
!
!
!

2. Quantum theory and the dimensionality of space

!
!

Outline

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller

Outline

4

e⇥ectively 2-level systems, therefore “bits”, cf. Lemma 19
in the appendix). We will not specify by what type of
physical object they are carried – a direction bit could, for
example, correspond to the internal degrees of freedom of
a particle, or it could be something completely di⇥erent.
We will only assume that a direction bit may come in dif-
ferent states (matching the framework described above),
with a state space denoted �d.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i � {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y � Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (�) to obtain the i-th outcome depends

only on the direction bit state � and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R � SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a
certain type of measurement device with a finite number
of outcomes. As shown in Fig. 4, we imagine that the
device is implemented as a macroscopic, massive object
which can be rotated arbitrarily, i.e. can be subjected to
any SO(d) rotation. Due to some symmetry of the de-
vice, its orientation in space (locally in the lab) may be
described by a unit vector y ⌅ Rd, |y| = 1, choosing some
arbitrary but fixed coordinate system in the local labo-
ratory. Instead of naively thinking of the whole device
as “pointing in direction y”, we may also think that one
of the device’s components is a vectorial physical quan-
tity which determines the type of measurement that is
performed. A standard example in three dimensions is
given by a Stern-Gerlach device, where y is the direction
of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is
trivial, and thus no one-dimensional rotation can map
the unit vector +1 ⌅ R1 to the unit vector �1 ⌅ R1. In
order to allow Bob to collimate his device in all directions
also in d = 1, we will thus silently replace SO(1) by
O(1) = {1,�1} in all of the following.

Since the measurement which is performed by the de-
vice may depend on its direction y in space, it is denoted
My. In the following, by a “direction”, we shall always
mean a unit vector in Rd. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (�) are

continuous in the direction y.
Physically, we assume that we can perform a rotation

R ⌅ SO(d) to the measurement device without touch-
ing the direction bit; this transforms My to MRy, but
leaves the bit’s state � invariant. The fact that the out-
come probabilities are altered, from M(i)

y (�) to M(i)
Ry(�),

should be understood as a result of the change in the
relative orientation of the bit and the device. Thus,
even though direction bits are considered as informa-
tional “black boxes” with arbitrary physical realization,
we are forced to adopt the interpretation that direction
bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from
quantum mechanics. Suppose that, after rotating the
measurement device by R, we do not perform the mea-
surement, but instead rotate the joint system of direction
bit and measurement device back by R�1. If it is phys-
ically unclear how to do this in practice, we can just
imagine performing a passive coordinate transformation.

Since this transformation does not change the relative
direction of the system and measurement apparatus, it
does not alter the outcome probabilities. However, by
changing to the new coordinate system, MRy has been
transformed back to My, hence the direction bit state
must have changed from � to some other state �⇥ such

thatM(i)
y (�⇥) = M(i)

Ry(�). The state transformation � ⇧⇤
�⇥ can be physically undone (by rotating the joint system
again by R), hence it must be an element of the group
of reversible transformations on �d. We call it GR�1 ,
such that we can switch from the “Heisenberg” to the
“Schrödinger” picture via

M(i)
Ry(�) = M(i)

y (GR�1�).

Clearly GR ⇥ GS = GRS ; in other words, the map R ⇧⇤
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents (Al-
ice and Bob) reside in distant laboratories as depicted in
Fig. 1. Imagine that Alice holds an actual physical vector
x ⌅ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information
to Bob. Since Alice and Bob have never met, they have
never agreed on a common coordinate system. Thus, it is
useless for Bob if Alice sends him a classical description
of x, because he does not know what coordinate system
the description is referring to.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
�. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state � by considering many identical
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| �⇥In most reconstructions of QT, it is 

• first shown that a bit is a d-ball,

• then shown that d=3 (difficult!).
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Two-level state spaces (“bits“) are naturally ball state spaces:

We will now show that relativity of simultaneity 
rules out all d≧4 !
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Relativistic constraints on interference experiments

) d  3 (In fact, d=3, otherwise no "phase 
transformations" exist at all.)

Remarks:

• In several axiomatic reconstructions of QT, the fact that 
   "SO(d-1) must be Abelian" 
   was a crucial intermediate proof step → physical interpretation!

!
!
!
• Cf. original Popescu-Rohrlich box idea: 
   Spacetime + probabilities are hard to combine 
   → their structures constrain each other!

Ll. Masanes and MM, A derivation of quantum theory from physical requirements, New J. Phys. 13 (2011) 
Ll. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the 
Bloch ball, arXiv:1111.4060.

1. Relativity + interference

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller



Relativistic constraints on interference experiments

) d  3 (In fact, d=3, otherwise no "phase 
transformations" exist at all.)

Remarks:

• In several axiomatic reconstructions of QT, the fact that 
   "SO(d-1) must be Abelian" 
   was a crucial intermediate proof step → physical interpretation!

!
!
!
• Cf. original Popescu-Rohrlich box idea: 
   Spacetime + probabilities are hard to combine 
   → their structures constrain each other!

Ll. Masanes and MM, A derivation of quantum theory from physical requirements, New J. Phys. 13 (2011) 
Ll. Masanes, MM, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the 
Bloch ball, arXiv:1111.4060.

1. Relativity + interference

 Quantum theory and spacetime: progress from principles                                                                   Markus P. Müller



Relativistic constraints on interference experiments

) d  3 (In fact, d=3, otherwise no "phase 
transformations" exist at all.)

Remarks:

• Work in progress: consequences for actual 
                                interference experiments.
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Proposed Test for Complex versus Quaternion Quantum Theory
Asher Peres

DePartment of Hsysics, Technion-Israel Institgte of Technology, Haifa, Israel
(Received 7 December 1978)

If scattering amplitudes are ordinary complex numbers (not quaternions) then there is
a universal algebraic relationship between the six coherent cross sections of any three
scatterers (taken singly and pairwise). A violation of this relationship would indicate
either that scattering amplitudes are quaternions, or that the superposition principle
fails. Some experimental tests are proposed, involving neutron diffraction by crystals
made of three different isotopes, neutron interferometry, and X&-meson regeneration.

Quantum theory rests on the superposition prin-
ciple' which asserts that the states of a physical
system can be represented as the elements of a
linear manifold. That is, if g, and P, are two
possible states of a system and c, and c2 are ar-
bitrary numbers, then c,(,+c,g, is also a pos-
sible state of that system. It is usually taken for
granted that the coefficients c, and c, are com-
plex numbers. However, it is possible to imag-
ine a real quantum theory' or one based on qua-
ternions. ' ' In this article, I show how it is pos-
sible to distinguish experimentally between real,
complex, and quaternion quantum theories.
Real quantum theory, although logically con-

sistent, can be easily ruled out for our world'.
e.g. , complex coefficients are needed in order
to combine linearly polarized photons into cir-
cularly polarized ones. ' More generally, cor-
respondence with classical physics leads to the
commutation relations [p,q] =i@. A formal test,
which will later be extended to distinguish be-
tween complex and quaternion quantum theories,
is the following.
Consider a beam of particles impinging on a

scatterer. Let g, represent the state of the scat-
tered particles, i.e., g, is the difference between
the actual state g and the state (, which we would
have if the scatterer were absent. Assume that

g, is normalized to unit flux. Now, set a detector
at a distance R from the scatterer and let y/R
represent the state for a unit Qux of particles
passing through that detector. Then the cross
section for scattering into our detector is defined
as

where (X, g,) denotes the scalar product of the
states y and P, . If this scalar product is a com-
plex number, we can write

(X, g, )=a, exp(iq, ),
so that

Similar formulas hold for quaternion quantum
theory, with exp(iy, ) replaced by unimodular
quaternion.
Consider now a different scatterer, with scat-

tering amplitude

(X, q, )=a, exp(~, ).
We have likewise

202=a2 .
Finally, if both scatterers are present, we have

1979 The American Physical Society 683
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• See e.g. this result by Dakic and Brukner…

• ... or Mauro d'Ariano's approach. 
Relativistic covariance emergent from underlying QCA.

B. Dakic and C. Brukner, The classical limit of a physical theory and the 
dimensionality of space, arXiv:1307.3984
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• See e.g. this result by Dakic and Brukner…

• ... or Mauro d'Ariano's approach. 
Relativistic covariance emergent from underlying QCA.

To me, crucial hint is the spin-1/2 particle:

B. Dakic and C. Brukner, The classical limit of a physical theory and the 
dimensionality of space, arXiv:1307.3984
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2. Quantum theory and the dimensionality of space

MM and Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach,

New J. Phys. 15, 053040 (2013), arXiv:1206.0630.

2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y � Rd. Alice’s goal is to send a spatial direction
x � Rd, |x| = 1, to Bob, by encoding it into a suitable state �(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of �(x), and measuring it in many di�erent directions y � Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the
application of novel mathematical tools to the old ques-
tion of the relation between geometry and probability.
These tools have their origin in the recent wave of ax-
iomatizations of quantum theory [7–11], starting with
Hardy’s seminal work [7], and are inspired by recent work
on quantum reference frames [12–17].

The first part of this paper consists of an introduction
to one of these tools, which is the framework of convex
state spaces, generalizing quantum theory in a natural
way. Then, the first two postulates will be defined in
more detail, and will be used to derive the state space of
a single system. Finally, joint state spaces and the third
postulate will be discussed in detail, yielding our main
result. Throughout the paper, only the main ideas and
proof sketches are given; the full proofs are deferred to
the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-
eral probabilistic theories – has proven useful in the con-
text of quantum information theory [7, 18–23], but dates
back much further [24–28]. We now give a brief introduc-
tion; other useful introductory sources include [29–32], in
particular Chapters 1 and 2 in the paper by Mielnik [33].

����������� ����	
�������� ���	�������

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We
have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,
a particle). We assume that we can operate the prepara-
tion device as often as we want (say, by pressing a button
on the device, or by waiting until a periodic physical pro-
cess has completed another cycle). In the end, the sys-
tem can be measured, by applying one of several possible
measurement devices with a finite number of outcomes.
The intuition is that the device prepares the system in

a certain fixed state �; operating the preparation device
several times produces many independent copies of �. To
define exactly what we mean by that, consider any fixed
measurement device M. If M is applied to the prepa-
ration device’s output, we assume that we get one of k
di�erent measurement outcomes probabilistically, where
k ⇤ N is an arbitrary natural number (in Fig. 2, we have
k = 2, represented by the two dots). The probability to
obtain the i-th outcome (where 1 ⇥ i ⇥ k) is denoted
M(i)(�), such that

�
i M(i)(�) = 1.

If we operate the preparation device repeatedly, the
measurement outcome statistics will be exactly as pre-
dicted by probability theory – for example, in the long
run, the fraction of runs that yield the i-th outcome will
be close to M(i)(�) with high probability due to the law
of large numbers. In general, there are many di�erent
possible measurement devices M,N , . . ., each described
by its own collection of outcomes M(i),N (j), and with
its own outcome statistics, uniquely determined by the
state �.

Now suppose that we have two devices, both preparing
the same type of physical system (say, the same type of
particle – in general, something that we can feed into
the same kinds of measurement devices). Suppose they
prepare two di�erent states, called ⇥ and �. Then we can
use them to build a new device that performs a random
preparation: it prepares state � with probability p, and
state ⇥ with probability 1 � p. The resulting state will
be denoted p� + (1� p)⇥. This is a convex combination
of � and ⇥. If we apply measurement M to that state,

Formulate as information-theoretic task:

2. QT and 3D
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The intuition is that the device prepares the system in

a certain fixed state �; operating the preparation device
several times produces many independent copies of �. To
define exactly what we mean by that, consider any fixed
measurement device M. If M is applied to the prepa-
ration device’s output, we assume that we get one of k
di�erent measurement outcomes probabilistically, where
k ⇤ N is an arbitrary natural number (in Fig. 2, we have
k = 2, represented by the two dots). The probability to
obtain the i-th outcome (where 1 ⇥ i ⇥ k) is denoted
M(i)(�), such that

�
i M(i)(�) = 1.

If we operate the preparation device repeatedly, the
measurement outcome statistics will be exactly as pre-
dicted by probability theory – for example, in the long
run, the fraction of runs that yield the i-th outcome will
be close to M(i)(�) with high probability due to the law
of large numbers. In general, there are many di�erent
possible measurement devices M,N , . . ., each described
by its own collection of outcomes M(i),N (j), and with
its own outcome statistics, uniquely determined by the
state �.

Now suppose that we have two devices, both preparing
the same type of physical system (say, the same type of
particle – in general, something that we can feed into
the same kinds of measurement devices). Suppose they
prepare two di�erent states, called ⇥ and �. Then we can
use them to build a new device that performs a random
preparation: it prepares state � with probability p, and
state ⇥ with probability 1 � p. The resulting state will
be denoted p� + (1� p)⇥. This is a convex combination
of � and ⇥. If we apply measurement M to that state,

Formulate as information-theoretic task:

Suppose there is a probabilistic system such that...
1. Alice can encode any spatial direction into the state, but 
2. any attempt to encode more results in information loss.

3. Coordinate transformations on pairs of these systems 
    are uniquely determined by their action on single systems. 
4. Pairs of these systems can interact reversibly and 
    continuously in time.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y � Rd. Alice’s goal is to send a spatial direction
x � Rd, |x| = 1, to Bob, by encoding it into a suitable state �(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of �(x), and measuring it in many di�erent directions y � Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the
application of novel mathematical tools to the old ques-
tion of the relation between geometry and probability.
These tools have their origin in the recent wave of ax-
iomatizations of quantum theory [7–11], starting with
Hardy’s seminal work [7], and are inspired by recent work
on quantum reference frames [12–17].

The first part of this paper consists of an introduction
to one of these tools, which is the framework of convex
state spaces, generalizing quantum theory in a natural
way. Then, the first two postulates will be defined in
more detail, and will be used to derive the state space of
a single system. Finally, joint state spaces and the third
postulate will be discussed in detail, yielding our main
result. Throughout the paper, only the main ideas and
proof sketches are given; the full proofs are deferred to
the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-
eral probabilistic theories – has proven useful in the con-
text of quantum information theory [7, 18–23], but dates
back much further [24–28]. We now give a brief introduc-
tion; other useful introductory sources include [29–32], in
particular Chapters 1 and 2 in the paper by Mielnik [33].
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FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.
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possible measurement devices M,N , . . ., each described
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prepare two di�erent states, called ⇥ and �. Then we can
use them to build a new device that performs a random
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state ⇥ with probability 1 � p. The resulting state will
be denoted p� + (1� p)⇥. This is a convex combination
of � and ⇥. If we apply measurement M to that state,

Suppose there is a probabilistic system such that...
1. Alice can encode any spatial direction into the state, but 
2. any attempt to encode more results in information loss.

3. Coordinate transformations on pairs of these systems 
    are uniquely determined by their action on single systems. 
4. Pairs of these systems can interact reversibly and 
    continuously in time.

Theorem: Then the spatial dimension must be d=3, the systems are qubits, and 
pairs of these systems are quantum 4-level systems evolving unitarily in time.
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measurement outcome statistics will be exactly as pre-
dicted by probability theory – for example, in the long
run, the fraction of runs that yield the i-th outcome will
be close to M(i)(�) with high probability due to the law
of large numbers. In general, there are many di�erent
possible measurement devices M,N , . . ., each described
by its own collection of outcomes M(i),N (j), and with
its own outcome statistics, uniquely determined by the
state �.

Now suppose that we have two devices, both preparing
the same type of physical system (say, the same type of
particle – in general, something that we can feed into
the same kinds of measurement devices). Suppose they
prepare two di�erent states, called ⇥ and �. Then we can
use them to build a new device that performs a random
preparation: it prepares state � with probability p, and
state ⇥ with probability 1 � p. The resulting state will
be denoted p� + (1� p)⇥. This is a convex combination
of � and ⇥. If we apply measurement M to that state,

Suppose there is a probabilistic system such that...
1. Alice can encode any spatial direction into the state, but 
2. any attempt to encode more results in information loss.

3. Coordinate transformations on pairs of these systems 
    are uniquely determined by their action on single systems. 
4. Pairs of these systems can interact reversibly and 
    continuously in time.

One more Theorem: If "spatial direction"                            is replaced by "spatial 
orientation"                      then there is no solution (for topological reasons).

x � Rd
, |x| = 1,

X 2 SO(d),
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e⇥ectively 2-level systems, therefore “bits”, cf. Lemma 19
in the appendix). We will not specify by what type of
physical object they are carried – a direction bit could, for
example, correspond to the internal degrees of freedom of
a particle, or it could be something completely di⇥erent.
We will only assume that a direction bit may come in dif-
ferent states (matching the framework described above),
with a state space denoted �d.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i � {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y � Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (�) to obtain the i-th outcome depends

only on the direction bit state � and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R � SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a
certain type of measurement device with a finite number
of outcomes. As shown in Fig. 4, we imagine that the
device is implemented as a macroscopic, massive object
which can be rotated arbitrarily, i.e. can be subjected to
any SO(d) rotation. Due to some symmetry of the de-
vice, its orientation in space (locally in the lab) may be
described by a unit vector y ⌅ Rd, |y| = 1, choosing some
arbitrary but fixed coordinate system in the local labo-
ratory. Instead of naively thinking of the whole device
as “pointing in direction y”, we may also think that one
of the device’s components is a vectorial physical quan-
tity which determines the type of measurement that is
performed. A standard example in three dimensions is
given by a Stern-Gerlach device, where y is the direction
of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is
trivial, and thus no one-dimensional rotation can map
the unit vector +1 ⌅ R1 to the unit vector �1 ⌅ R1. In
order to allow Bob to collimate his device in all directions
also in d = 1, we will thus silently replace SO(1) by
O(1) = {1,�1} in all of the following.

Since the measurement which is performed by the de-
vice may depend on its direction y in space, it is denoted
My. In the following, by a “direction”, we shall always
mean a unit vector in Rd. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (�) are

continuous in the direction y.
Physically, we assume that we can perform a rotation

R ⌅ SO(d) to the measurement device without touch-
ing the direction bit; this transforms My to MRy, but
leaves the bit’s state � invariant. The fact that the out-
come probabilities are altered, from M(i)

y (�) to M(i)
Ry(�),

should be understood as a result of the change in the
relative orientation of the bit and the device. Thus,
even though direction bits are considered as informa-
tional “black boxes” with arbitrary physical realization,
we are forced to adopt the interpretation that direction
bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from
quantum mechanics. Suppose that, after rotating the
measurement device by R, we do not perform the mea-
surement, but instead rotate the joint system of direction
bit and measurement device back by R�1. If it is phys-
ically unclear how to do this in practice, we can just
imagine performing a passive coordinate transformation.

Since this transformation does not change the relative
direction of the system and measurement apparatus, it
does not alter the outcome probabilities. However, by
changing to the new coordinate system, MRy has been
transformed back to My, hence the direction bit state
must have changed from � to some other state �⇥ such

thatM(i)
y (�⇥) = M(i)

Ry(�). The state transformation � ⇧⇤
�⇥ can be physically undone (by rotating the joint system
again by R), hence it must be an element of the group
of reversible transformations on �d. We call it GR�1 ,
such that we can switch from the “Heisenberg” to the
“Schrödinger” picture via

M(i)
Ry(�) = M(i)

y (GR�1�).

Clearly GR ⇥ GS = GRS ; in other words, the map R ⇧⇤
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents (Al-
ice and Bob) reside in distant laboratories as depicted in
Fig. 1. Imagine that Alice holds an actual physical vector
x ⌅ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information
to Bob. Since Alice and Bob have never met, they have
never agreed on a common coordinate system. Thus, it is
useless for Bob if Alice sends him a classical description
of x, because he does not know what coordinate system
the description is referring to.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
�. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state � by considering many identical

Physicist Alice wants to determine the

angle between two measurement devices.
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Fig. 1. Imagine that Alice holds an actual physical vector
x ⌅ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information
to Bob. Since Alice and Bob have never met, they have
never agreed on a common coordinate system. Thus, it is
useless for Bob if Alice sends him a classical description
of x, because he does not know what coordinate system
the description is referring to.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
�. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state � by considering many identical

Physicist Alice wants to determine the

angle between two measurement devices.

Problem: She doesn't have rulers,

protractors etc. (maybe her laboratory

space doesn't even have a metric!)
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Physicist Alice wants to determine the

angle between two measurement devices.

Problem: She doesn't have rulers,

protractors etc. (maybe her laboratory

space doesn't even have a metric!)

Solution: There is a protocol to determine 
the angle from comparing measurement

outcome probabilities on (unknown) states.
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e⇥ectively 2-level systems, therefore “bits”, cf. Lemma 19
in the appendix). We will not specify by what type of
physical object they are carried – a direction bit could, for
example, correspond to the internal degrees of freedom of
a particle, or it could be something completely di⇥erent.
We will only assume that a direction bit may come in dif-
ferent states (matching the framework described above),
with a state space denoted �d.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i � {1, . . . , k} probabilistically. Due to sym-
metry, its modus operandi depends only on a vector y � Rd,
|y| = 1 specifying its “direction” in the local laboratory frame.

The probability M(i)
y (�) to obtain the i-th outcome depends

only on the direction bit state � and continuously on the di-
rection y. The device can be rotated in space according to
any rotation R � SO(d). In the rotated reference frame of
the device, this corresponds to a reversible transformation on
the direction bit.

We assume that direction bits can be measured by a
certain type of measurement device with a finite number
of outcomes. As shown in Fig. 4, we imagine that the
device is implemented as a macroscopic, massive object
which can be rotated arbitrarily, i.e. can be subjected to
any SO(d) rotation. Due to some symmetry of the de-
vice, its orientation in space (locally in the lab) may be
described by a unit vector y ⌅ Rd, |y| = 1, choosing some
arbitrary but fixed coordinate system in the local labo-
ratory. Instead of naively thinking of the whole device
as “pointing in direction y”, we may also think that one
of the device’s components is a vectorial physical quan-
tity which determines the type of measurement that is
performed. A standard example in three dimensions is
given by a Stern-Gerlach device, where y is the direction
of inhomogeneity of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is
trivial, and thus no one-dimensional rotation can map
the unit vector +1 ⌅ R1 to the unit vector �1 ⌅ R1. In
order to allow Bob to collimate his device in all directions
also in d = 1, we will thus silently replace SO(1) by
O(1) = {1,�1} in all of the following.

Since the measurement which is performed by the de-
vice may depend on its direction y in space, it is denoted
My. In the following, by a “direction”, we shall always
mean a unit vector in Rd. For obvious physical reasons,

we assume that the outcome probabilities M(i)
y (�) are

continuous in the direction y.
Physically, we assume that we can perform a rotation

R ⌅ SO(d) to the measurement device without touch-
ing the direction bit; this transforms My to MRy, but
leaves the bit’s state � invariant. The fact that the out-
come probabilities are altered, from M(i)

y (�) to M(i)
Ry(�),

should be understood as a result of the change in the
relative orientation of the bit and the device. Thus,
even though direction bits are considered as informa-
tional “black boxes” with arbitrary physical realization,
we are forced to adopt the interpretation that direction
bits carry actual physical geometrical orientation.

This enforces a certain duality that is familiar from
quantum mechanics. Suppose that, after rotating the
measurement device by R, we do not perform the mea-
surement, but instead rotate the joint system of direction
bit and measurement device back by R�1. If it is phys-
ically unclear how to do this in practice, we can just
imagine performing a passive coordinate transformation.

Since this transformation does not change the relative
direction of the system and measurement apparatus, it
does not alter the outcome probabilities. However, by
changing to the new coordinate system, MRy has been
transformed back to My, hence the direction bit state
must have changed from � to some other state �⇥ such

thatM(i)
y (�⇥) = M(i)

Ry(�). The state transformation � ⇧⇤
�⇥ can be physically undone (by rotating the joint system
again by R), hence it must be an element of the group
of reversible transformations on �d. We call it GR�1 ,
such that we can switch from the “Heisenberg” to the
“Schrödinger” picture via

M(i)
Ry(�) = M(i)

y (GR�1�).

Clearly GR ⇥ GS = GRS ; in other words, the map R ⇧⇤
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents (Al-
ice and Bob) reside in distant laboratories as depicted in
Fig. 1. Imagine that Alice holds an actual physical vector
x ⌅ Rd (all vectors and rotations will be denoted with re-
spect to Alice’s local coordinate system in the following),
and she would like to send this geometric information
to Bob. Since Alice and Bob have never met, they have
never agreed on a common coordinate system. Thus, it is
useless for Bob if Alice sends him a classical description
of x, because he does not know what coordinate system
the description is referring to.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
�. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state � by considering many identical

Physicist Alice wants to determine the

angle between two measurement devices.

Problem: She doesn't have rulers,

protractors etc. (maybe her laboratory

space doesn't even have a metric!)

Solution: There is a protocol to determine 
the angle from comparing measurement

outcome probabilities on (unknown) states.

⇒ Probabilities deliver linearity structure for free.
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A glimpse on the "architecture" of physics

The Bloch ball is 3-dimensional because of...

• ... relativity of simultaneity on interferometers?

• ... possibility of tomographically-local continuous interaction?

And this allows for Stern-Gerlach-like behavior if space is 3D.

These facts constrain each other,

and are thus somehow fundamentally related.

2. QT and 3D
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Conclusion

• Reconstructions of QT only first step in broader 
   research program:

Thank you!

Conclusion
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Study how QT and spacetime constrain each other.
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