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the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are
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FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦

✓
1
~a2

◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)

Philosophy	
of	Physics:	

structural	realism

Spacetime	and	
Relational	Quantum	

Information



Research

Mathematical	
Q.I.T.

Resource-theoretic	
approach	to	
Quantum	

Thermodynamics

Quantum	
Foundations	and	
reconstructions	

of	QM

5

the state space, the authors conjectured that interest-
ing multipartite reversible dynamics is possible for such
systems. In contrast to quantum theory, this m-partite
dynamics would not be decomposable into two-gbit in-
teractions. While tomographic locality has not been as-
sumed in [19], it is an important first step to verify their
conjecture under this additional assumption. In fact, it
has been argued in [47] that in the context of spacetime
physics (the Bloch balls are interpreted in [19] as car-
rying some sort of d-dimensional spin degrees of free-
dom), tomographic locality is to be expected due to ar-
guments from group representation theory.

This gives us another, independent motivation to ask
the main question of this paper: if d 6= 3 and n is any
finite number of gbits, then what are the possible theories that
satisfy the assumptions of Subsection II B?

III. MAIN RESULT

The main result of this work is an answer to the ques-
tion posed at the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits
are described by a (d � 2)-dimensional Bloch ball state space,
subject to the single-gbit transformation group SO(d). As
described above, let us assume no-signalling, tomographic lo-
cality, and that the global transformations form a closed con-
tinuous matrix group G.

If d 6= 3, then necessarily G = Gloc, i.e. the only possible
gates are (independent combinations of) single-gbit gates. No
transformation can correlate gbits that are initially uncorre-
lated; hence not even classical computation is possible.

We will now prove this result for the case d � 4. The
proof in the d = 2 case uses similar techniques, but dif-
fers in several details for group-theoretic reasons. It will
hence be deferred to the appendix.

As a first step, we will consider the generators of
global transformations and show that there exists at
least one that is of a certain normal form. This part of
the proof is valid for all dimensions d � 2.

A. Generator normal form for all dimensions d � 2

Let G 2 G be a transformation of the composite sys-
tem. Suppose we prepare the n gbits initially in states
with Bloch vectors ~a1, . . . ,~an, evolve the resulting prod-
uct state via G, and perform a final local n-gbit measure-
ment with Bloch vectors ~b1, . . . ,~bn. The probability that
the all the n outcomes on the n gbits are “yes” is

2
�nv(~b1,~b2, . . . ,~bn)

>Gv(~a1,~a2, . . . ,~an) 2 [0, 1].

Let us consider a group element G = e✏X with X 2 g
(the corresponding Lie algebra) and " 2 R and expand:

v(~b1, . . . ,~bn)
>
⇣
1+✏X+

✏2

2
X2+O(✏3)

⌘
v(~a1, . . . ,~an) 2 [0, 2n].

From now on we restrict ourselves to unit length Bloch
vectors, i.e. |~ai| = |~bj | = 1 for all i, j. We obtain

C[~a1] := v(�~a1,~b2, ...,~bn)>Xv(~a1,~a2, . . . ,~an) = 0

since the zeroth order is zero which is a local mini-
mum as a function of ✏ (see Figure 2 for an interpreta-
tion). Thus the second order contribution has to be non-
negative:

v(�~a1,~b2, . . . ,~bn)>X2v(~a1,~a2, . . . ,~an) � 0,

or more generally with the role of the qubits exchanged,

v(~b1, . . . ,~bk�1,�~ak,~bk+1, . . .~bn)
>X2v(~a1, . . . ,~an) � 0.

(1)
Other first and second order constraints are

~a1

~a2

~a3

~a4

e"X
�~a1

~b4

~b3

~b2

FIG. 2. We are using configurations like this one to derive con-
straints on the generators X 2 g. In the special case " = 0,
the transformation exp("X) reduces to the identity. Hence, if
we prepare the first wire in the (pure) state with Bloch vector
~a1, and perform a final measurement of that wire with Bloch
vector �~a1, the corresponding outcome will have probabil-
ity zero, regardless of which local measurements we choose
for the other wires. But probability zero is a local minimum,
which implies that the derivative of this probability with re-
spect to " must be zero (yielding C[~a1] = 0), and the second
derivative must be non-negative (yielding constraint (1) in the
case k = 1).

v(~a1,~a2, . . . ,~an)
>Xv(~a1,~a2, . . . ,~an) = 0, (2)

v(~a1,~a2, . . . ,~an)
>X2v(~a1,~a2, . . . ,~an)  0 (3)

for analogous reasons as above. For fixed Bloch vectors
~a2, . . . ,~an,~b2, . . . ,~bn, define W↵

� as


~e� ⌦

✓
1
~b2

◆
⌦ . . .⌦

✓
1
~bn

◆�>

X


~e↵ ⌦

✓
1
~a2

◆
⌦ . . .⌦

✓
1
~an

◆�
.

(4)
The equation C[~ei] = 0 implies W 0

0
+W i

0
�W 0

i �W i
i = 0,

and C[�~ei] = 0 implies W 0
0
�W i

0
+W 0

i �W i
i = 0. Thus,

W i
i = W 0

0
and W i

0
= W 0

i for all i � 1. Since the vectors✓
1

~a

◆
linearly span all of Rd+1, we get

Xi ↵2 ... ↵n
i �2 ... �n

= X0 ↵2 ... ↵n
0 �2 ... �n

, (5)

Xi ↵2 ... ↵n
0 �2 ... �n

= X0 ↵2 ... ↵n
i �2 ... �n

(6)

Philosophy	
of	Physics:	

structural	realism

Spacetime	and	
Relational	Quantum	

Information



Overview

1.	Boxes	and	theories	beyond	quantum	theory

2.	Quantum	theory	from	simple	principles

3.	Spacetime	and	QT:	from	foundational	insights…

4.	…	to	protocols	and	experiments

Existence of an information unit as a postulate of quantum theory

Lluís Masanes,1 Markus P. Müller,2 Remigiusz Augusiak,3 and David Pérez-García4

1H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

3ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
4Dpto. Analisis Matemático and IMI, Universidad Complutense de Madrid, 28040 Madrid, Spain

(Dated: October 23, 2013)

Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
∑

λ∈Λ

PA(a|x,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is real-
izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.

8

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB



Physics	beyond	quantum?

• In	classical	physics	/	prob.	theory:

II HOW COULD PHYSICS BE MORE GENERAL THAN QUANTUM?

depend on y and b cannot depend on x. This means that the scenario must satisfy

P (x, y,λ) = PX(x) · PY (y) · PΛ(λ), a = fA(x,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup
implies these assumptions, see e.g. the book by Pearl (2009). These assumptions are
typically subsumed under the notion of “local realism”, and readers who want to learn
more about this are invited to consult more specialized references. A great start-
ing point are the Quantum Foundations classes given by Rob Spekkens at Perimeter
Institute; these can be watched for free on http://pirsa.org.
Note that P (a, b|x, y,λ) = δa,fA(x,λ)δb,fB(y,λ) = PA(a|x,λ)PB(b|y,λ) (with δ the

Kronecker delta). Hence, by the chain rule of conditional probability,

P (a, b|x, y) =
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izable within the causal structure as depicted in Figure 2 must be classical according
to the following definition:

Definition 1. A probability table P (a, b|x, y) is classical if there exists a probability
space (P,Ω,Σ) with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ,
where X = Y = {0, 1} and Λ arbitrary, such that Eq. (1) holds. If this is the case,
then we call (P,Ω,Σ) a hidden-variable model for the probability table.
Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because
the sets of inputs and outcomes are discrete and finite (in other words, considering
only finite discrete Λ is no loss of generality here).
In the derivation above, we have obtained a model for which PA(a|x,λ) and

PB(b|y,λ) are deterministic, i.e. take only the values zero and one. But even without
this assumption, probability tables that are of the form (1) can be realized within the
prescribed causal structure according to classical probability theory: one simply has
to add local randomness that makes the response functions PA and PB act nondeter-
ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
PA and PB must be deterministic.
It is self-evident that the classical probability tables satisfy the no-signalling con-

ditions (Barrett 2007): that is, PA(a|x, y) :=
∑

b P (a, b|x, y) is independent of y,
and PB(b|x, y) :=

∑

a P (a, b|x, y) is independent of x. This means that Alice “sees”
the local marginal distribution PA(a|x, y) = PA(a|x) =

∑

λ∈Λ PA(a|x,λ)PΛ(λ) if she
doesn’t know what happens in Bob’s laboratory, regardless of Bob’s choice of input y
(and similarly with the roles of Alice and Bob exchanged). If this was not true, then
Bob could signal to Alice simply by choosing the local input to his box. The causal
structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that

will become useful later. Note that we have found that the classical behaviors are
exactly those that can be expressed in the form (1) with PA and PB deterministic (if
we want). Thus, we have shown that
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Lemma 2. A probability table is classical if and only if it is a convex combination of
deterministic non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see
e.g. the textbook by Webster 1994). If we have a finite number of elements x1, . . . , xn

of some vector space (for example probability distributions, or vectors in Rm), then
another element x is a convex combination of these if and only if there exist p1, . . . , pn ≥
0 with

∑n
i=1 pi = 1 and

∑n
i=1 pixi = x. Intuitively, we can think of x as a “probabilistic

mixture” of the xi, with weights pi. Indeed, the right-hand side of (1) defines a convex
combination of the Pλ(a, b|x, y) := PA(a|x,λ)PB(b|y,λ). These are probability tables
that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[

ρAB(E
a
x ⊗ F b

y )
]

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
b
y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
x + E+1

x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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ministically to their inputs. Thus, we do not need to postulate in Definition 1 that
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structure that we have assumed from the start precludes such magic behavior.
We can reformulate what we have found above in a slightly more abstract way that
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0 with
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that are deterministic (take only values zero and one) and non-signalling (in fact,
uncorrelated).
This reformulation has intuitive appeal: classically, all probabilities can consistently

be interpreted as arising from lack of knowledge. Namely, we can put everything that
we do not know into some random variable λ. If we knew λ, we could predict the
values of all other variables with certainty.
Quantum theory, however, allows for a different set of probability tables in the

scenario of Figure 2: instead of a joint probability distribution, we can think of a
(possibly entangled) quantum state that has been distributed to Alice and Bob. The
inputs to Alice’s box can be interpreted as measurement choices (e.g. the choice of
angle for a polarization measurement), and the outcomes can correspond to the actual
measurement outcomes. This leads to the following definition:

Definition 3. A probability table P (a, b|x, y) is quantum if it can be written in the
form

P (a, b|x, y) = tr
[
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,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, mea-
surement operators Ea

x , F
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y ≥ 0 (i.e. operators that are positive semidefinite) and

E−1
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x = 1A as well as F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the
state ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB ,
and the measurement operators can be chosen as projectors (see e.g. Navascues et al.,
2015). We will restrict our considerations to finite-dimensional Hilbert spaces; for the
subtleties of the infinite-dimensional case, see e.g. Scholz and Werner, 2008, and Ji et
al., 2020.

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical
(quantum) probability tables are classical (quantum).

(ii) C2,2,2 ⊂ Q2,2,2.

(iii) Every P ∈ Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables.
However, Q2,2,2 is not.
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<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

Quantum	admits	more	general	P’s	due	to	the	violation	of	Bell	inequalities.

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.



whereCHSH := |C00 + C01 + C10 � C11| ⇥ 2
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Classical	probability	distribuXons	saXsfy	Bell	inequality:

The	Bell-CHSH	inequality

S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaXons	the	most	general	
that	saXsfy	the	no-signalling	principle?

<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

Quantum: Bell inequality violation.
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Classical	probability	distribuXons	saXsfy	Bell	inequality:

The	Bell-CHSH	inequality

S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):

Are	quantum	correlaXons	the	most	general	
that	saXsfy	the	no-signalling	principle?

<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

No!	Counterexample:	the	PR-box	correlaXons

CHSH=4

classical QM Quantum: Bell inequality violation.
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S.	Popescu	and	D.	Rohrlich,	Found.	Phys.	24,	379	(1994):
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<latexit sha1_base64="CJoU9DmjK1RsXOheNVhruDOmw3E=">AAAB8nicbVBNSwMxEJ34WetX1aOXYBEqlLIrBT0WvHisYG2xXUo2zbah2eySZMVl7b/w4kFBvPprvPlvTNs9aOuDgcd7M8zM82PBtXGcb7Syura+sVnYKm7v7O7tlw4O73SUKMpaNBKR6vhEM8ElaxluBOvEipHQF6ztj6+mfvuBKc0jeWvSmHkhGUoecEqMle6bFVL1nx6r6Vm/VHZqzgx4mbg5KUOOZr/01RtENAmZNFQQrbuuExsvI8pwKtik2Es0iwkdkyHrWipJyLSXzS6e4FOrDHAQKVvS4Jn6eyIjodZp6NvOkJiRXvSm4n9eNzHBpZdxGSeGSTpfFCQCmwhP38cDrhg1IrWEUMXtrZiOiCLU2JCKNgR38eVl0j6vufWa697Uy41GnkcBjuEEKuDCBTTgGprQAgoSnuEV3pBGL+gdfcxbV1A+cwR/gD5/AO0mkD4=</latexit>

P (a, b|x, y)

No!	Counterexample:	the	PR-box	correlaXons

CHSH=4

no-signallingclassical QM



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS

CorrelaXons	in	C	come	from	classical	prob.	theory,	
correlaXons	in	Q	from	quantum	theory,	
correlaXons	in	NS	from	a	theory	called	“boxworld”.



Physics	beyond	quantum?

<latexit sha1_base64="aw7pg64EmiHh9dATp62y4n5PRpM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI8xXjxGMCaSLGF2MpsMmccyMyuEJV/hxYOCePVvvPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHj0YFSqCW0RxZXuRNhQziRtWWY57SSaYhFx2o7GNzO//US1YUre20lCQ4GHksWMYOukx54eqX523Zj2yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowmx88RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW18FWZMJqmlkiwWxSlHVqHZ92jANCWWTxzBRDN3KyIjrDGxLqOSCyFYfnmVtC+qQa0aBHe1Sr2R51GEEziFcwjgEupwC01oAQEBz/AKb572Xrx372PRWvDymWP4A+/zB0wAkIw=</latexit>⇢AB

No-signalling	conditions:
<latexit sha1_base64="+45m5AenN5Qn6jGtgsIRiVwbrpE=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVfL0eJae9ssVp+bMgJeJm5MK5Gj2y1+9QUSTkElDBdG66zqx8TKiDKeCTUq9RLOY0DEZsq6lkoRMe9ns3gk+scoAB5GyJQ2eqb8nMhJqnYa+7QyJGelFbyr+53UTE1x6GZdxYpik80VBIrCJ8PR5POCKUSNSSwhV3N6K6YgoQo2NqGRDcBdfXibt85pbr7nuTb3SaOR5FOEIjqEKLlxAA66hCS2gIOAZXuEN3aMX9I4+5q0FlM8cwh+gzx/GxY+c</latexit>

P (a|x, y) is	independent	of <latexit sha1_base64="dsEvbUNT/CXSUBP1qRalk+HKi3c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosePFYxdpCG8pmO2mXbjZhdyOE0H/gxYOCePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305pbX1jc6u8XdnZ3ds/qB4ePeo4VQzbLBax6gZUo+AS24Ybgd1EIY0CgZ1gcjPzO0+oNI/lg8kS9CM6kjzkjBor3WcXg2rNrbtzkFXiFaQGBVqD6ld/GLM0QmmYoFr3PDcxfk6V4UzgtNJPNSaUTegIe5ZKGqH28/mlU3JmlSEJY2VLGjJXf0/kNNI6iwLbGVEz1sveTPzP66UmvPZzLpPUoGSLRWEqiInJ7G0y5AqZEZkllClubyVsTBVlxoZTsSF4yy+vks5l3WvUPe+uUWs2izzKcAKncA4eXEETbqEFbWAQwjO8wpszcV6cd+dj0Vpyiplj+APn8wflfo1q</latexit>y,
<latexit sha1_base64="EYaU+ErqF7ZugqPyvcqsSv1oYEU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BItQQcquFPRY8OKxgrWFdinZNNuGZrNrkhWXtX/CiwcF8erP8ea/MW33oK0PBh7vzTAzz48F18ZxvlFhZXVtfaO4Wdra3tndK+8f3OkoUZS1aCQi1fGJZoJL1jLcCNaJFSOhL1jbH19N/fYDU5pH8takMfNCMpQ84JQYK3WaVf/p8Sw97ZcrTs2ZAS8TNycVyNHsl796g4gmIZOGCqJ113Vi42VEGU4Fm5R6iWYxoWMyZF1LJQmZ9rLZvRN8YpUBDiJlSxo8U39PZCTUOg192xkSM9KL3lT8z+smJrj0Mi7jxDBJ54uCRGAT4enzeMAVo0aklhCquL0V0xFRhBobUcmG4C6+vEza5zW3XnPdm3ql0cjzKMIRHEMVXLiABlxDE1pAQcAzvMIbukcv6B19zFsLKJ85hD9Anz/IT4+d</latexit>

P (b|x, y) is	independent	of <latexit sha1_base64="sEMnpWVm+6x8QJ4GrHc47Al5crQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoMeCF49VrC20oWy2k3bpZhN2N2IJ/QdePCiIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737ZTW1jc2t8rblZ3dvf2D6uHRg04yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU2A7H1zO//YhK80Tem0mKQUyHkkecUWOluye3X615rjcHWSV+QWpQoNmvfvUGCctilIYJqnXX91IT5FQZzgROK71MY0rZmA6xa6mkMeogn186JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxEV0HOZZoZlGyxKMoEMQmZvU0GXCEzYmIJZYrbWwkbUUWZseFUbAj+8surpH3h+nXX92/rtUajyKMMJ3AK5+DDJTTgBprQAgYRPMMrvDlj58V5dz4WrSWnmDmGP3A+fwDnAo1r</latexit>x.

C Q

NS

CorrelaXons	in	C	come	from	classical	prob.	theory,	
correlaXons	in	Q	from	quantum	theory,	
correlaXons	in	NS	from	a	theory	called	“boxworld”.

3	examples	of	a	“generalized	probabilisTc	theory”.



Generalized	probabilisXc	theories

�

PreparaXon transformaXon measurement



�

Example:	classical	coin	toss.

•	On	every	push	of	bu`on,	the	preparaXon	device	performs	
				a	biased	coin	toss.	
•	The	transformaXon	device,	for	example,	inverts	the	coin	
				(if	heads	then	tails,	and	vice	versa).	
•	The	measurement	outcome	is	"heads"	or	"tails".

Generalized	probabilisXc	theories

PreparaXon transformaXon measurement



�

•	On	every	push	of	bu`on,	the	preparaXon	device	performs	
				a	biased	coin	toss.	
•	The	transformaXon	device,	for	example,	inverts	the	coin	
				(if	heads	then	tails,	and	vice	versa).	
•	The	measurement	outcome	is	"heads"	or	"tails".

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement



�

•	On	every	push	of	bu`on,	the	preparaXon	device	produces	
				a	biased	coin	toss.	
•	The	transformaXon	device,	for	example,	inverts	the	coin	
				(if	heads	then	tails,	and	vice	versa).	
•	The	measurement	outcome	is	"heads"	or	"tails".

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement



�

•	The	preparaXon	device	prepares	a	physical	system	
•	in	a	state	ω.	Here

� =

✓
Prob(heads)
Prob(tails)

◆
=

✓
p

1� p

◆
.

?
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Example:	classical	coin	toss.

PreparaXon transformaXon measurement



�

•	The	preparaXon	device	prepares	a	physical	system	
•	in	a	state	ω.	Here

� =

✓
Prob(heads)
Prob(tails)

◆
=

✓
p

1� p

◆
.

State	space	Ω:	the	set	of	all	possible	states

?

Generalized	probabilisXc	theories

Example:	classical	coin	toss.
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•	The	preparaXon	device	prepares	a	physical	system	
•	in	a	state	ω.	Here

� =

✓
Prob(heads)
Prob(tails)

◆
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✓
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◆
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State	space	Ω:	the	set	of	all	possible	states
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Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement
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•	The	preparaXon	device	prepares	a	physical	system	
•	in	a	state	ω.

T

✓
p

1� p

◆
=

✓
1� p
p

◆

✓
1
0

◆

✓
0
1

◆

✓
1/2
1/2

◆

•	TransformaXon:

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement
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•	The	preparaXon	device	prepares	a	physical	system	
•	in	a	state	ω.

✓
0
1

◆

✓
1/2
1/2

◆

•	TransformaXon: T

✓
p

1� p

◆
=

✓
1� p
p

◆

Maps	states	to	states	and	is	linear.

✓
1
0

◆

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement
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✓
0
1

◆

✓
1/2
1/2

◆

✓
1
0

◆
•	Every	measurement	outcome	has	a	probability,	
			depending	linearly	on	the	state:

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement
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✓
0
1

◆

✓
1/2
1/2

◆

✓
1
0

◆
•	Every	measurement	outcome	has	a	probability,	
			depending	linearly	on	the	state:

Prob(heads|!) = p =

✓
1
0

◆
·
✓

p
1� p

◆
= e · !.

Generalized	probabilisXc	theories

Example:	classical	coin	toss.

PreparaXon transformaXon measurement
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Example:	quantum	spin-1/2	parXcle.

Generalized	probabilisXc	theories

PreparaXon transformaXon measurement



�

•	The	preparaXon	device	prepares	a	spin-1/2	
•	parXcle	in	quantum	state	ω.

More	generally:	ω	is	2x2	density	matrix.

↵| �⇤+ �| ⇥⇤

Generalized	probabilisXc	theories

Example:	quantum	spin-1/2	parXcle.

PreparaXon transformaXon measurement
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•	The	preparaXon	device	prepares	a	spin-1/2	
•	parXcle	in	quantum	state	ω.

More	generally:	ω	is	2x2	density	matrix.
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Generalized	probabilisXc	theories

Example:	quantum	spin-1/2	parXcle.
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PreparaXon transformaXon measurement



�

• Unitary transformation of the density matrix:
� 7! U�U†.

Generalized	probabilisXc	theories

Example:	quantum	spin-1/2	parXcle.

PreparaXon transformaXon measurement



�

• Unitary transformation of the density matrix:
� 7! U�U†.

• Measurement in arbitrary spin direction d:
Prob(� |�) = Tr(Pd �)

Generalized	probabilisXc	theories

Example:	quantum	spin-1/2	parXcle.

PreparaXon transformaXon measurement



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:

<latexit sha1_base64="kqYCupqATh/epZ4CkHtEzP+iAkI=">AAACJHicbZDNSgMxFIUz9a/Wv6pLN8EitJthRgqKIBTduKxgbaFTSibNtKGZJCQZpYx9Fze+ihsXiuLCjc9i2s5CWy+EfJxzL8k9oWRUG8/7cnJLyyura/n1wsbm1vZOcXfvVotEYdLAggnVCpEmjHLSMNQw0pKKoDhkpBkOLyd+844oTQW/MSNJOjHqcxpRjIyVusWzejkNVAwTOa6cT8mocTlQA/EQJBIpJe4DhXifkYDNrkytuN1iyXO9acFF8DMogazq3eJ70BM4iQk3mCGt274nTSdFylDMyLgQJJpIhIeoT9oWOYqJ7qTTHcfwyCo9GAllDzdwqv6eSFGs9SgObWeMzEDPexPxP6+dmOi0k1IuE0M4nj0UJQwaASeBwR5VBBs2soCwovavEA+QQtjYWAs2BH9+5UVoHrt+1fX962qpdpHlkQcH4BCUgQ9OQA1cgTpoAAwewTN4BW/Ok/PifDifs9ack83sgz/lfP8ADVOlkw==</latexit>

P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

• What	is	a	state	space?	
It	is	the	collecXon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staTsTcal	mixtures.

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:

<latexit sha1_base64="kqYCupqATh/epZ4CkHtEzP+iAkI=">AAACJHicbZDNSgMxFIUz9a/Wv6pLN8EitJthRgqKIBTduKxgbaFTSibNtKGZJCQZpYx9Fze+ihsXiuLCjc9i2s5CWy+EfJxzL8k9oWRUG8/7cnJLyyura/n1wsbm1vZOcXfvVotEYdLAggnVCpEmjHLSMNQw0pKKoDhkpBkOLyd+844oTQW/MSNJOjHqcxpRjIyVusWzejkNVAwTOa6cT8mocTlQA/EQJBIpJe4DhXifkYDNrkytuN1iyXO9acFF8DMogazq3eJ70BM4iQk3mCGt274nTSdFylDMyLgQJJpIhIeoT9oWOYqJ7qTTHcfwyCo9GAllDzdwqv6eSFGs9SgObWeMzEDPexPxP6+dmOi0k1IuE0M4nj0UJQwaASeBwR5VBBs2soCwovavEA+QQtjYWAs2BH9+5UVoHrt+1fX962qpdpHlkQcH4BCUgQ9OQA1cgTpoAAwewTN4BW/Ok/PifDifs9ack83sgz/lfP8ADVOlkw==</latexit>

P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

• What	is	a	state	space?	
It	is	the	collecXon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staTsTcal	mixtures.
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QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:
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P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.



• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

• What	is	a	state	space?	
It	is	the	collecXon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staTsTcal	mixtures.
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QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:

<latexit sha1_base64="kqYCupqATh/epZ4CkHtEzP+iAkI=">AAACJHicbZDNSgMxFIUz9a/Wv6pLN8EitJthRgqKIBTduKxgbaFTSibNtKGZJCQZpYx9Fze+ihsXiuLCjc9i2s5CWy+EfJxzL8k9oWRUG8/7cnJLyyura/n1wsbm1vZOcXfvVotEYdLAggnVCpEmjHLSMNQw0pKKoDhkpBkOLyd+844oTQW/MSNJOjHqcxpRjIyVusWzejkNVAwTOa6cT8mocTlQA/EQJBIpJe4DhXifkYDNrkytuN1iyXO9acFF8DMogazq3eJ70BM4iQk3mCGt274nTSdFylDMyLgQJJpIhIeoT9oWOYqJ7qTTHcfwyCo9GAllDzdwqv6eSFGs9SgObWeMzEDPexPxP6+dmOi0k1IuE0M4nj0UJQwaASeBwR5VBBs2soCwovavEA+QQtjYWAs2BH9+5UVoHrt+1fX962qpdpHlkQcH4BCUgQ9OQA1cgTpoAAwewTN4BW/Ok/PifDifs9ack83sgz/lfP8ADVOlkw==</latexit>

P (up) = tr(⇢| "ih").
<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.
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• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

• What	is	a	state	space?	
It	is	the	collecXon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staTsTcal	mixtures.

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:
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P (up) = tr(⇢| "ih").
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<latexit sha1_base64="0uc4pHpQB7Jg/+l02L/tMnpSoUw="></latexit>

⌦ = {⇢ 2 HN (C) | tr(⇢) = 1, ⇢ � 0}.
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• What	is	a	state?	
It	is	the	thing	that	allows	us	to	determine,	for	all	possible	
measurements,	the	probabiliXes	of	the	possible	outcomes.

Generalized	probabilisXc	theories

• What	is	a	state	space?	
It	is	the	collecXon	of	all	states	that	a	system	could	
possibly	be	in,	closed	under	staTsTcal	mixtures.

QT:	Density	matrix		
							Measure	whether	spin	is	up	or	down:
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<latexit sha1_base64="80DsCSnr5AxNDThbliXINd3Horw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbB07IRQY9FLx4ruLbQLiWbZtvQbLIkWaEs/Q1ePCiIV/+PN/+NabsHbX0w8Hhvhpl5cSa4sUHw7VXW1jc2t6rbtZ3dvf2D+uHRo1G5piykSijdiYlhgksWWm4F62SakTQWrB2Pb2d++4lpw5V8sJOMRSkZSp5wSqyTwp4eKb9fbwR+MAdaJbgkDSjR6te/egNF85RJSwUxpouDzEYF0ZZTwaa1Xm5YRuiYDFnXUUlSZqJifuwUnTllgBKlXUmL5urviYKkxkzS2HWmxI7MsjcT//O6uU2uo4LLLLdM0sWiJBfIKjT7HA24ZtSKiSOEau5uRXRENKHW5VNzIeDll1dJ+8LHlz7G95eN5k2ZRxVO4BTOAcMVNOEOWhACBQ7P8ApvnvRevHfvY9Fa8cqZY/gD7/MHI3KOuA==</latexit>⇢.

Ω
!1

!2

QT:
<latexit sha1_base64="0uc4pHpQB7Jg/+l02L/tMnpSoUw="></latexit>

⌦ = {⇢ 2 HN (C) | tr(⇢) = 1, ⇢ � 0}.

CPT:
<latexit sha1_base64="EtVPggItS4QzmPMY3cvEB3A62WY=">AAACL3icbVDBahsxENW6TZs6Tbtpjr2ImkAKi1mVQHsJhJRCTmkCcW2wlkUrj20RSatK2oDZ+It66a8kh0JTKL3mL6J1fGjjPpB4vDfDzLzCSOF8mv6MWo8erz15uv6svfF888XLeOvVF1dWlkOPl7K0g4I5kEJDzwsvYWAsMFVI6BfnHxu/fwHWiVKf+ZmBTLGJFmPBmQ9SHn+inxVM2D6td01OEipHpXeJyY/f0oQml82HTS7oBL7iNKGgnWEcMHWVykXj7BM67+ZxJ+2mC+BVQpakg5Y4yeNrOip5pUB7LplzQ5Ian9XMesElzNu0chAGnbMJDAPVTIHL6sW5c7wTlBEelzY87fFC/bujZsq5mSpCpWJ+6h56jfg/b1j58YesFtpUHjS/HzSuJPYlbrLDI2GBezkLhHErwq6YT5ll3IeE2yEE8vDkVdJ/1yV7XUJO9zoHh8s81tFr9AbtIoLeowN0hE5QD3H0DV2hG/Qr+h79iH5Hf+5LW9GyZxv9g+j2DqN0puE=</latexit>

⌦ = {(p1, . . . , pN ) | pi � 0,
X

i

pi = 1}.
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(Almost)	everything	can	be	inferred	from	shape	of	state	space.

classical	
bit

quantum	
bit

"gbit"

Arbitrary	convex	
state	space

Classical	trit	
(3-level-system)

6

FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular

Quantum	trit:	
8D	and	complicated!
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Generalized	probabilisXc	theories

There	is	a	large	landscape	of	state	spaces,	or	theories	(collecXons	
of	allowed	state	spaces):

I WHAT KIND OF “QUANTUM FOUNDATIONS”?

can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.

QT CPT

operator-algebraic theories

“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe

3
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opposite: could nature be even “more crazy” than quantum? Could physics allow for
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than allowed by QT, or enable even more magic technology than what we currently
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quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
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As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular
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Generalized	probabilisXc	theories

There	is	a	large	landscape	of	state	spaces,	or	theories	(collecXons	
of	allowed	state	spaces):

I WHAT KIND OF “QUANTUM FOUNDATIONS”?

can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.

QT CPT
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“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
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nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
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As we will see, not only is there a simple and beautiful mathematical formalism that
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macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
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than allowed by QT, or enable even more magic technology than what we currently
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quantum physics be an approximation of something even more general?
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																						determine	Minkowski	spaceXme.
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can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.
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FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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A	reconstrucXon	of	quantum	theory

I WHAT KIND OF “QUANTUM FOUNDATIONS”?

can be regarded as determining Alice’s and Bob’s outcomes. But Bell’s Theorem (Bell,
1964) tells us that the statistics of some measurements on some entangled states are
inconsistent with such a (suitably formalized) notion of hidden variables, unless those
variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.

QT CPT
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“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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•	Postulate	2:	Tomographic	locality.

The	state	of	a	composite	system	is	
completely	characterized	by	the	
correla9ons	of	measurements	on	the	
individual	components.
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physical system
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outcomes x and x̄

x

Figure 1. General experimental setup. From left to right, there are the
preparation, transformation and measurement devices. As soon as the release
button is pressed, the preparation device outputs a physical system in the state
specified by the knobs. The next device performs the transformation specified by
its knobs (which in particular can ‘do nothing’). The device on the right carries
out the measurement specified by its knobs, and the outcome (x or x̄) is indicated
by the corresponding light.

2. Generalized probabilistic theories

In CPT there can always be a joint probability distribution for all random variables under
consideration. The framework of generalized probabilistic theories (GPTs), also called the
convex operational framework, generalizes this by allowing the possibility of random variables
that cannot have a joint probability distribution or cannot be simultaneously measured (such as
noncommuting observables in QT).

This framework assumes that at some level there is a classical reality, where it makes
sense to talk about experimentalists performing basic operations such as preparations, mixtures,
measurements and counting the relative frequencies of outcomes. These are the primary
concepts of this framework. It also provides a unified way for all GPTs to represent states,
transformations and measurements. A particular GPT specifies which of these are allowed,
but it does not tell their correspondence to actual experimental setups. On its own, a GPT
can still make nontrivial predictions such as: the maximal violation of a Bell inequality [1],
the complexity-theoretic computational power [2, 18] and, in general, all information-theoretic
properties of the theory [6].

The framework of GPTs can be stated in different ways, but all lead to the same
formalism [3–9]. This formalism is presented in this section at a very basic level, providing
some elementary results without proofs.

2.1. States

Definition of a system. We associate with a setup like figure 1 a system if, for each configuration
of the preparation, transformation and measurement devices, the relative frequencies of the
outcomes tend to a unique probability distribution (in the large sample limit).

The probability of a measurement outcome x is denoted by p(x). This outcome can be
associated with a binary measurement that tells whether x happens or not (this second event
x̄ has probability p(x̄) = 1 � p(x)). The above definition of a system allows one to associate
with each preparation procedure a list of probabilities of the outcomes of all the measurements
that can be carried out on a system. As we show in section 4.3, our requirements imply that all
these probabilities p(x) are determined by a finite set of them; the smallest such set is used to
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Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
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even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
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variables are allowed to exert nonlocal influence. This guarantees that Alice’s and
Bob’s key is secure in such cases, as long as there is no superluminal signalling be-
tween their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought
these devices from Eve. This intuition can indeed be made mathematically rigorous,
and has led to the fascinating field of device-independent cryptography (Barrett, Hardy,
Kent (2005)) and randomness expansion (Colbeck (2006), Colbeck and Kent (2011),
Pironio et al. (2010)).
The preconception that Quantum Foundations research is somehow motivated by

the desire to return to a classical worldview is also sometimes arising in the con-
text of question (ii) above. It is true that the perhaps better known instance of this
question asks whether QT would somehow break down and become classical in the
macroscopic regime: for example, spontaneous collapse models (Ghirardi, Rimini, and
Weber (1986), Bassi et al. (2013)) try to account for the emergence of a classical
world from quantum mechanics via dynamical modifications of the Schödinger equa-
tion. However, a fascinating complementary development in Quantum Foundations
research — the one that these lectures will be focusing on — is to explore the exact
opposite: could nature be even “more crazy” than quantum? Could physics allow for
even stronger-than-quantum-correlations, produce more involved interference patterns
than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could
quantum physics be an approximation of something even more general?
As we will see in the course of these lectures, the answer to these questions is “yes”:

nature could in principle be “more crazy”. The main insight will be that QT is just
one instance of a large class of probabilistic theories : theories that allow us to describe
probabilities of measurement outcomes and their correlations over time and space.
Another example is “classical probability theory” (CPT) as defined below, but there
are many other ones that are equally consistent.

QT CPT

operator-algebraic theories

“boxworld”

other
theories

Euclidean

physically realized

hyperbolic

other
theories

Minkowski

FIG. 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory and CPT
for classical probability theory (as defined later). Right: as a suggestive analogy (see main
text), the “landscape of theories of (spacetime) geometry”.

As we will see, not only is there a simple and beautiful mathematical formalism that
allows us to describe all such theories, but the new approach to QT “from the outside”
provides a very illuminating perspective on QT itself: it allows us to understand
which features are uniquely quantum and which others are just general properties of
probabilistic theories. Moreover, it gives us the right mathematical tools to describe
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
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n-gbit state in a reversible way, and leaves the initial system
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the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
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cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.
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and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
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protocols at an abstract level, without considering whether
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More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
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I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
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strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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•	Postulate	4:	No	simultaneous	
																											encoding.

Theorem.	If	Postulates	1-4	hold,	then	the	state	space	of	n	ubits	is
<latexit sha1_base64="sBoKbDYfiEZaS4YI5baBH1tJIjE="></latexit>

⌦ = {⇢ 2 H2n(C) | tr(⇢) = 1, ⇢ � 0},
and	the	reversible	transformaXons	are	the	unitaries,
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IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.

34

Group	rep.	theory:	can	reparametrize	space	such	that	transformaXons	are	
																rotaXons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).
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If	full	ball:	can	encode	one	bit	by	preparing	
																			state	or	anXpodal	state.	That’s	all.
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If	not	full	ball:	can	encode	one	bit	and	a	lible	more	by	
																										preparing	state	or	one	of	anXpodal	states.
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group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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Example:	why	are	ubits	balls?

•	Postulate	1:	ConXnuous	reversibility.

•	Postulate	4:	No	simultaneous	
																											encoding.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.

34

Group	rep.	theory:	can	reparametrize	space	such	that	transformaXons	are	
																rotaXons.	Then,	pure	states	lie	on	unit	sphere	(of	some	dim.	d).

If	full	ball:	can	encode	one	bit	by	preparing	
																			state	or	anXpodal	state.	That’s	all.
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If	not	full	ball:	can	encode	one	bit	and	a	lible	more	by	
																										preparing	state	or	one	of	anXpodal	states.

Violates	Postulate	4.

IV QUANTUM THEORY FROM SIMPLE PRINCIPLES

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas
Ω1 contains only a single state. This is a contradiction.
We thus conclude that Ω2 must roughly look like the convex set in the right of

Figure 11. Formally, this means that all of its boundary points must be pure states.
Let us now additionally invoke the postulate of Continuous Reversibility and show the
following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimen-
sion.

In other words, we will now derive the fact that a quantum bit is described by
the Bloch ball. However, we will not (yet) be able to say that this ball must be
three-dimensional.
Let us start by defining what one may call the “maximally mixed state” of Ω2:

pick any pure state ω ∈ Ω2, and define µ :=
∫

T2
Tω dT ; that is, we integrate over

the invariant (Haar) measure of the group of reversible transformations T2 (group
averaging). It follows that Tµ = µ for all T ∈ T2, and it is easy to check that µ is in
fact the unique state with this property.

FIG. 12: Left: The definition of Bloch vectors embeds the normalized states into a linear
space (of one dimension less than the linear space on which the state cone lives). Right: If
any point on the sphere does not correspond to a valid state, then this contradicts the strict
convexity of Ω2.

For states ω ∈ Ω2, we define the corresponding “Bloch vector” "ω := ω − µ (see
Figure 12). Hence, Tω = ϕ if and only if T "ω = "ϕ, and "µ = 0. Then T2 acts on the
linear space that contains the Bloch vectors. Now we can use a well-known trick from
group representation theory (Simon 1996), and construct an invariant inner product.
Namely, if “·” is an arbitrary inner product on the space of Bloch vectors, then we
can define

〈"x, "y〉 = α

∫

T2

(T"x) · (T"y) dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T"x, T"y〉 =
〈"x, "y〉 for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space
such that the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure
states, then, due to Continuous Reversibility, there is some transformation T ∈ T2
such that Tω = ϕ. Thus

‖"ϕ‖2 = 〈"ϕ, "ϕ〉 = 〈T "ω, T "ω〉 = 〈"ω, "ω〉 = ‖"ω‖2.
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Why	is	the	ubit	“Bloch	ball”	3-dimensional?



Why	is	the	ubit	“Bloch	ball”	3-dimensional?
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Bd⌦ Two	ubits:	some	composite	state	space	

of	two	d-balls,																			transiXve	onGA = GB @Bd.



Why	is	the	ubit	“Bloch	ball”	3-dimensional?

Theorem. Among all dimensions d and all groups GA, there are

only the following possibilities:

• The trivial solution: GAB = GA ⌦ GB .

• d = 3, GA = SO(3) (i.e. the quantum bit), GAB ' PU(4), and

⌦AB is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible

for d = 3, in standard complex two-qubit quantum theory.
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Why	is	the	ubit	“Bloch	ball”	3-dimensional?

Theorem. Among all dimensions d and all groups GA, there are

only the following possibilities:

• The trivial solution: GAB = GA ⌦ GB .

• d = 3, GA = SO(3) (i.e. the quantum bit), GAB ' PU(4), and

⌦AB is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible

for d = 3, in standard complex two-qubit quantum theory.

Bd

A B
Bd⌦ Two	ubits:	some	composite	state	space	

of	two	d-balls,																			transiXve	onGA = GB @Bd.

MathemaXcal	reason	(at	core	of	proof):
is	only	non-trivial	and	commutaTve	for
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A	possible	“loophole”	and	its	resoluXon

We	have	assumed	that	bits	can	interact	pairwise.	
But	perhaps	fascinaXng	new	theories	are	possible	if	we	drop	this?

B.	Dakić	and	C.	Brukner,	The	classical	limit	of	a	physical	theory	and	the	dim.	of	space,	2013.
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ARTICLE OPEN

Quantum computation is the unique reversible circuit model
for which bits are balls
Marius Krumm1,2 and Markus P. Müller1,3

The computational efficiency of quantum mechanics can be characterized in terms of the qubit circuit model, which is defined by a
few simple properties: each computational gate is a reversible transformation in a connected matrix group; single wires carry
quantum bits, i.e. states of a three-dimensional Bloch ball; states on two or more wires are uniquely determined by local
measurement statistics and their correlations. In this paper, we ask whether other types of computation are possible if we relax one
of those characteristics (and keep all others), namely, if we allow wires to be described by d-dimensional Bloch balls, where d is
different from three. Theories of this kind have previously been proposed as possible generalizations of quantum physics, and it has
been conjectured that some of them allow for interesting multipartite reversible transformations that cannot be realized within
quantum theory. However, here we show that all such potential beyond-quantum models of computation are trivial: if d is not
three, then the set of reversible transformations consists entirely of single-bit gates, and not even classical computation is possible.
In this sense, qubit quantum computation is an island in theoryspace.

npj Quantum Information ������������(2019)�5:7� ; https://doi.org/10.1038/s41534-018-0123-x

INTRODUCTION
Since the discovery of quantum algorithms that outperform all
known classical ones in certain tasks,1 improving our under-
standing of the possibilities and limitations of quantum computa-
tion has become one of the central goals of quantum information
theory. While it is notoriously difficult to prove unconditional
separation of polynomial-time classical and quantum computa-
tion,2 an approach that is often regarded more tractable is to
analyze how certain modifications of quantum computing affect
its computational power. For instance, one may consider
restrictions on the set of allowed quantum resources, and ask
under which condition the possibility of universal quantum
computation is preserved despite the restriction. Notable results
along these lines, among many others, include the
Gottesman–Knill theorem,3–5 insights on the necessity of con-
textuality as a resource for magic state distillation,6 or bounds on
the noise threshold of quantum computers.7

In a complementary and in some sense more radical approach,
going back to Abrams and Lloyd,8 one considers modifications of
the quantum formalism itself and studies the impact of those
modifications on the computational efficiency, resembling strate-
gies of classical computer science such as the introduction of
oracles.9 For example, it has been shown that availability of closed
timelike curves leads to implausible computational power,10 that
stronger-than-quantum nonlocality reduces the set of available
transformations,11–14 that tomographic locality forces computa-
tions to be contained in a class called AWPP,15,16 and that in some
theories (satisfying additional axioms) higher-order interference17

does not lead to a speed-up in Grover’s algorithm.18 Further
examples can be found, e.g., in refs. 19–22

In this paper, we consider a specific modification of the
quantum formalism that is arguably among the simplest and most
conservative possibilities. This modification dates back to ideas by
Jordan et al.,23 and it has several independent motivations as we
will explain further below. This generalization keeps all character-
istic properties of quantum computation unchanged, but modifies
a single aspect: namely, it allows the quantum bit to have any
number of d ≥ 2 degrees of freedom, instead of standard quantum
theory’s d= 3 (or the classical bit’s d= 1). It has been con-
jectured24 that the resulting theories allow for interesting “beyond
quantum” reversible multipartite dynamics, which would make
the corresponding models of computation highly relevant objects
of study within the research program mentioned above. However,
here we show that, quite on the contrary, these models are so
constrained that they do not even allow for classical computation;
hence, in Aaronson’s terminology, the d= 3 case of the standard
qubit circuit model can be seen as an “island in theoryspace”.25

RESULTS
The results of this paper are organized as follows:
At first we motivate and explain the framework: In “Framework:

Single gbits” section, we define single bits that generalize the
qubit (“gbits”), and afterwards in “Framework: Gbit circuits”
section, we give three postulates that allow us to reason about
circuits that are constructed out of n of these gbits. We formulate
the problem that is addressed in this work and describe how it
relates to earlier results in the literature in “d= 3 equals quantum
computation, and relation to earlier work” section. In “Main result”
section, we state our main result: namely, while our principles
uniquely determine quantum computation in the case that the
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quantum bits, i.e. states of a three-dimensional Bloch ball; states on two or more wires are uniquely determined by local
measurement statistics and their correlations. In this paper, we ask whether other types of computation are possible if we relax one
of those characteristics (and keep all others), namely, if we allow wires to be described by d-dimensional Bloch balls, where d is
different from three. Theories of this kind have previously been proposed as possible generalizations of quantum physics, and it has
been conjectured that some of them allow for interesting multipartite reversible transformations that cannot be realized within
quantum theory. However, here we show that all such potential beyond-quantum models of computation are trivial: if d is not
three, then the set of reversible transformations consists entirely of single-bit gates, and not even classical computation is possible.
In this sense, qubit quantum computation is an island in theoryspace.

npj Quantum Information ������������(2019)�5:7� ; https://doi.org/10.1038/s41534-018-0123-x

INTRODUCTION
Since the discovery of quantum algorithms that outperform all
known classical ones in certain tasks,1 improving our under-
standing of the possibilities and limitations of quantum computa-
tion has become one of the central goals of quantum information
theory. While it is notoriously difficult to prove unconditional
separation of polynomial-time classical and quantum computa-
tion,2 an approach that is often regarded more tractable is to
analyze how certain modifications of quantum computing affect
its computational power. For instance, one may consider
restrictions on the set of allowed quantum resources, and ask
under which condition the possibility of universal quantum
computation is preserved despite the restriction. Notable results
along these lines, among many others, include the
Gottesman–Knill theorem,3–5 insights on the necessity of con-
textuality as a resource for magic state distillation,6 or bounds on
the noise threshold of quantum computers.7

In a complementary and in some sense more radical approach,
going back to Abrams and Lloyd,8 one considers modifications of
the quantum formalism itself and studies the impact of those
modifications on the computational efficiency, resembling strate-
gies of classical computer science such as the introduction of
oracles.9 For example, it has been shown that availability of closed
timelike curves leads to implausible computational power,10 that
stronger-than-quantum nonlocality reduces the set of available
transformations,11–14 that tomographic locality forces computa-
tions to be contained in a class called AWPP,15,16 and that in some
theories (satisfying additional axioms) higher-order interference17

does not lead to a speed-up in Grover’s algorithm.18 Further
examples can be found, e.g., in refs. 19–22

In this paper, we consider a specific modification of the
quantum formalism that is arguably among the simplest and most
conservative possibilities. This modification dates back to ideas by
Jordan et al.,23 and it has several independent motivations as we
will explain further below. This generalization keeps all character-
istic properties of quantum computation unchanged, but modifies
a single aspect: namely, it allows the quantum bit to have any
number of d ≥ 2 degrees of freedom, instead of standard quantum
theory’s d= 3 (or the classical bit’s d= 1). It has been con-
jectured24 that the resulting theories allow for interesting “beyond
quantum” reversible multipartite dynamics, which would make
the corresponding models of computation highly relevant objects
of study within the research program mentioned above. However,
here we show that, quite on the contrary, these models are so
constrained that they do not even allow for classical computation;
hence, in Aaronson’s terminology, the d= 3 case of the standard
qubit circuit model can be seen as an “island in theoryspace”.25

RESULTS
The results of this paper are organized as follows:
At first we motivate and explain the framework: In “Framework:

Single gbits” section, we define single bits that generalize the
qubit (“gbits”), and afterwards in “Framework: Gbit circuits”
section, we give three postulates that allow us to reason about
circuits that are constructed out of n of these gbits. We formulate
the problem that is addressed in this work and describe how it
relates to earlier results in the literature in “d= 3 equals quantum
computation, and relation to earlier work” section. In “Main result”
section, we state our main result: namely, while our principles
uniquely determine quantum computation in the case that the
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Wien – Die merkwürdigen Phänomene der Quantenmechanik machen
Quantencomputer herkömmlichen Rechnern weit überlegen. Das liegt vor allem daran,
dass sie mit kohärenten "Quantenbits" arbeiten, statt mit klassischen Nullen und
Einsen. Der Frage, ob ein solcher Computer in einer hypothetischen Welt mit anderen
Naturgesetzen noch überlegener sein könnte, gingen Wiener Physiker nun in einem
Gedankenexperiment nach.

Superpositionen für mehr Leistung

Der Quantencomputer ist momentan sozusagen ein halb gelegtes Ei: In kleinerem
Maßstab funktioniert die technisch sehr aufwendige Technologie bereits, werden die
Systeme jedoch größer, sieht es vorerst noch anders aus. Im Quantencomputer bildet
das sogenannte Qubit die kleinste Informationseinheit. Während das Bit im
herkömmlichen Rechner mit "0" oder "1" nur zwei mögliche Zustände einnehmen kann,
gehorchen Quantensysteme den Gesetzen der Quantenphysik.

Stellt man sich ein Qubit als Punkt auf einer dreidimensionalen Kugel vor, kann sich
dieser nicht nur an den beiden Polen "0" und "1", sondern auch an jedem Platz
dazwischen gleichzeitig befinden. Diese "Superposition" erlaubt es dem
Quantencomputer, gewisse Berechnungen leichter zu bewältigen.

GEDANKENEXPERIMENT

In einer hypothetischen Welt wären
Quantencomputer "langweilig"
In mehr als drei Raumdimensionen und mit komplexeren Bits wären
Quantencomputer nicht leistungsfähiger

1. Februar 2019, 15:00  11 Postings
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Existence of an information unit as a postulate of quantum theory
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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) d  3.



Constraints	from	relaXvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaTve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.
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<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
<latexit sha1_base64="I9CXXEoqHSQIRxpQQ5l4CE0NnAc=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BoQZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8ndJTW</latexit>

) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaTve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.

Wait	a	second…	this	is	the	same	mathemaXcal	reason	as	in	the	
																													informaTon-theoreTc	reconstrucXon!



Constraints	from	relaXvity
<latexit sha1_base64="3JAI/dcL33xJy/z8oL7cShtECrg="></latexit>

) TATB = TBTA for all TA, TB 2 SO(d� 1).
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) d  3.

We	obtain	d=3	because

is	only	non-trivial	and	commutaTve	for
<latexit sha1_base64="+olh7tOAHmn4dnfhTpS8/nke3uw=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUg2VXCnosePFmRWsL7VKy2WwbmmTXJFsoS3+HFw8K4tX/4s1/Y9ruQVsfDDzem2FmXpBwpo3rfjsrq2vrG5uFreL2zu7efung8FHHqSK0SWIeq3aANeVM0qZhhtN2oigWAaetYHg99VsjqjSL5YMZJ9QXuC9ZxAg2VvKzrhLo/nZSCc+9s16p7FbdGdAy8XJShhyNXumrG8YkFVQawrHWHc9NjJ9hZRjhdFLsppommAxxn3YslVhQ7Wezoyfo1CohimJlSxo0U39PZFhoPRaB7RTYDPSiNxX/8zqpia78jMkkNVSS+aIo5cjEaJoACpmixPCxJZgoZm9FZIAVJsbmVLQheIsvL5PWRdWrVT3vrlau1/M8CnAMJ1ABDy6hDjfQgCYQeIJneIU3Z+S8OO/Ox7x1xclnjuAPnM8fvSCROw==</latexit>

SO(d� 1)
<latexit sha1_base64="1AXDQU+8x5V12GXkoP5EZeDrQM0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oBeh4MVjBWsLbSibzaZdursJuxuhhP4FLx4UxKs/yJv/xk2bg7Y+GHi8N8PMvDDlTBvP+3Yqa+sbm1vV7drO7t7+Qf3w6FEnmSK0QxKeqF6INeVM0o5hhtNeqigWIafdcHJb+N0nqjRL5IOZpjQQeCRZzAg2hRTdXLrDesNzvTnQKvFL0oAS7WH9axAlJBNUGsKx1n3fS02QY2UY4XRWG2SapphM8Ij2LZVYUB3k81tn6MwqEYoTZUsaNFd/T+RYaD0Voe0U2Iz1sleI/3n9zMTXQc5kmhkqyWJRnHFkElQ8jiKmKDF8agkmitlbERljhYmx8dRsCP7yy6uke+H6Tdf375uNVqvMowoncArn4MMVtOAO2tABAmN4hld4c4Tz4rw7H4vWilPOHMMfOJ8/vg6N2w==</latexit>

d = 3.

Wait	a	second…	this	is	the	same	mathemaXcal	reason	as	in	the	
																													informaTon-theoreTc	reconstrucXon!
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Constraints	from	relaXvity

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpXon	of	relaTonality!
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Constraints	from	relaXvity

Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

-1

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpXon	of	relaTonality!
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Constraints	from	relaXvity

Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpXon	of	relaTonality!

TB

Let’s	relax	this	assumpXon	to
<latexit sha1_base64="B5Ghei3UmFhwECnKT94DgDhmfnw=">AAACC3icbVBNS8NAEN34WetX1KOX1SJ4CokU9FjrQY8VrC00IWy223bp7ibuboQSevbiX/HiQUG8+ge8+W/ctDnU1gcDj/dmmJkXJYwq7bo/1tLyyuraemmjvLm1vbNr7+3fqziVmDRxzGLZjpAijArS1FQz0k4kQTxipBUNr3K/9UikorG406OEBBz1Be1RjLSRQvvI50gPMGLZ9Ti89BXl5GFWqjuhXXEddwK4SLyCVECBRmh/+90Yp5wIjRlSquO5iQ4yJDXFjIzLfqpIgvAQ9UnHUIE4UUE2eWUMT4zShb1YmhIaTtTZiQxxpUY8Mp35lWrey8X/vE6qexdBRkWSaiLwdFEvZVDHMM8FdqkkWLORIQhLam6FeIAkwtqkVzYhePMvL5LWmeNVHc+7rVZq9SKPEjgEx+AUeOAc1MANaIAmwOAJvIA38G49W6/Wh/U5bV2yipkD8AfW1y8yQJsC</latexit>

GA ' GB .
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Constraints	from	relaXvity

Whatever	happens	in	one	arm	can	be	undone	in	the	other	arm.

So	far,	we	assumed:
<latexit sha1_base64="GPKvP6NMsNDbHSlh46GnDguS4lA=">AAACBnicbVDLSsNAFL3xWesr6lIXwSK4CokUdCPUB+iygrWFNoTJdNIOnUzCzEQooRs3/oobFwri1m9w5984abOorQcGzpxzL/feEySMSuU4P8bC4tLyympprby+sbm1be7sPsg4FZg0cMxi0QqQJIxy0lBUMdJKBEFRwEgzGFzlfvORCEljfq+GCfEi1OM0pBgpLfnmQSdCqo8Ry25G/sX59O/S9s2KYztjWPPELUgFCtR987vTjXEaEa4wQ1K2XSdRXoaEopiRUbmTSpIgPEA90taUo4hILxtfMbKOtNK1wljox5U1Vqc7MhRJOYwCXZlvKWe9XPzPa6cqPPMyypNUEY4ng8KUWSq28kisLhUEKzbUBGFB9a4W7iOBsNLBlXUI7uzJ86R5YrtV23XvqpXadZFHCfbhEI7BhVOowS3UoQEYnuAF3uDdeDZejQ/jc1K6YBQ9e/AHxtcv0USYlA==</latexit>

GA = GB . AssumpXon	of	relaTonality!

TB

Let’s	relax	this	assumpXon	to
<latexit sha1_base64="B5Ghei3UmFhwECnKT94DgDhmfnw=">AAACC3icbVBNS8NAEN34WetX1KOX1SJ4CokU9FjrQY8VrC00IWy223bp7ibuboQSevbiX/HiQUG8+ge8+W/ctDnU1gcDj/dmmJkXJYwq7bo/1tLyyuraemmjvLm1vbNr7+3fqziVmDRxzGLZjpAijArS1FQz0k4kQTxipBUNr3K/9UikorG406OEBBz1Be1RjLSRQvvI50gPMGLZ9Ti89BXl5GFWqjuhXXEddwK4SLyCVECBRmh/+90Yp5wIjRlSquO5iQ4yJDXFjIzLfqpIgvAQ9UnHUIE4UUE2eWUMT4zShb1YmhIaTtTZiQxxpUY8Mp35lWrey8X/vE6qexdBRkWSaiLwdFEvZVDHMM8FdqkkWLORIQhLam6FeIAkwtqkVzYhePMvL5LWmeNVHc+7rVZq9SKPEjgEx+AUeOAc1MANaIAmwOAJvIA38G49W6/Wh/U5bV2yipkD8AfW1y8yQJsC</latexit>

GA ' GB .
<latexit sha1_base64="mVRAvz2/ZnaMxX2zYrHCtU2H1R4=">AAAB/nicbVDLSsNAFJ3UV62v+Ni5GSyCq5BIRZcFXbisYm2hCWUymbRDJzNxZqLUUPwVNy4UxK3f4c6/cdpmoa0HLhzOuZd77wlTRpV23W+rtLC4tLxSXq2srW9sbtnbO7dKZBKTJhZMyHaIFGGUk6ammpF2KglKQkZa4eB87LfuiVRU8Bs9TEmQoB6nMcVIG6lr7/nXtNfXSErxACOfkTt44nTtquu4E8B54hWkCgo0uvaXHwmcJYRrzJBSHc9NdZAjqSlmZFTxM0VShAeoRzqGcpQQFeST60fw0CgRjIU0xTWcqL8ncpQoNUxC05kg3Vez3lj8z+tkOj4LcsrTTBOOp4vijEEt4DgKGFFJsGZDQxCW1NwKcR9JhLUJrGJC8GZfnietY8erOZ53VavWL4o8ymAfHIAj4IFTUAeXoAGaAINH8AxewZv1ZL1Y79bHtLVkFTO74A+szx8qgJTY</latexit>

) d  5. Quaternionic	QM	survives!



ClassificaXon	of	possibiliXes

A.	Garner,	MM,	O.	C.	O.	Dahlsten,	Proc.	R.	Soc.	A	473,	20170596	(2017).



A1)	Beam	spli`er	can	prepare	any	upper-branch	probability	p.	
A2)	Every	pure	state	with	the	same	p	can	be	prepared	by	
							reversible	operaTons	applied	locally	on	the	two	arms.	
A3)	The	groups	of	operaXons	of	A	and	B	are	isomorphic.

ClassificaXon	of	possibiliXes

A.	Garner,	MM,	O.	C.	O.	Dahlsten,	Proc.	R.	Soc.	A	473,	20170596	(2017).
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Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)

at the identity, which we denote by G0
AB, must be transitive on the (d − 2)-sphere [46]. In general,

not only the orthogonal groups O(d − 1) and SO(d − 1) are transitive on the (d − 2)-sphere Sd−2,
but also subgroups like SU((d − 1)/2) for odd d [46]. It is possible to exhaustively list the compact
connected Lie groups [47,48] that act transitively (and effectively3) on Sd−2, and A1, A2 and A3*
imply that GAB = GA = GB must be one of them. However, in this infinite list of groups, only one
of them is Abelian, as dictated by REL: this is U(1) = SO(2), acting on the surface of Bd−1 = B2 (the
circle). !

In several recent derivations of quantum theory from simple postulates [46,49], the condition
that ‘GAB is non-trivial and Abelian’ appeared as a crucial mathematical property (though in
different context and notation) in the proofs which showed that the Bloch ball must be three
dimensional. Here, we obtain an intriguing physical interpretation of this mathematical fact,
related to special relativity. Furthermore, the derivation above is much easier, and represents one
of the simplest arguments for why there are three degrees of freedom in a quantum bit.4

Clearly, the assumption A3* (i.e. that GA = GB), as sketched in figure 3, is very strong. Let us
now therefore relax it.

(b) Weaker assumption:GA " GB
If we look at the symmetry of the interferometric set-up, it is reasonable to expect that the physics
is ‘the same’ for Alice and Bob: the set of ‘phase plates’ (or their beyond-quantum generalizations)
available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
satisfied, because we define the group by its action on the states.
4For another very simple recent derivation of the three-dimensionality of the Bloch ball, see [50,51]. A complementary
approach to relate the structures of the Bloch ball and of space–time can be found in [52].
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— d = 3 (the standard quantum bit over the complex numbers), with GA = GB = SO(2) = U(1),
— d = 5 (the quaternionic quantum bit), with GAB = SO(4), GA the left- and GB the right-isoclinic

rotations in SO(4) (or vice versa) which are both isomorphic to SU(2), and GA ∩ GB = {+I, −I}.

As in theorem 6.1, d is the dimension of the Bloch ball, GA and GB are the local transformations in the
interferometer arms, and now GAB is the group generated by all local transformations in GA and GB.

That is, a unique additional solution shows up: the quaternionic quantum bit. This
quaternionic case will necessarily violate the experimental behaviour sketched in figure 3: except
for the reflection map −I (and the identity map I itself), no other of Alice’s local operations can be
undone by Bob. However, the ability to undo just these two operations is sufficiently permissive
to allow the d = 5 interferometer to implement the Deutsch–Jozsa algorithm [53], suggesting that
this additional case is computationally interesting.

Proof of theorem 6.2. If GA = GB, then we are back in the case that is treated in theorem 6.1,
leading to the first three cases d = 1, 2, 3 listed above (and no other ones). Let us therefore assume
that GA #= GB, which implies in particular that GB contains more than just the identity element. We
may also assume that d ≥ 3, because we have already enumerated all the cases with d = 1, 2. It is
easy to see that the commutant

G′
A := {G ∈ GAB | GX = XG for all X ∈ GA}

is a normal subgroup of GAB. Consider first the case G′
A = GAB. As GA ⊆ GAB, this implies that GA

is Abelian, and then A3 implies that GB is Abelian too. Owing to REL, it follows that arbitrary
products of elements of GA ∪ GB can be ordered in arbitrary ways, which implies that GAB must
be Abelian too. But A1 and A2 imply that GAB is transitive on the (d − 2)-sphere, and then we
are back in the case discussed in the proof of theorem 6.1: only the case of the standard complex
quantum bit, d = 3, is possible.

Now, consider the second case G′
A ! GAB, and let G0

AB be its connected component at the
identity, which must then also be transitive on the (d − 2)-sphere due to A1 and A2. We may also
assume that G0

AB is non-Abelian, as otherwise we fall back into the previous case. REL implies
that GB ⊆ G′

A, thus G′
A is non-trivial. Suppose that GB was a discrete group, then so would be

GA; and as GAB ⊆ {TATB | TA ∈ GA, TB ∈ GB} due to REL, this would imply that GAB is discrete too,
contradicting its transitivity on the (d − 2)-sphere (and hence contradicting A1 and A2). Therefore,
GB is not discrete, hence G′

A has a non-trivial connected component at the identity, G′
A,0. It is easy

to see that G′
A,0 inherits normality from G′

A. That is, G′
A,0 is a non-trivial connected proper normal

subgroup of GAB, and thus of G0
AB. In other words, G0

AB is not a simple Lie group, and it is also
non-Abelian.

Looking again at the list of compact connected Lie groups that act transitively and effectively
on the spheres, this leaves only the following possibilities for G0

AB: SO(4) for d = 5, and
essentially5 Sp((d − 1)/4) × U(1) for d − 1 = 8, 12, 16 . . . as well as essentially Sp((d − 1)/4) × SU(2)
for d − 1 = 4, 8, 12, . . .. As the Lie algebras of SO(4) and Sp((d − 1)/2) × SU(2) are semisimple, the
decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
A,0 must be either the left- or the right-isoclinic rotations in

SO(4) because these are the only non-trivial connected normal subgroups. Suppose G′
A,0 = SO(4)R,

the right-isoclinic rotations (otherwise relabel A ↔ B). Then G′
A ⊇ SO(4)R, and so every X ∈ GA

must commute with every G ∈ SO(4)R. It is easy to see that no reflection X ∈ O(4) with det X = −1
can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
GA ⊆ SO(4)L. As GA , GB, this implies that GB does not contain any reflections either, and so
GAB = G0

AB = SO(4). Furthermore, this implies that GB ⊆ G′
A = G′

0,A = SO(4)R. However, if GA (or
GB) were proper Lie subgroups of SO(4)R (respectively SO(4)L), then they would be too small to
generate GAB. We have thus recovered the quaternionic quantum bit, i.e. the d = 5 case above.
5The term ‘essentially’ refers to the fact that we have to divide this group by a finite subgroup to obtain an effective group
action; see [47].
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Figure 3. Relational interference. The strong assumption A3* that GA = GB corresponds to a situation where every
transformation on Alice’s arm can be ‘undone’ by a suitable transformation on Bob’s arm (and vice versa). This is the case for
the complex quantum bit, but not for the quaternionic quantum bit. (Online version in colour.)
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available to Alice should be in one-to-one correspondence to the set of phase plates available to
Bob. While this still allows that these plates act differently on the delocalized particle, it suggests
the following assumption (superseding assumption A3*):

A3. The transformations that Alice and Bob can perform locally in their arms are isomorphic
as topological groups: GA " GB.

Similarly as in the previous subsection, we can work out the consequences of A3 and our previous
assumptions. We obtain the following generalization of theorem 6.1.

Theorem 6.2. Under the assumptions A1, A2, A3, relativity of simultaneity (REL) allows for the
following possibilities and not more:

— d = 1 (the classical bit), with GA = GB = {1} (i.e. without any non-trivial local transformations),
— d = 2 (the quantum bit over the real numbers), with GA = GB = Z2,

3This means that no two different group elements act in exactly the same way on the sphere. This is a technical assumption
that is needed in the mathematical classification results that we are using (otherwise one could always consider the product
of a transitive group with another arbitrary group that is supposed to act trivially). In our context, this condition is obviously
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decomposition of these Lie algebras into ideals is unique, and thus the sets of normal connected
Lie subgroups of these groups can be read off directly (in particular, the symplectic groups are
simple [47]). If G0

AB = SO(4), then G′
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A ⊇ SO(4)R, and so every X ∈ GA
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can have this property; among the rotations, only the left-isoclinic rotations satisfy this. Thus
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Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only
possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever
there exists an information unit such that the state of any system can be reversibly encoded in a sufficient
number of such units. In this work we show how the abstract formalism of quantum theory can be deduced
solely from the existence of an information unit with suitable properties, together with two further natural
assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of
a composite system by local measurements. This constitutes a new set of postulates for quantum theory
with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it
articulates a strong connection between physics and information.

I. INTRODUCTION

Quantum theory (QT) provides the foundation on top of
which most of our physical theories and our understanding
of nature sits. This peculiarly important role contrasts with
our limited understanding of QT itself, and the lack of con-
sensus among physicists about what this theory is saying
about how nature works. Particularly, the standard postu-
lates of QT are expressed in abstract mathematical terms
involving Hilbert spaces and operators acting on them, and
lack a clear physical meaning. In other physical theories,
like special relativity or thermodynamics, the formalism can
be derived from postulates having a direct physical mean-
ing, often in terms of the possibility or impossibility of cer-
tain tasks. In this work we show that this is also possible
for QT.

The importance of this goal is reflected by the long his-
tory of research on alternative axiomatizations of QT, which
goes back to Birkhoff and von Neumann [1–3]. More re-
cently, initiated by Hardy’s work [4], and influenced by the
perspective of quantum information theory, there has been
a wave of contributions taking a more physical and less
mathematical approach [4–8]. These reconstructions of
QT constitute a big achievement because they are based
on postulates having a more physical meaning. However
some of these meanings are not very direct, and a lot of
formalism has to be introduced in order to state them. In
this work we derive finite-dimensional QT from four postu-
lates having a clear and direct physical meaning, which can
be stated easily and without the need of heavy formalism.
Also, contrary to [5] we write all our assumptions explicitly.

We introduce a postulate named Existence of an In-
formation Unit, which essentially states that there is only
one type of information within the theory. Consequently,
any physical process can be simulated with a suitably pro-
grammed general purpose simulator. Since the input and
output of these simulations are not necessarily classical,
this postulate is a stronger version of the Church-Turing-
Deutsch Principle (stated in [9]). On the other hand, it is
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FIG. 1: Encoder. Coding is an ideal physical transformation
which maps the unknown state � of an arbitrary system to an
n-gbit state in a reversible way, and leaves the initial system
in a reference state 0. Reversibility means that there is an-
other ideal physical transformation, decoding, which undoes
the above, bringing the arbitrary system back to its original
state.

strictly weaker than the Subspace Axiom, introduced in [4]
and used in [5] and [6]. An alternative way to read this
postulate is that, at some level, the dynamics of any sys-
tem is substrate-independent. Within theories satisfying
the Existence of an Information Unit one can refer to states,
dynamics and measurements abstractly, without specifying
the type of system they pertain to; and this is exploited by
quantum information scientists, who design algorithms and
protocols at an abstract level, without considering whether
they will be implemented with light, atoms or any other type
of physical substrate.

More precisely, Existence of an Information Unit states
that there is a type of system, the generalized bit or gbit,
such that the state of any other system can be reversibly
encoded in a sufficient number of gbits (see Fig. 1). The
reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-
gbit system (or an appropriate subspace). This correspon-
dence also extends to dynamics and measurements: if a
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unclear	scenarios	like	QG.	😀



Back	to	the	black-box	picture

Compared	to	GPTs,	

• less	structure											can	say	less.	🙁	

• fewer	assumpXons												good	for	
device-independent	protocols	/	
unclear	scenarios	like	QG.	😀
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				Inputs	and	outputs	abstract	labels,	e.g.

<latexit sha1_base64="Oyc4PLy6QzM71tRatgYsTKhFuMk=">AAACDnicbZBPS8MwGMZT/875r+rRS3AKgnU0MtDjwIvHCc4N1jLSNNvC0rQmqVjKvoAXv4oXDwri1bM3v41Zt4NuPhB4+L3vy5v3CRLOlHbdb2thcWl5ZbW0Vl7f2Nzatnd2b1WcSkKbJOaxbAdYUc4EbWqmOW0nkuIo4LQVDC/H9dY9lYrF4kZnCfUj3BesxwjWBnXtwwcn85jwctdB3sjx7lIcQuwEBTtFzomh1a5dcatuIThv0NRUwFSNrv3lhTFJIyo04VipDnIT7edYakY4HZW9VNEEkyHu046xAkdU+XlxzQgeGRLCXizNExoW9PdEjiOlsigwnRHWAzVbG8P/ap1U9y78nIkk1VSQyaJeyqGO4TgaGDJJieaZMZhIZv4KyQBLTLQJsGxCQLMnz5vWWRXVqghd1yr1+jSPEtgHB+AYIHAO6uAKNEATEPAInsEreLOerBfr3fqYtC5Y05k98EfW5w8NQ5oQ</latexit>

x, y 2 {0, 1}, a, b 2 {�1,+1}.



Back	to	the	black-box	picture

Compared	to	GPTs,	

• less	structure											can	say	less.	🙁	

• fewer	assumpXons												good	for	
device-independent	protocols	/	
unclear	scenarios	like	QG.	😀

• Standard	setup	in	QIT:	
				Inputs	and	outputs	abstract	labels,	e.g.

<latexit sha1_base64="Oyc4PLy6QzM71tRatgYsTKhFuMk=">AAACDnicbZBPS8MwGMZT/875r+rRS3AKgnU0MtDjwIvHCc4N1jLSNNvC0rQmqVjKvoAXv4oXDwri1bM3v41Zt4NuPhB4+L3vy5v3CRLOlHbdb2thcWl5ZbW0Vl7f2Nzatnd2b1WcSkKbJOaxbAdYUc4EbWqmOW0nkuIo4LQVDC/H9dY9lYrF4kZnCfUj3BesxwjWBnXtwwcn85jwctdB3sjx7lIcQuwEBTtFzomh1a5dcatuIThv0NRUwFSNrv3lhTFJIyo04VipDnIT7edYakY4HZW9VNEEkyHu046xAkdU+XlxzQgeGRLCXizNExoW9PdEjiOlsigwnRHWAzVbG8P/ap1U9y78nIkk1VSQyaJeyqGO4TgaGDJJieaZMZhIZv4KyQBLTLQJsGxCQLMnz5vWWRXVqghd1yr1+jSPEtgHB+AYIHAO6uAKNEATEPAInsEreLOerBfr3fqYtC5Y05k98EfW5w8NQ5oQ</latexit>

x, y 2 {0, 1}, a, b 2 {�1,+1}.

• Setup	of	“spaceXme	boxes”:	
				Inputs	(and	perhaps	outputs)	
				are	spaTotemporal	quanXXes.

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).
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SpaceXme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup



SpaceXme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Stern-Gerlach	experiment
<latexit sha1_base64="JMsOo5FCUx3xDuSW4CnCRcKumOg=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSaEEvQsGD3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2FxaXlldXSWnl9Y3Nr297ZfVBRIjFp4YhFshMgRRgVpKWpZqQTS4J4wEg7GF3mfvuRSEUjca/HMfE5GggaUoy0kXr2vseRHmLE0qvsIvUkh3c3WfX0uGdXnJozAZwnbkEqoECzZ395/QgnnAiNGVKq6zqx9lMkNcWMZGUvUSRGeIQGpGuoQJwoP508kMEjo/RhGElTQsOJ+nsiRVypMQ9MZ36umvVy8T+vm+jw3E+piBNNBJ4uChMGdQTzNGCfSoI1GxuCsKTmVoiHSCKsTWZlE4I7+/I8aZ/U3HrNdW/rlUajyKMEDsAhqAIXnIEGuAZN0AIYZOAZvII368l6sd6tj2nrglXM7IE/sD5/ADhAlfM=</latexit>

G = SO(3) (spaXal	rotaXons)
<latexit sha1_base64="Coj8Yg2sYsp7iU1GyGkOmwXihZU=">AAACAXicbVBNS8NAEN34WetX1IMHL4tFqJeSlIJehIKX3qxobaEJZbPdtEt3N2F3I5SQi3/FiwcF8eq/8Oa/cdPmoK0PBh7vzTAzL4gZVdpxvq2V1bX1jc3SVnl7Z3dv3z44fFBRIjHp4IhFshcgRRgVpKOpZqQXS4J4wEg3mFznfveRSEUjca+nMfE5GgkaUoy0kQb2sceRHmPE0lZ2lXqSw7ubrFo/H9gVp+bMAJeJW5AKKNAe2F/eMMIJJ0JjhpTqu06s/RRJTTEjWdlLFIkRnqAR6RsqECfKT2cPZPDMKEMYRtKU0HCm/p5IEVdqygPTmZ+rFr1c/M/rJzq89FMq4kQTgeeLwoRBHcE8DTikkmDNpoYgLKm5FeIxkghrk1nZhOAuvrxMuvWa26i57m2j0mwWeZTACTgFVeCCC9AELdAGHYBBBp7BK3iznqwX6936mLeuWMXMEfgD6/MHOEyV8w==</latexit>

H = SO(2) (axial	symmetry	of	magneXc	field)
<latexit sha1_base64="TUzV7CTzfI8zI5I/5dS4dQZlkHA=">AAACD3icbZDNSsNAFIUn/tb6F3XpZrAUXNWkFHQjFFzYZUVrC00sk+mkHTqZhJlJsYQ8gRtfxY0LBXHr1p1v46QNoq0HBj7OvZe593gRo1JZ1pextLyyurZe2Chubm3v7Jp7+7cyjAUmLRyyUHQ8JAmjnLQUVYx0IkFQ4DHS9kYXWb09JkLSkN+oSUTcAA049SlGSls9s+yMCU7uU4dyJ0BqiBFLLtOTH26k59d31Z5ZsirWVHAR7BxKIFezZ346/RDHAeEKMyRl17Yi5SZIKIoZSYtOLEmE8AgNSFcjRwGRbjI9J4Vl7fShHwr9uIJT9/dEggIpJ4GnO7M15XwtM/+rdWPln7kJ5VGsCMezj/yYQRXCLBvYp4JgxSYaEBZU7wrxEAmElU6wqEOw509ehHa1Ytcqtn1VK9XreR4FcAiOwDGwwSmogwZoghbA4AE8gRfwajwaz8ab8T5rXTLymQPwR8bHN4B6nMs=</latexit>

~x 2 G/H = S2 (unit	vector:	field	direcXon)

<latexit sha1_base64="k6VTbWkWkvPCNz7hP6uiKOUVzB8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrCm0oWy2k3bpZhN2N8US+iO8eFAQr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32yltbG5t75R3K3v7B4dH1eOTR51kimGbJSJRnZBqFFxi23AjsJMqpHEo0A/Ht3Pfn6DSPJEPZppiENOh5BFn1FjJ702Q5U+zfrXm1t0FyDrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwVullGlPKxnSIXUsljVEH+eLcGbmwyoBEibIlDVmovydyGms9jUPbGVMz0qveXPzP62YmuglyLtPMoGTLRVEmiEnI/Hcy4AqZEVNLKFPc3krYiCrKjE2oYkPwVl9eJ/5V3WvUPe++UWs2izzKcAbncAkeXEMT7qAFbWAwhmd4hTcndV6cd+dj2VpyiplT+APn8wdKAZAB</latexit>

~x

<latexit sha1_base64="uYn3MJ+gxIqSlCKjoQKjuyexIFQ=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYxdpCu5Rsmm1Ds9klmRVK6T/w4kFBvPqLvPlvTNs9aOuDgcd7M8zMC1MlLfr+t1dYW9/Y3Cpul3Z29/YPyodHjzbJDBdNnqjEtENmhZJaNFGiEu3UCBaHSrTC0c3Mbz0JY2WiH3CciiBmAy0jyRk66f6C9soVv+rPQVYJzUkFcjR65a9uP+FZLDRyxaztUD/FYMIMSq7EtNTNrEgZH7GB6DiqWSxsMJlfOiVnTumTKDGuNJK5+ntiwmJrx3HoOmOGQ7vszcT/vE6G0XUwkTrNUGi+WBRlimBCZm+TvjSCoxo7wriR7lbCh8wwji6ckguBLr+8SlqXVVqrUnpXq9TreR5FOIFTOAcKV1CHW2hAEzhE8Ayv8OaNvBfv3ftYtBa8fOYY/sD7/AF2Q40h</latexit>

+1

<latexit sha1_base64="iYGBUElaI7/4v92UeqkQYfY2sEI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iVgJYBG8soxgSSI+xt9pIle3vH7pwQQv6BjYWC2PqL7Pw3bpIrNPHBwOO9GWbmhamSFn3/2yusrW9sbhW3Szu7e/sH5cOjR5tkhosmT1Ri2iGzQkktmihRiXZqBItDJVrh6Gbmt56EsTLRDzhORRCzgZaR5AyddH9Be+WKX/XnIKuE5qQCORq98le3n/AsFhq5YtZ2qJ9iMGEGJVdiWupmVqSMj9hAdBzVLBY2mMwvnZIzp/RJlBhXGslc/T0xYbG14zh0nTHDoV32ZuJ/XifD6DqYSJ1mKDRfLIoyRTAhs7dJXxrBUY0dYdxIdyvhQ2YYRxdOyYVAl19eJa3LKq1VKb2rVer1PI8inMApnAOFK6jDLTSgCRwieIZXePNG3ov37n0sWgtePnMMf+B9/gB5T40j</latexit>�1

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H



<latexit sha1_base64="Hvblbwuc4V2XKZzLR2n/ZHpR9kc=">AAACBHicbVBNS8NAEJ3Ur1q/ot70EixCRSmJFPQiFDzosYq1hTaUzXbbLt1swu5GKCHgxb/ixYOCePVHePPfuElz0NYHC2/fm2FmnhcyKpVtfxuFhcWl5ZXiamltfWNzy9zeuZdBJDBp4oAFou0hSRjlpKmoYqQdCoJ8j5GWN75M/dYDEZIG/E5NQuL6aMjpgGKktNQz97o+UiOMWHyVXFSyj+fFt8nJ8VHPLNtVO4M1T5yclCFHo2d+dfsBjnzCFWZIyo5jh8qNkVAUM5KUupEkIcJjNCQdTTnyiXTj7IbEOtRK3xoEQj+urEz93REjX8qJ7+nKdEk566Xif14nUoNzN6Y8jBTheDpoEDFLBVYaiNWngmDFJpogLKje1cIjJBBWOraSDsGZPXmetE6rTq3qODe1cr2e51GEfTiACjhwBnW4hgY0AcMjPMMrvBlPxovxbnxMSwtG3rMLf2B8/gCtd5dU</latexit>

G = (R,+)

SpaceXme	boxes

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

x 2 {0, 1}

<latexit sha1_base64="bL+PZcPvoNNdbpQ+mSn9V3N7rKw=">AAAB8nicbZDLSsNAFIYn9VbrrerSzdAiCEpJRFB3QTcuK9gLNKFMppN26GQSZk7EEPoWunGhiFufxl3fxulloa0/DHz8/znMOSdIBNdg22OrsLK6tr5R3Cxtbe/s7pX3D5o6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHtJG89MqV5LB8gS5gfkb7kIacEjNV58rj0cvvM8UbdctWu2VPhZXDmUHUr3unz2M3q3fK314tpGjEJVBCtO46dgJ8TBZwKNip5qWYJoUPSZx2DkkRM+/l05BE+Nk4Ph7EyTwKeur87chJpnUWBqYwIDPRiNjH/yzophFd+zmWSApN09lGYCgwxnuyPe1wxCiIzQKjiZlZMB0QRCuZKJXMEZ3HlZWie15yL2vW9U3Vv0ExFdIQq6AQ56BK56A7VUQNRFKMX9IbeLbBerQ/rc1ZasOY9h+iPrK8fwUST6A==</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

P (a|x)

<latexit sha1_base64="aJs7sSl6Ho2oLdMUFKjQtX6Rb9w=">AAAB7XicbZDLSsNAFIZP6q3WW9Wlm9AiVISSiKDugm5cVrAXaEOZTCft6GQmzEzEEPsOLnShiFvfx13fxulloa0/DHz8/znMOSeIGVXacUZWbml5ZXUtv17Y2Nza3inu7jWUSCQmdSyYkK0AKcIoJ3VNNSOtWBIUBYw0g/urcd58IFJRwW91GhM/Qn1OQ4qRNlajVkFPj0fdYtmpOhPZi+DOoOyVOscvIy+tdYvfnZ7ASUS4xgwp1XadWPsZkppiRoaFTqJIjPA96pO2QY4iovxsMu3QPjROzw6FNI9re+L+7shQpFQaBaYyQnqg5rOx+V/WTnR47meUx4kmHE8/ChNma2GPV7d7VBKsWWoAYUnNrDYeIImwNgcqmCO48ysvQuOk6p5WL27csncJU+XhAEpQARfOwINrqEEdMNzBM7zBuyWsV+vD+pyW5qxZzz78kfX1AwWRkcQ=</latexit>

a 2 {�1,+1}

<latexit sha1_base64="wjU9EGv1skvJnE+HxHMFtyNIdXk=">AAAB9HicbVDLSsNAFL2pr1pfVZduQosgVEtGBHUXdOOygn1AE8pkOm2HTiZxZlIIoX8huHGhiFs/xl3/xuljodUDFw7n3Mu99wQxZ0o7zsTKrayurW/kNwtb2zu7e8X9g4aKEklonUQ8kq0AK8qZoHXNNKetWFIcBpw2g+Ht1G+OqFQsEg86jakf4r5gPUawNpKPPSa87AydVpA37hTLTtWZwf5L0IKU3ZJXeZq4aa1T/PK6EUlCKjThWKk2cmLtZ1hqRjgdF7xE0RiTIe7TtqECh1T52ezosX1slK7di6Qpoe2Z+nMiw6FSaRiYzhDrgVr2puJ/XjvRvSs/YyJONBVkvqiXcFtH9jQBu8skJZqnhmAimbnVJgMsMdEmp4IJAS2//Jc0zqvoonp9j8ruDcyRhyMowQkguAQX7qAGdSDwCM/wCm/WyHqx3q2PeWvOWswcwi9Yn991LZQ+</latexit>

<latexit sha1_base64="E5jA85qDorMnfzZYmEtF0UPARmA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeCF48VrC20oWy2k3bpZhN2N8US+ze8eFAQr/4Yb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHDzpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNAYCsY3cz81hiV5rG8N5ME/YgOJA85o8ZK3UaFPnXHyLLH6UWvVHar7hxklXg5KUOORq/01e3HLI1QGiao1h3PTYyfUWU4EzgtdlONCWUjOsCOpZJGqP1sfvOUnFulT8JY2ZKGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhNe+xmXSWpQssWiMBXExGQWAOlzhcyIiSWUKW5vJWxIFWXGxlS0IXjLL6+S1mXVq1U9765WrtfzPApwCmdQAQ+uoA630IAmMEjgGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A1bAkbE=</latexit>

P (a|~x)

symmetry	group
<latexit sha1_base64="SCRzjHf9QE0QrXERnxPJCvgDFTM=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8KDHCtYWmlA22227dLMJuy9CCf0bXjwoiFd/jDf/jZs2B20dWBhm3uPNTphIYdB1v53S2vrG5lZ5u7Kzu7d/UD08ejRxqhlvs1jGuhtSw6VQvI0CJe8mmtMolLwTTm5yv/PEtRGxesBpwoOIjpQYCkbRSr4fURwzKrPb2XW/WnPr7hxklXgFqUGBVr/65Q9ilkZcIZPUmJ7nJhhkVKNgks8qfmp4QtmEjnjPUkUjboJsnnlGzqwyIMNY26eQzNXfGxmNjJlGoZ3MM5plLxf/83opDq+CTKgkRa7Y4tAwlQRjkhdABkJzhnJqCWVa2KyEjammDG1NFVuCt/zlVdK5qHuNuufdN2rNZtFHGU7gFM7Bg0towh20oA0MEniGV3hzUufFeXc+FqMlp9g5hj9wPn8AlImR2A==</latexit>

G :
<latexit sha1_base64="V4AlkqwTpOVnpIYTkKWjSUA6VHY=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQfFU8NJjBWsLTSib7bZdutmE3RehhP4NLx4UxKs/xpv/xk2bg7YOLAwz7/FmJ0ykMOi6305pY3Nre6e8W9nbPzg8qh6fPJo41Yx3WCxj3Qup4VIo3kGBkvcSzWkUSt4Np3e5333i2ohYPeAs4UFEx0qMBKNoJd+PKE4YlVlrfjuo1ty6uwBZJ15BalCgPah++cOYpRFXyCQ1pu+5CQYZ1SiY5POKnxqeUDalY963VNGImyBbZJ6TC6sMySjW9ikkC/X3RkYjY2ZRaCfzjGbVy8X/vH6Ko5sgEypJkSu2PDRKJcGY5AWQodCcoZxZQpkWNithE6opQ1tTxZbgrX55nXSv6l6j7nn3jVqzWfRRhjM4h0vw4Bqa0II2dIBBAs/wCm9O6rw4787HcrTkFDun8AfO5w+WEJHZ</latexit>

H :stabilizer	subgroup

Example:	Input	is	evoluXon	Xme	t
(group	of	Xme	translaXons)

(no	addiXonal	symmetry)

<latexit sha1_base64="qUqCJkgWVEs3Gnszs84H561AofE=">AAACC3icbZDNSsNAFIVv/K31L+rSTbQIrmoiBV0WXNhlBWsLTSiT6aQdOpmEmUmxhKzd+CpuXCiIW1/AnW/jpA2irQcGPs69l7n3+DGjUtn2l7G0vLK6tl7aKG9ube/smnv7dzJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM9L2R1d5vT0mQtKI36pJTLwQDTgNKEZKWz3zyB0TnN5nLuVuiNQQI5ZeZ2c/3Mh6ZsWu2lNZi+AUUIFCzZ756fYjnISEK8yQlF3HjpWXIqEoZiQru4kkMcIjNCBdjRyFRHrp9JTMOtFO3woioR9X1tT9PZGiUMpJ6OvOfEU5X8vN/2rdRAWXXkp5nCjC8eyjIGGWiqw8F6tPBcGKTTQgLKje1cJDJBBWOr2yDsGZP3kR2udVp1Z1nJtapV4v8ijBIRzDKThwAXVoQBNagOEBnuAFXo1H49l4M95nrUtGMXMAf2R8fAP+epuD</latexit>

~x 2 G/H

<latexit sha1_base64="0ENZV2mtR3qZmK5bNM5Ni5LHoDU=">AAACBHicbVBNS8NAEJ34WetX1JteFovgqSRS0ItQ8NJjBWsLTSmb7aZdutmE3Y1QQsCLf8WLBwXx6o/w5r9xk+agrQ8W3r43w8w8P+ZMacf5tlZW19Y3Nitb1e2d3b19++DwXkWJJLRDIh7Jno8V5UzQjmaa014sKQ59Trv+9Cb3uw9UKhaJOz2L6SDEY8ECRrA20tA+9kKsJwTztJVde2nx84PUzbxsaNeculMALRO3JDUo0R7aX94oIklIhSYcK9V3nVgPUiw1I5xmVS9RNMZkise0b6jAIVWDtLghQ2dGGaEgkuYJjQr1d0eKQ6VmoW8q8x3VopeL/3n9RAdXg5SJONFUkPmgIOFIRygPBI2YpETzmSGYSGZ2RWSCJSbaxFY1IbiLJy+T7kXdbdRd97ZRazbLPCpwAqdwDi5cQhNa0IYOEHiEZ3iFN+vJerHerY956YpV9hzBH1ifPxgfmEA=</latexit>

H = {1}
<latexit sha1_base64="DzuHcprT6J5Zwlm1YLWIL6B3fpI=">AAAB/3icbVBNS8NAFNzUr1q/ouLJy2IRPJVECnoRCl48VrG20ISy2b60SzebsLspllDwr3jxoCBe/Rve/Ddu2hy0dWBhmHmPNztBwpnSjvNtlVZW19Y3ypuVre2d3T17/+BBxamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB6Pr3G+PQSoWi3s9ScCPyECwkFGijdSzj7wxUPx4pT0mvIjoYRBkd9OeXXVqzgx4mbgFqaICzZ795fVjmkYgNOVEqa7rJNrPiNSMcphWvFRBQuiIDKBrqCARKD+bxZ/iU6P0cRhL84TGM/X3RkYipSZRYCbzhGrRy8X/vG6qw0s/YyJJNQg6PxSmHOsY513gPpNANZ8YQqhkJiumQyIJ1aaxiinBXfzyMmmf19x6zXVv69VGo+ijjI7RCTpDLrpADXSDmqiFKMrQM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDZCZXe</latexit>

~x = t 2 R
<latexit sha1_base64="EL7x3Qu3Y8re2MyKUcki4RozZFQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisYFuhDWWz3bRrN5uwOxFK7H/w4kFBvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2Ws7wNquBSKt1Cg5PeJ5jQKJO8E4+uZ33nk2ohY3eEk4X5Eh0qEglG0UrtZpU943i9X3Jo7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7ZScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZq+TgdCcoZxYQpkW9lbCRlRThjagkg3BW355lXQual695nm39UqjkedRhBM4hSp4cAkNuIEmtIDBAzzDK7w5sfPivDsfi9aCk88cwx84nz93mo7f</latexit>

P (a|t)



Symmetries	constrain	the	correlaXons

Theorem.	Even	without	assuming	quantum	mechanics,		
is	a	linear	combinaXon	of	matrix	entries	of	a	representaXon	of G.

<latexit sha1_base64="KAyGCFzzA+xDEj1heevCbCpzt98=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwNcyIoO4KLnRZwT6gM5RMmmlDM5khyQhl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tywlRwbVz3G1XW1jc2t6rbtZ3dvf2D+uFRRyeZoqxNE5GoXkg0E1yytuFGsF6qGIlDwbrh5Lbwu09MaZ7IRzNNWRCTkeQRp8RYyfdjYsaUiPxu5gzqDddx58CrxCtJA0q0BvUvf5jQLGbSUEG07ntuaoKcKMOpYLOan2mWEjohI9a3VJKY6SCfZ57hM6sMcZQo+6TBc/X3Rk5iradxaCeLjHrZK8T/vH5mousg5zLNDJN0cSjKBDYJLgrAQ64YNWJqCaGK26yYjoki1NiaarYEb/nLq6Rz4XiXzs3DZaPZLOuowgmcwjl4cAVNuIcWtIFCCs/wCm8oQy/oHX0sRiuo3DmGP0CfP+vXkZ8=</latexit>

P (a|~x)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)

013112-2

A.	J.	P.	Garner,	M.	Krumm,	MM,	Phys.	Rev.	Research	2,	013112	(2020).

<latexit sha1_base64="cg9YpohgEAY4P1BEnkG7rh5Dkak=">AAACE3icbVDNSsNAGNzUv1r/oh69LBahvZRECnoRCh70ZkVrC00om82mXbrZhN2NUEKewYuv4sWDgnj14s23cdPmUFsHFoaZ7+PbGS9mVCrL+jFKK6tr6xvlzcrW9s7unrl/8CCjRGDSwRGLRM9DkjDKSUdRxUgvFgSFHiNdb3yZ+91HIiSN+L2axMQN0ZDTgGKktDQw606I1Agjll5lF6kjQnh3k9X8uqNoSCScUwZm1WpYU8BlYhekCgq0B+a340c4CQlXmCEp+7YVKzdFQlHMSFZxEklihMdoSPqacqQPuuk0UgZPtOLDIBL6cQWn6vxGikIpJ6GnJ/MActHLxf+8fqKCczelPE4U4Xh2KEgYVBHM+4E+FQQrNtEEYUH1XyEeIYGw0i1WdAn2YuRl0j1t2M2Gbd82q61W0UcZHIFjUAM2OAMtcA3aoAMweAIv4A28G8/Gq/FhfM5GS0axcwj+wPj6BX3UnSA=</latexit>

G = SO(d)⇥ SO(d)



FoundaXonal	consequences

GARNER, KRUMM, AND MÜLLER PHYSICAL REVIEW RESEARCH 2, 013112 (2020)

Alice Bob
polarizer

detector

polarizer

a b

detector

(b)
Alice Bob

x y
a b

(a)

FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
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input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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Theorem:	The	quantum	(2,2,2)-correlaXons	Q	are	exactly	those	that	
																		can	be	obtained	by																															-boxes	that	transform	
																		locally	fundamentally	and	are	locally	unbiased,	restricted	to	
																		two	inputs	per	party,	and	supplemented	by	shared	randomness.
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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that has thus far been restricted to a purely theo-
retical framework.
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Bell correlations in a
Bose-Einstein condensate
Roman Schmied,1* Jean-Daniel Bancal,2,4* Baptiste Allard,1* Matteo Fadel,1

Valerio Scarani,2,3 Philipp Treutlein,1† Nicolas Sangouard4†

Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body

442 22 APRIL 2016 • VOL 352 ISSUE 6284 sciencemag.org SCIENCE

Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.
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that has thus far been restricted to a purely theo-
retical framework.
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QUANTUM OPTICS

Bell correlations in a
Bose-Einstein condensate
Roman Schmied,1* Jean-Daniel Bancal,2,4* Baptiste Allard,1* Matteo Fadel,1

Valerio Scarani,2,3 Philipp Treutlein,1† Nicolas Sangouard4†

Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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SomeXmes,	all	we	know	
for	sure	is	that	we’ve	sent	
a	pulse	of	a	certain	duraXon	
(or	some	other	S.T.-quanXty)	
and	recorded	an	outcome.	
	
What	can	we	infer	from	this	alone?	
Or	from	very	few	addiTonal	assumpTons,	incl.	(or	not)	QM?

to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body

442 22 APRIL 2016 • VOL 352 ISSUE 6284 sciencemag.org SCIENCE

Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.

RESEARCH | REPORTS

 o
n 

A
pr

il 
21

, 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

Experiments	as	“black	boxes”



Towards	protocols

Device-independent	QIT:

ViolaXon	of	a	Bell	inequality	admits	
• randomness	expansion	
• cryptography	
even	if	devices	are	untrusted.
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Device-independent	QIT:

ViolaXon	of	a	Bell	inequality	admits	
• randomness	expansion	
• cryptography	
even	if	devices	are	untrusted.

S M

x 2 {1, . . . , k} y 2 {1, . . . , l}

b 2 {1, . . . , d}

⇢x

Figure 1: A general prepare-and-measure scenario. Source (S) emits one of k states flx depending on
an input x œ {1, . . . , k}. A measurement device (M) performs one of l measurements on the state
received, depending on an input y œ {1, . . . , l}, and registers an outcome b œ {1, . . . , d}. The behaviors
of S and M are not characterized and could even depend on shared hidden parameters ⁄. But we trust
that the prepared states satisfy constraints that are expressed in term of the expectations tr[Hflx] of
some given Hermitian operator H.

and dimension bounds, see e.g. [8, 17–22] and [9–11, 23, 24]. Here, we fully characterize
analytically the set of available correlations in the simplest scenario compatible with our
general framework. This uncovers interesting features suggesting immediate applications
to randomness generation, which will be fully developed in a forthcoming publication [25].

In Section 2, we introduce the general framework of semi-DI prepare-and-measure
scenarios and modify it to account for a physical constraint (mean value of an observable)
instead of a dimension bound. We define a simple setting with two state preparations
and a single measurement with binary outcomes, which su�ces to produce a separation
between the quantum and classical correlations, and subsequently suggest a few simple
potential implementations using currently accessible quantum optics technology. The
quantum region (i.e., the set of available quantum correlations) is analyzed in Sections 3
and 4, while the classical region (i.e., the set of available correlations arising from a mixture
of classical deterministic behaviors) is studied in Section 5. Then, in Section 6, with an
eye toward the application to certified random number generation, we characterize an
intermediate deterministic region; correlations outside of this region are those for which
randomness can be certified for a specified input. We also show that correlations outside
this intermediate region are achievable with simple optical implementations. Finally, we
conclude in Section 7 and discuss other possible applications.

2 Semi-DI setting with a physical constraint

2.1 Definition of the general model

Let us first remind the general framework of semi-DI prepare-and-measure scenarios. As
depicted in Fig. 1, a source S is linked through a quantum channel to a measurement device
M. On the source S, an input x œ {1, . . . , k} can be selected, resulting in the emission of an
unknown quantum state flx. The state is then measured by M, according to a measurement
selected through an input y œ {1, . . . , l}, and yields an outcome b œ {1, . . . , d}. This later
process is characterized by a set of unknown measurement operators {Mb|y}.

To an external observer that has access only to the inputs and output of S and M, the
joint behavior of the two devices is completely characterized by the probabilities

P (b|y, x) = tr[Mb|y flx] . (1)

More generally, the behavior of the two devices could be correlated through dependence
on an additional hidden random parameter ⁄ shared between the devices, in which case
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Figure 1: A general prepare-and-measure scenario. Source (S) emits one of k states flx depending on
an input x œ {1, . . . , k}. A measurement device (M) performs one of l measurements on the state
received, depending on an input y œ {1, . . . , l}, and registers an outcome b œ {1, . . . , d}. The behaviors
of S and M are not characterized and could even depend on shared hidden parameters ⁄. But we trust
that the prepared states satisfy constraints that are expressed in term of the expectations tr[Hflx] of
some given Hermitian operator H.

and dimension bounds, see e.g. [8, 17–22] and [9–11, 23, 24]. Here, we fully characterize
analytically the set of available correlations in the simplest scenario compatible with our
general framework. This uncovers interesting features suggesting immediate applications
to randomness generation, which will be fully developed in a forthcoming publication [25].

In Section 2, we introduce the general framework of semi-DI prepare-and-measure
scenarios and modify it to account for a physical constraint (mean value of an observable)
instead of a dimension bound. We define a simple setting with two state preparations
and a single measurement with binary outcomes, which su�ces to produce a separation
between the quantum and classical correlations, and subsequently suggest a few simple
potential implementations using currently accessible quantum optics technology. The
quantum region (i.e., the set of available quantum correlations) is analyzed in Sections 3
and 4, while the classical region (i.e., the set of available correlations arising from a mixture
of classical deterministic behaviors) is studied in Section 5. Then, in Section 6, with an
eye toward the application to certified random number generation, we characterize an
intermediate deterministic region; correlations outside of this region are those for which
randomness can be certified for a specified input. We also show that correlations outside
this intermediate region are achievable with simple optical implementations. Finally, we
conclude in Section 7 and discuss other possible applications.

2 Semi-DI setting with a physical constraint

2.1 Definition of the general model

Let us first remind the general framework of semi-DI prepare-and-measure scenarios. As
depicted in Fig. 1, a source S is linked through a quantum channel to a measurement device
M. On the source S, an input x œ {1, . . . , k} can be selected, resulting in the emission of an
unknown quantum state flx. The state is then measured by M, according to a measurement
selected through an input y œ {1, . . . , l}, and yields an outcome b œ {1, . . . , d}. This later
process is characterized by a set of unknown measurement operators {Mb|y}.

To an external observer that has access only to the inputs and output of S and M, the
joint behavior of the two devices is completely characterized by the probabilities

P (b|y, x) = tr[Mb|y flx] . (1)

More generally, the behavior of the two devices could be correlated through dependence
on an additional hidden random parameter ⁄ shared between the devices, in which case
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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are a fixed (over R) linear combination of matrix entries
of TR.

The proof is given in Appendix A and is based on the
observation that TR becomes a linear group representation
on the space of ensembles. Motivated by this characteristic
response, we refer to black boxes whose inputs are selected
through the action of G as G boxes.

A few comments are in order. First, this theorem applies
to any causal structure, including the case of two parties
performing a Bell experiment. If Alice and Bob have in-
puts and transformations XA,GA and XB,GB, respectively,
then the full setup can be seen as an experiment with X =
XA × XB and G = GA × GB, to which Theorem 1 applies
directly.

Second, there may be more than one transformation that
generates the desired input x, i.e., both x = Rx0 and x = R′x0
for R #= R′; this is precisely the case if R−1R′ ∈ H. For exam-
ple, a magnetic field can be rotated from the y direction to the
z direction in many different ways. In this case, Theorem 1
applies to both R and R′, which yields additional constraints.

Finally, quantum theory is contained as a special case.
Typically, one argues that due to preservation of probability,
transformations R must be represented in quantum mechanics
via unitary matrices UR acting on density matrices via ρ &→
URρU †

R . This projective action can be written as an orthogonal
matrix on the real space of Hermitian operators, in concor-
dance with Theorem 1.

As a specific example, consider a quantum harmonic os-
cillator with frequency ω, initially in state ρ0, left to evolve
for a variable time t before it is measured by a fixed positive-
operator-valued measure (POVM) [19] {Ma}a∈A. The free dy-
namics are given by the Hamiltonian H , whose discrete set of
eigenvalues {En = h̄ω( 1

2 + n)} corresponds to allowed energy
levels. The evolution is periodic, so (recalling earlier) G =
(R,+), H = ( 2π

ω
Z,+), and X ( S1. The associated black

box is thus P(a|t ) = Tr[Ma exp(− iHt
h̄ )ρ0 exp( iHt

h̄ )]. For any
given ρ0 and Ma, this evaluates to an affine-linear combination
of terms of the form cos[(n − m)h̄ωt] and sin[(n − m)h̄ωt],
involving all pairs of energy levels that have nonzero occupa-
tion probability in ρ0 (and nonzero support in Ma). This is a
linear combination of entries of the matrix representation

Tt =
⊕

α=En−Em

(
cos(αt ) sin(αt )

− sin(αt ) cos(αt )

)
, (1)

in accordance with Theorem 1. For Tt to be a finite matrix,
there must only be a finite number of occupied energy differ-
ences Em − En.

Here Assumption 1 is equivalent to an upper (and lower)
bound on the system’s energy. In the general framework
that does not assume the validity of quantum mechanics (or
presuppose trust in our devices or our assignment of Hamilto-
nians), we can view Assumption 1 as a natural generalization
of this to other symmetry groups and beyond quantum theory.
By assuming a concrete upper bound on the representation
label [such as α in Eq. (1)], we can establish powerful theory-
and device-independent consequences for the resulting cor-
relations, as we will now demonstrate by means of several
examples.

B. Example: Two angles and Bell witnesses

Let us consider the simplest nontrivial spatiotemporal free-
dom, where Alice and Bob each have the choice of a single
continuous angle α,β ∈ [0, 2π ), respectively, and each ob-
tains a binary output a, b ∈ {+1,−1}. Physically, this would
arise, say, in experiments where a pair of photons is distributed
to the two laboratories, each of which contains a rotatable
polarizer followed by a photodetector [Fig. 1(b)].

Due to Theorem 1, the probabilities P(a, b|α,β ) are linear
combinations of matrix entries of an orthogonal representa-
tion of SO(2) × SO(2). From the classification of these rep-
resentations (see Appendix B 1), it follows that all SO(2) ×
SO(2) boxes are of the form

P(a, b|α,β ) :=
2J∑

m=0

2J∑

n=−2J

cab
mn cos(mα − nβ )

+ sab
mn sin(mα − nβ ), (2)

resulting in a correlation function

C(α,β ) := P(+1,+1|α,β ) + P(−1,−1|α,β )

− P(+1,−1|α,β ) − P(−1,+1|α,β ) (3)

=
2J∑

m=0

2J∑

n=−2J

Cmn cos(mα − nβ ) + Smn sin(mα − nβ ),

(4)

where J ∈ {0, 1
2 , 1, 3

2 , . . .} is some finite maximum “spin”.
If Alice’s and Bob’s laboratories are spatially separated,

the laws of relativity forbid Alice from sending signals to Bob
instantaneously. This no-signaling principle constrains the set
of valid joint probability distributions, namely, Bob’s marginal
statistics cannot depend on Alice’s choice of measurement
and vice versa. However, for any given correlation function
of the form (4), there is always at least one set of valid no-
signaling probabilities (see Appendix B 2), for example, those
where the marginal distributions are maximally mixed such
that independent of α, a is +1 or −1 with equal probability
(likewise for β and b), consistent with an observation of
Popescu and Rohrlich [20].

Consider a quantum example: two photons in a Werner
state [21,22] ρW := p|ψ−〉〈ψ−| + 1

4 (1 − p)14, where |ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) and p ∈ [0, 1]. Alice’s and Bob’s

polarizer/detector setups are described by the observables
Mθ := (cos 2θ sin 2θ

sin 2θ − cos 2θ ) for orientations θ = α,β respectively.
Then C(α,β ) = Tr(ρW Mα ⊗ Mβ ) = −p cos[2(α − β )]. This
fits the form of Eq. (4) for J = 1, with C22 = −p and all other
coefficients as zero.

A paradigmatic question in this setup is whether the
statistics can be explained by a local hidden-variable
(LHV) model. Namely, is there a single random
variable λ over some space ) such that P(a, b|α,β ) =∫
)

dλ P)(λ)PA(a|α, λ)PB(b|β, λ), where P)(λ) is a classical
probability distribution and PA(a|α, λ) and PB(b|β, λ) are,
respectively, Alice’s and Bob’s local response functions
(conditioned on their input choices α and β and the particular
realization of the hidden variable λ)? If no LHV model exists,
then the scenario is said to be nonlocal. Famously, Bell’s
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• With	Stefan	Ludescher:	
Does	QT	admit	the	most	general	Tme	evoluTons	/	
most	general	single-party	“polarizers”?
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FIG. 1. Bell scenario: abstract vs spatiotemporal inputs. Spa-
tially separate Alice and Bob independently choose measurement
settings x and y and receive some outputs a and b, yielding the joint
conditional probability distribution P(a, b|x, y). (a) In the usual black
box formalism, the inputs x and y are abstract labels. (b) Here we
consider the physical situation where the inputs are spatiotemporal
degrees of freedom (e.g., angles x = α and y = β of polarizers).

input. This is imbued with causal structure [13] by separating
the inputs and outputs into local choices and responses made
and observed by different local agents, acting in potentially
different locations and times. The simplest structure is one
agent at a single point in time. More commonly considered
is the Bell scenario [6], where two spatially separated agents
each independently select an input (measurement choice) and
record the resulting local output. Theorem 1 of this paper ap-
plies to any casual structure, but looking towards application
the later examples will use the Bell scenario.

Here we consider experiments where the local inputs cor-
respond to spatiotemporal degrees of freedom: for example,
the direction of inhomogeneity of the magnetic field in a
Stern-Gerlach experiment or the angle of a polarization filter
[Fig. 1(b)]. Crucially, we describe such experiments without
assuming the validity of quantum mechanics.

Let us first consider a single laboratory, say, Alice’s. For
concreteness, assume for the moment that Alice’s input is
given by the direction !x of a magnetic field. She chooses
her input by applying a rotation R ∈ SO(3) to some initial
magnetic field direction !x0, i.e., !x = R!x0. Her statistics of
obtaining any outcome a will now depend on this direction,
giving her a black box P(a|!x).

In general, Alice will have a set of inputs X and a sym-
metry group G that acts on X . Given some arbitrary x0 ∈
X , we assume that Alice can generate every possible input
x ∈ X by applying a suitable transformation R ∈ G such that
x = Rx0. Mathematically, X is then a homogeneous space
[14], which can be written X = G/H, where H ⊆ G is the
subgroup of transformations R′ with R′x0 = x0. In the example
above, G = SO(3) describes the full set of rotations that
Alice can apply to !x0, while H = SO(2) describes the subset
of rotations that leave !x0 invariant (i.e., the axial symmetry
of the magnetic field vector). Then X = SO(3)/SO(2) = S2

is the 2-sphere of unit vectors (i.e., directions) in three-
dimensional space. Similarly, the polarizer [Fig. 1(b)] cor-
responds to G = SO(2), H = {1}, and X = S1, which we
identify with the unit circle.

Temporal symmetries also fit into this formalism. Suppose
Alice’s input corresponds to letting her system evolve for
some time; then G = (R,+) is the group of time translations.
If we know that the system evolves periodically over intervals
τ ∈ R+, which we model as a symmetry subgroup H =
(τZ,+), then the input domain X = G/H % S1. Physically,
this could correspond to applying a controlled-duration Rabi
pulse to an atomic system of trusted periodicity before record-
ing an outcome.

Now suppose Alice has a black box P, where on spatiotem-
poral input x ∈ X , the outcome a is observed with probability
P(a|x). Then, Alice can “rotate” her apparatus by R ∈ G
and induce a new black box P′ with outcome probabilities
P′(a|x) = P(a|Rx). Physically, R could be either an active
rotation, within Alice’s laboratory (e.g., spinning a polarizer),
of the incident system (e.g., adding a phase plate) or a passive
change of coordinates.

Thus, a given black box and a spatiotemporal degree of
freedom defines a family of black boxes, and transformations
R ∈ G map a given black box to another one in this family.
Suppose we denote the action of R on the black boxes by
TR : P &→ P′. If rotating the input first by R and then by R′ is
equivalent to a single rotation R′′ = R′ ◦ R, it follows that the
black box formed by applying TR and then TR′ is equivalent
to applying the single transformation TR′′ = TR′ ◦ TR on P.
We can say more about this action if we consider ensembles
of black boxes. For any family of black boxes {Pi}n

i=1 and
probabilities {λi}n

i=1,
∑

i λi = 1, λi ! 0, the experiment of
first drawing i with probability λi and then applying black
box Pi defines an effective black box P, with the statistics
P(a|x) =

∑
i λiPi(a|x). All these black boxes are in princi-

ple operationally accessible to Alice. However, a priori, we
cannot say much about the resulting set of boxes; it could be
a complicated uncountably-infinite-dimensional set defying
simple analysis. Thus, we make a minimal assumption that
this set is not “too large.”

Assumption 1. Ensembles of black boxes can be character-
ized by a finite number of parameters.

The mathematical consequence is that the space of possible
boxes for Alice is finite dimensional. This is a weaker ab-
straction of a stronger assumption typically made in the semi-
device-independent framework of quantum information, that
the systems involved in the protocols are described by Hilbert
spaces of bounded (usually small) dimension [15,16]. For
example, the Bennett-Brassard [17] quantum cryptography
protocol assumes that the information carriers are two dimen-
sional, excluding additional degrees of freedom that could
serve as a side channel for eavesdroppers [18]. Assumption
1 is much weaker; it does not presume that we have Hilbert
spaces in the first place. It is for this assumption (and not the
spatiotemporal structure of the input space) that the results
presented in this article lie in the semi-device-independent
regime.

We thus arrive at our first theorem. Recall that Alice
chooses her input xR ∈ X by selecting some R ∈ G and ap-
plying it to a default input x0, i.e., x = Rx0. Then we state the
following.

Theorem 1. There is a representation of the symmetry
group G in terms of real orthogonal matrices R &→ TR such
that for each outcome a, the outcome probabilities P(a|xR)
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Summary

• QT	ist	just	one	probabilisTc	theory	among	many	“GPTs”.

• It	can	be	reconstructed	from	simple	principles.

• GPTs	allow	to	study	QT’s	structural	relaXon	to	spaceTme.

• Understanding	this	relaXon	is	of	foundaXonal	importance,	
but	also	promises	new	protocols	and	experimental	tests	of	QT.
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