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Systematic conceptual problems

- Quantum theory: measurement problem, Bell’s Theorem,
*no-go results for facts of the world”

- Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

* Future technology: computer simulation of observers,
“copying” observers etc., ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

- Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?
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Boltzmann brain problem

Cosmologists argue about this:

“Wow! | hope I'm not, like, a disembodied brain
randomly formed complete with false memories of
an existence | never really had, floating in a sea of

chaos and disorder. That would really ruin my day...

https://wallacegsmith.wordpress.com/
2013/06/10/invasion-of-the-boltzmann-
brains/
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Boltzmann brain problem

Cosmologists argue about this:

" e Sketch of argumentation:
L e e Fix a cosmological model X that
i g predicts a very large universe.

e Count Npp (# of Boltzmann brains)
and compare to N, (# of naturally
evolved brains).

o |f Npgp > N,qt then a “BB-obser-
vation” should be highly probable:
“What the...? I’'m in space?! Aargh...”
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Boltzmann brain problem

Cosmologists argue about this:

Sketch of argumentation:

e Fix a cosmological model X that
predicts a very large universe.

e Count Npp (# of Boltzmann brains)
and compare to N, (# of naturally
evolved brains).

o |f Npgp > N,qt then a “BB-obser-
vation” should be highly probable:
“What the...? I’'m in space?! Aargh...’

“Wow! | hope I'm not, like, a disembodied brain e That’s not what we see, hence X is

randomly formed complete with false memories of

J

an existence | never really had, floating in a sea of _ faISIfled ) s —
chaos and disorder. That would really ruin my day... . . .
Is this argumentation valid?
e — what probability should you
— assign to a “BB-observation”?
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The approach taken here

law of physics

“observations” (what an observer .
acts directly here

sees, remembers etc., the full
first-person state at some time)

(Probabilistic) law: What will be observed next is what is most
compressible, given the previous observations.

Provable consequence: what’s observed looks in most cases as if
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Advertisement: consequences

Consequences:
o [)i - - :
Dlssqlves each and every of the afore 76 NEW! ITS BLUE!
mentioned problems, up to calculation. FIRST AND ONLY WASHDAY DETERGENT OF ITS KIND!

e TJells us “why” there is a world with simple,
probabilistic, computable laws.

e New predictions: probabilistic zombies, < T
subjective immortality, “open” versus s
“closed” simulation of agents, we might
all be the same observer meeting different
instances of ourselves...

e Math. rigorous and fun. :-)

Mage BLIE premivd Mais
INSTANT WWITE %ads!
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Disclaimer

e “Observer” is a technical / information-
theoretic notion. Not (directly) related
to “consciousness” etc.

e Not meant as a “TOE”. Predicts its
own limitations. Useless for most
questions that physicists care about.

e “Reality” of world is not denied, but only
its fundamentality. Reproduces standard

view to good approximation.
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Disclaimer

e “Observer” is a technical / information-
theoretic notion. Not (directly) related
to “consciousness” etc.

e Not meant as a “TOE”. Predicts its
own limitations. Useless for most
questions that physicists care about.

e “Reality” of world is not denied, but only
its fundamentality. Reproduces standard

view to good approximation.

Blueprint / proof of principle of a certain kind of theory
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Postulates of the theory

Absolutely minimal ingredients:
® An observer is in some state x (at any given moment).
e |t will be in some other state y next.
e Some future states y are more probable than others.

— stochastic process.

“Universe” and all else: not postulated, but hoped to be derived.
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Postulates of the theory

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (z1,x2,...,x,), and the probability

of the next state y is
P(y|x1,22,...,2,),

where P is conditional algorithmic probability.
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e No assumption that this comes from incomplete knowledge /
quantum state /... of any “external world”.

The P describes fundamental irreducible chances.
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Postulates of the theory

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (z1,x2,...,x,), and the probability

of the next state y is
P(y|x1,22,...,2,),

where P is conditional algorithmic probability.

e No assumption that this comes from incomplete knowledge /
quantum state /... of any “external world”.
The P describes fundamental irreducible chances.

e Not the actual 0-1-sequence is relevant, but the computability
structure that relates the different strings. Analogy: in GR, the
actual coordinates don’t matter, but the differentiable structure.
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What is algorithmic probability?

Probability measures on “histories”:  p(z1,...,2y) =7

(Boring) example: p(z1) := 2721 e g p(1011) = 272471 =279,
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What is algorithmic probability?

Probability measures on “histories”:  p(z1,...,2y) =7

(Boring) example: pu(z;) :=272@)=1 o g, 4(1011) = 272471 =279,
P, @) o= (@) - p(@2) - pl(@n).
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What is algorithmic probability?

Probability measures on “histories”:  p(z1,...,2y) =7

(Boring) example: pu(xy) :=2~ 26(x1) =1 e.g. (1011) =272+t =279

(@
pl

Tn) = p(z1) - p(z2) - - p(@n).
Measure: ZM(CE‘ — 17 Z M(xlaﬂwxnaxn—l—l) :/L(Zl'}l,...,xn).
1 Ln+1

Semimeasure: Same with “<“ instead of “=
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What is algorithmic probability?

Measure: Z:u(xl) — ]-7 Z /L(CE’l, I 7xn7xn—|—1) — ,U(ZUl, I 73777,)-

Ln+1

Semimeasure: Same with “<“ instead of “="

A (semi)measure is computable if there is a computer program that,
oninput z1,...,x, and m € N outputs an (1/m)—approximation

to p(x1,...,x,).

—
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What is algorithmic probability?
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A (semi)measure is computable if there is a computer program that,
oninput z1,...,x, and m € N outputs an (1/m)—approximation
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A (semi)measure is enumerable if there is a computer program that,
oninput xi,...,x, and m € N outputs some approximation
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What is algorithmic probability?

Measure: Z:u(xl) — 17 Z /L(lel, I 7anaajn—l—1) — /L(Q?l, I 73771)-
L1

Ln+1

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,
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to ”(ﬂ Pick any universal enumerable semimeasure M

A (serh and normalize it. that
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A universal enumerable semimeasure M is an enumerable semi-
measure such that for every enumerable semimeasure 1 there exists
some constant ¢ > 0 such that M(zq,...,2,) > c- u(x1,...,2,).
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What is algorithmic probability?

Alternative definition:
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What is algorithmic probability?

Alternative definition:

< [ iJoJo[iJo[afoJol - et My :=distribution of outputs
If input is chosen at random.
Is universal enumerable.

sequentially

Computer
(including
work tapes)

“Occam’s razor’’:

O; Oy ... writes strings

il;sequentlauy snsasananes ) MU(:'El?"')ajn) 2 2_K($1’.”’$n)7
o, (01 60 I 3 3 3 3 I

LIOJ L) e ) | where K(x) is the length of the

I AV i i array of h .t t t

w1z 2 72 [ 2 2] , output tapes 21101 LEST COMPULEr program

w2 [l e 2] {Or}ren that outputs x.

# # # # # # # # # # .............. ] mgm

AN A A A Favors compressibility!

/

Universal monotone Turing machine U
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What is algorithmic probability?

Alternative definition:

E o o ofo o ol@® @

1

1

0

0

1

0

1

0

0

’ 0 0 O 0 O O 0 0 O o O O 0 O O 0 O O 0
reads bits
sequentially

— | work tapes) | |

Q: Won'’t the resulting theory depend on the choice
of universal machine U / univ. enum. semimeasure M?
A: No, but non-trivial why not. Maybe ask me later.

Computer
(including

2. Postulates of the theory
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An open problem

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (z1,x2,...,x,), and the probability

of the next state y is
P(y|x1,22,...,2,),

where P is conditional algorithmic probability.
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Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...
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An open problem

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (z1,x2,...,x,), and the probability

of the next state y is P(z, T Y)
P RN IR I UL
Wlz1, - o) P(zy,...,2,)
where P is conditional algorithmic probability.

Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...

P(y|z,).

Conceptually (much) clearer, but consequences much
harder to work out. Don’t know how to do it (yet).
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Why algorithmic probability?

Several possible arguments:

1. Extrapolating Solomonoff induction

Sol. Induction (1964). after seeing bits b4, ..., b,,
predict the next bit b with prob. P(blb; ...by,).
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Why algorithmic probability?

EMarcus Hutter

Several possible argumen  Gives quickly the correct

probabilities in all computable
1. Extrapolating Solomoi probabilistic environments. -
Universal
Sol. Induction (1964): after seeing bits b1, ...,D,, Rakkatial ol

Sequential Decisions

predict the next bit b with prob. P(b|b; ... b,).
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Why algorithmic probability?

Marcus Hutter

Several possible arguments:

1. Extrapolating Solomonoff induction

Universal
Artificial Intelligence

Sol. Induction (1964). after seeing bits b4, ..., b,,
predict the next bit b with prob. P(blb; ...by,).

Sequential Decisions
Based on Algorithmic Probability

e | aws of physics computable:
Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

2. Postulates of the theory
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Why algorithmic probability?

Several possible arguments:

1. Extrapolating Solomonoff induction

Universal
Artificial Intelligence

Sol. Induction (1964). after seeing bits b4, ..., b,,
predict the next bit b with prob. P(blb; ...b,).

Sequential Decisions
Based on Algorithmic Probability

e | aws of physics computable:

Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

e This is enough to guarantee: Solomonoff induction will do at
least as good as our best physical theories in prediction
(in principle, asymptotically, for many observations).

¢ |dea: postulate that Solomonoff induction is “the law”!
This will then have to be consistent with physics (given our data).

2. Postulates of the theory
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Why algorithmic probability?

2. A structural motivation

Physics is nothing but what makes some future observations
more likely than others.

Algorithmic probability is an essentially unique “canonical
propensity structure”.

2. Postulates of the theory
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Why algorithmic probability?

2. A structural motivation

Physics is nothing but what makes some future observations

more likely than others.
Algorithmic probability is an essentially unique “canonical

propensity structure”.

3. A “many worlds”-like motivation

P can be interpreted as describing what an observer sees who
doesn’t know in which (computable) world she is located (or
who is “objectively delocalized”).

2. Postulates of the theory
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Prediction 1: Principle of persistent regularities

Fix any computable test f.

6H 6 b b

1011011 111110111 1100100110

f(bit string ) =0 or 1

A7
0 yes

Iln

A
W

"~

time
steps

.. history so far. Future
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Prediction 1: Principle of persistent regularities

| f(bit string z) = 0 or 1
Fix any computable test f.

Suppose the answer has been "yes" all along: no yes

6H 6 B b B

1011011 111110111 1100100110 ? time
e e — [ | '
yes yes yes listor yes . Future steps
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Prediction 1: Principle of persistent regularities

f(bit string x)/:'() orfl
O "yes

1 n 11

$

Fix any computable test f.

Suppose the answer has been "yes" all along:

6H 6 b b

1011011 111110111 1100100110 2 -
— s \ tlJ:ne
yes yes yes listor yes r.  Futfprobablyh S'°PS

yes

Theorem: Then, with probability close to one,
answer will be "yes" in the future.
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Prediction 1: Principle of persistent regularities

f(bit string x)/:'() orfl
O "yes

1 n 11

$

Fix any computable test f.

Suppose the answer has been "yes" all along:

6H 6 b b

1011011 111110111 1100100110 2 -
— s \ tlJ:ne
yes yes yes listor yes r.  Futfprobablyh S'°PS

yes

Theorem: Then, with probabillity close to one,
answer will be "yes" in the future.

Intuitive reason: This makes sequence of strings more compressible.

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

Rigorous mathematical formulation:

Theorem 8.3 (Persistence of regularities). Let A be a dead-
end free observer graph, and f an open computable A-test.
For bits aq,...,a,,b € {0,1}, define the measure p as

p(blaiaz . ..a,) == P{f(X?+2) =b | f(X%) = a1,...,
f(X?f+1) — an}v
and similarly define the semimeasure m with P replaced by

M. Then we have3® m(0[1") < 2=K(®)+OWM) and for the
measure p we have the slightly less explicit statement

p(11") =31, (10)

but the convergence is rapid since > ", p(0]1") < co. Thus,
e.g., p(1]1™) > 1 — < for all but finitely many n. Moreover,

the probability that f(x}*') =1 for all n € N is non-zero.

3. How does physics emerge?
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This is already indicates how Boltzmann brains are exorcized:
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

6H 6 B b B

1011011 111110111 1100100110 ? time
e e — [ | '
yes yes yes listor yes . Future steps

3. How does physics emerge?

From observers to physics via algorithmic information theory Markus P. Mller



Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

6H 6 B b B

1011011 111110111 1100100110 2 -
— s \ tlJ:ne
yes yes yes listor yes r.  Futfprobablyh S'°PS

yes

Boltzmann brain experience ("what the... I'm
suddenly in space... argh!!") is highly unlikely.
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

. f if observed calendar shows year < 2050
" | NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).
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like environment.

. f if observed calendar shows year < 2050
" | NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).
Theorem applies to both f and f. Contradiction?! No.

~

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.
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than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

. f if observed calendar shows year < 2050
" | NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).
Theorem applies to both f and f. Contradiction?! No.

~

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.

Will the different regularities “fit together” coherently? Yes! —}

3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.

Suppose it generates outputs 7,25, T53,... according
to the (computable) distribution p(z7,...,x;).
Then, with P-probability at least 2% we have

n—oo

P(ylzy,...,zn) — p(ylz,...,2,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.
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Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.

Suppose it generates outputs 7,25, T53,... according
to the (computable) distribution p(z7,...,x;).
Then, with P-probability at least 2% we have

n—oo

P(ylzy,...,zn) — p(ylz,...,2,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

m -:n- r . ;.:' "
looks as If "

it came from r
"’

observer state,
P-distributed

computational process,
output p-distributed.
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Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.

Suppose it generates outputs 7,25, T53,... according
to the (computable) distribution p(z7,...,x;).
Then, with P-probability at least 2% we have

n—oo

P(ylzy,...,zn) — p(ylz,...,2,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.
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P-distributed
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.

Suppose it generates outputs 7,25, T53,... according
to the (computable) distribution p(z7, ...,z ).

Then, with P-probability at least 2% we have

n—oo

P(ylzy,...,zn) — p(ylz,...,2,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

- [t is contingent which process (and thus y) will emerge, but simpler
ones are highly preferred (simpler = smaller L = higher probability).
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.

Suppose it generates outputs 7,25, T53,... according
to the (computable) distribution p(z7, ...,z ).

Then, with P-probability at least 2% we have

n—oo

P(ylzy,...,zn) — p(ylz,...,2,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

- [t is contingent which process (and thus y) will emerge, but simpler
ones are highly preferred (simpler = smaller L = higher probability).

* Thus, observer’s probabilities will equal the marginal distribution of
some random variable that’s part of a probabilistic process with

computable laws of short description (a simple algorithm).

3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.

HHEHOORKOO

HFHOORKEOO

HHOOOOKO
OCOOROKRKEO

0
1
1
0
1
0
0o

Y= OO0OHRE=OO

HFHOOKHKHOO

~
> HHOO

7|\ # | # | # | # N | # | # | % | #
# |7 | # | # V| # | # | A | #

(71, 72,73, 24) (z1, T2, %3, T4)
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Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.
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0
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Comparison with physics that we observe:
e (Generically, (simple) computations start in simple initial state,
and then evolve with increasing algorithmic entropy.

rule 30
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Prediction 2: Simple, computable, probabilistic “world”

Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.
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Comparison with physics that we observe:
e (Generically, (simple) computations start in simple initial state, ‘)

and then evolve with increasing algorithmic entropy.

®* Time evolution is in principle simulatable by a (short) Turing
machine program (but not necessarily efficiently!).
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Prediction 2: Simple, computable, probabilistic “world”

Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.
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Comparison with physics that we observe:
e (Generically, (simple) computations start in simple initial state, ‘)

and then evolve with increasing algorithmic entropy.

®* Time evolution is in principle simulatable by a (short) Turing
machine program (but not necessarily efficiently!).

e Process is fundamentally probabilistic, but TM not necessarily
the most natural model of computation to represent the process.
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Prediction 2: Simple, computable, probabilistic “world”
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Prediction 2: Simple, computable, probabilistic “world”
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1. Motivation
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2. Postulates of the theory ?) v >

3. How does an external world emerge?

4. What about more than one observer?

4. More than one observer?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations.

Abby Bambi
A‘m ) P( B‘ B B
P yoley, .., x)
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

T

B-world
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Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

™

B-world

But suppose that A sees something in her external world
that seems like another observer B to her...
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Prediction 3. An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

A-world

Laal

But suppose that A sees something in her external world
that seems like another observer B to her...

Does what A sees really correspond to the
first-person perspective of another observer?

3. How does physics emerge?
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Prediction 3. An emergent notion of objectivity

How to formalize this:

A-world
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Prediction 3: An emergent notion of objectivity

How to formalize this:

x = 101100...

OCOOHORKO

Choose some (simple) computable
function fp that, at any time step,
"reads out" some binary string
(interpreted as B's current state)

A-world

HFHOOOOKO
COOHORKEO

COREROO

0
1
1
0
1
0
0
0

HFRHOORKROC

HFHHEHOORKEROO

fBencodes “what other thing
in her world A is looking at”.

HFHEROOREROO
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How to formalize this:

x = 101100...

OCOOHORKO

Choose some (simple) computable
function fp that, at any time step,
"reads out" some binary string
(interpreted as B's current state)

HFHEHOOOORO

A-world

OCOREFROO
COOHHOREKEO

0
1
1
0
1
0
0
0

HFRHOORKROC

HFHHEHOORKEROO

fBencodes “what other thing
in her world A is looking at”.

HFHEROOREROO

Two probability distributions:
v(x1,T2,...,2,) := prob. that B is in states x1,...,Z, acc. to A-world

P(z4,...,z,) = algorithmic probability that B is in states x1,...,Zn
(the real private chances for B!)
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Prediction 3. An emergent notion of objectivity

Let's consider a colourful example: A

A-world

Two probablllty dlstrlbutlons
v(x1,T2,...,2,) := prob. that B is in states x1,...,Z, acc. to A-world

P(z4,...,z,) = algorithmic probability that B is in states x1,...,Zn
(the real private chances for B!)
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeina the sun rise tomorrow? P

v(x1,T2,...,2,) := prob. that B is in states x1,...,Z, acc. to A-world

P(xq,...,2z,) = algorithmic probability that B is in states z1,..., %,
(the real private chances for B!)
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seeina the sun rise tomorrow? P

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeina the sun rise tomorrow? P

Theorem: With v -probability one,

k
P(ylz,....xk) —3 viyler, ... zp).

So the answer is "yes", asymptotically.

2

(In other words: P ~ v if Bis “old enough” in A-world.)

3. How does physics emerge?
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Surprise 1: Probabilistic zombies

o “Objective reality” is a theorem, not an assumption:
k— o0
P(y|$17 K 733]{) — V(y|$17 S 73716)'
Sometimes premises of theorem not satisfied ——p “zombies”!
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Surprise 1: Probabilistic zombies

o “Objective reality” is a theorem, not an assumption:
k— o0
P(y|$17 K 733]{) — V(y|$17 S 73716)'
Sometimes premises of theorem not satisfied ——p “zombies”!

A B is a probabilistic

zombie for A.
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Surprise 1: Probabilistic zombies

o “Objective reality” is a theorem, not an assumption:
k— o0
P(y|$17 K 733]{) — V(y|$17 S 73716)'
Sometimes premises of theorem not satisfied ——p “zombies”!

B is a probabilistic
zombie for A.

prob. of B’s state according to A-world

Theorem: if K(x) < K(v) then zombie, i.e. P # v.
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Surprise 1: Probabilistic zombies

® K (x) too small: A “points to” something in his world that is
too simple (e.g. a single bit, written on a blackboard)

® K (v)too large: A “points to” something in a too complicated way
(example: Boltzmann brains, because very hard to localize.)

B is a probabilistic
zombie for A.

prob. of B’s state according to A-world

Theorem: if K(x) < K(v) then zombie, i.e. P # v.
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Surprise 2: Brain emulation

Get also concrete criteria for
when simulation of an agent
corresponds to an “actual first-
person perspective” (similarly
as in the zombie case).

Turns out: makes big difference

If simulation is “open” or “closed”
(feed in outside data or not).

More detalls in paper.

God at His computer
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Surprise 2: Brain emulation

}
|

Get also concrete criteria for
when simulation of an agent
corresponds to an “actual first-
person perspective” (similarly
as in the zombie case).

Turns out: makes big difference

If simulation is “open” or “closed”
(feed in outside data or not).

More detalls in paper.

| Advantage: this theory also makes

God ac His compurer (other) testable predictions — maybe
a reason to also trust its predictions
in this “crazy” (untestable) regime.
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Conclusions

4. Novel predictions
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Conclusions

= Cannot use it for quantum gravity or cross sections or............

O Proof of principle / blueprint of an “idealistic” predictive theory.
+ Many predictions / consequences from very simple assumptions.

Existence of a simple computational probabilistic external world

Emergence of objectivity (typically)
Probabilistic zombies (in some cases)

Resolves (versions of) the Boltzmann brain problem++
No-signalling and Bell violation (modulo an open problem)

e Predictions for computer emulation of agents
e (Some sort of) subjective immortality, but no possibility to use this for solving NP-complete
problems in poly time. (But depends very much on details of the formulation.)

Full version: arXiv:1712.01826
Short version (v2 soon): arXiv:1712.01816

4. Novel predictions
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Conclusions

= Cannot use it for quantum gravity or cross sections or............

O Proof of principle / blueprint of an “idealistic” predictive theory.
+ Many predictions / consequences from very simple assumptions.

Existence of a simple computational probabilistic external world

Emergence of objectivity (typically)
Probabilistic zombies (in some cases)

Resolves (versions of) the Boltzmann brain problem++
No-signalling and Bell violation (modulo an open problem)

e Predictions for computer emulation of agents
e (Some sort of) subjective immortality, but no possibility to use this for solving NP-complete
problems in poly time. (But depends very much on details of the formulation.)

Full version: arXiv:1712.01826
Short version (v2 soon): arXiv:1712.01816

Thank you!

4. Novel predictions
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