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Foundational questions on statistical physics

Two kinds of missing information:
e Observer's lack of knowledge: knows
only volume, temperature, ...
* Physical uncertainty: different cups
prepared differently, time evolution, ...

Statistical physics: makes objective predictions,
based on subjective lack of knowledge.

"Postulate of equal apriori probabilities":

Why does it work!?
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What about ergodicity!?

Idea: Time evolution explores all accessible
phase space uniformly.
Problems:

* Proven only for some special systems.

* May take very long time.

Is there another justification!?
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| . Motivation from statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

ps ~ (g

lps — 8251 large

Theorem (Concentration of measure): Draw |¢) € Hp f
randomly acc. to unitarily invariant measure. Then,

ds 2
Prob |||ps — Qg1 > €4 < 2exp (—Cdgre”),

where C = 1/187%, dgp = dim Hg, dg = dimHg, Qs = Trg (1s/dg).
R — EEEEEEE———
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| . Motivation from statistical mechanics
The perfect coffee machine

Reveals PS.But pg =~ (g (microcanonical ensemble)
for "almost all" |¢) € Hkg.

Hence, almost all coffee machines (compatible with
restrictions) prepare the microcanonical ensemble.

)

measurements (' coffee tomography")
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Form of the reduced density matrix

e Exact form of ()5 is not given by Popescu et al.
(generality!).

* Goldstein, Lebowitz, Tumulka, Zanghi, PRL 96 (2006):

no interaction H = Hg + H.,,, fixed energy

subspace H g spanned by spectral window |E — A, E 4+ A],
bath's spectral density exponential around FE, then

QS ~ exp(—ﬂHS).

What if the constraint is not given by a subspace!
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Going beyond subspaces

* Observers may have knowledge on systems that is
different from "being element of a subspace".

* Example: given Hamiltonian H, the energy expectation
value (¢V|H|v¥) = E might be known instead.

e Several authors (es Brody et al. Proc.R.Soc.A 463 2007 Droposed the set

Mg ={lY) e C" | W|H[Y) =E, ||¥|| =1}

(n%subspaca"fe. as a ‘quantum microcanonical"ensemble”.

This is the "mean energy ensemble” (m.e.e.)!

Goal of our work:
* Prove typicality (=measure concentration) for m.e.e.,
* analyze its role in quantum statistical mechanics.
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H, = 2 , Hgp =10 - H=Hs®1,

Draw |¢) € H randomly under ||¢|| =1 and (Y|H|¢)) = 3/2
and compute ¥* = Trg|¥)(¢|. Then, with high probability,

12

L[ PV 0
sz;:ﬁ( 0 2(4 — \/7) 0 )

0 0 —14+ V7
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Our result

H,y = 2 , Hp =0 ii>f[:=fﬂ4@§1n

Draw |¢) € H randomly under ||#]| =1 and (¢Y|H|y) = 3/2
and compute Y = Trply)(¥]. Then, with high probability,

, 5+ V7 0
DA - 0 2(4 — \/7) 0 =: P

0 0 —14+/7
More in detail,

Prob {WA — pel|, > 3v8 <s + 2

3 _ 3. (e
4—\%)} < 36996013 ¢~ 517

* Concentration of measure = typicality for energy ensemble
e Note that [, Ha] = 0 but " # exp(—3H4). Not Gibbs!
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H ="Ha ® Hp with Hamiltonian H = H, + Hp, draw a pure
state |¢)) € H randomly under ||| =1 and (y)|H|¢y) = E.
Compute ¥ := Trg|v)(|. Then, with high prob. (made precise)

dim H
1 B

E + s
HA+EkB+S

AN p—
Vo~ pe  where pe= o >

where s € R is given by an algebraic equation,and E; are the
eigenvalues of Hp.
The amount of concentration and s depend on the spectrum!

This follows from an even more general result:
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Our result

Main Theorem (arXiv:1003.4982): Let H be any observable on

C™ and draw a pure normalized state |¢) € C" randomly under
the constraint (Y| H|y) = E.

If fis any real function (on states) with |f(z) — f(y)| < Aljlz —y||
then Prob {|f(¢) — f| > Ae} <a-n3ecn(e-dn) +20vm

where the constants q, ¢, 0 depend on the spectrum (with some
freedom of choice),and f is the median of f on the mean
energy ensemble.

The median f can be approximated by integration over a
high-dimensional ellipsoid.

For some spectra, this result can be trivial (e.g. ¢~ 0)!
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|dea of proof: integral geometry

M. Gromoyv, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01).

Mean energy manifold inherits concentration
of measure from surrounding ellipsoid.

GROMOV AWARDED 2009 ABEL PRIZE
The 2008 Abel Prize is awarded to Mikhail Leonidovich Gromov, Permanent
France, "for his revolutionary contributions to geometry." The award is 6 million
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Proof: how to estimate neighborhood volume

Intuition: /-\

short curves have small nbh...

... long curves have large nbh.

Intuition fails if curve is too "meandering":

=) How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon's needle experiment"):
C: curve, D: domain (e.g. D = U.(C))

/ #(LNC)dL =2 -length(C)
lines L

/ length(L N D) dL = 7 - area(D)
lines L
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No concentration in the Ising model

Recall: Amount of concentration depends on spectrum.

bt wet(mi3o)

1 2 3 m
N——m —_—

)
Ground state energy 0, infinite temperature: energy m/2.
!
dimH = 2™ =: n. Draw [v¢) randomly under (¢Y|H|¢) = a - m
where 0 < a < 1/2.

Observation: Bound from our theorem gets useless:

Prob {|f(¢) — f| > Xe} S exp (—cne? +26v/n)
For Ising spectrum, we get ¢ ~ 1/n. Why is that?




2. Typicality in mean energy ensemble
No concentration in the Ising model

Recall: Amount of concentration depends on spectrum.

bt wet(mi3o)

1 2 3 m
N——m —_—

)
Ground state energy 0, infinite temperature: energy m/2.'
dimH = 2™ =: n. Draw [v¢) randomly under (¢Y|H|¢) = a - m
where 0 < a < 1/2.

p

Theorem: There is no exponential concentration.””
Best possible concentration bound is

Prob {|f — f] > Xe} Sexp (—cnp62) N

0.2}

with p = p(a) < 1, see graph.
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Physical interpretation

* We have proven typicality (exponential concentration) in
the mean energy ensemble (m.e.e.) for large class of H's.

* Answers fundamental math question: What do quantum
states with a fixed expectation value typically look like?

* But: m.e.e. for Ising model does not concentrate!

( = same conclusion for other many-body systems.)

* Interpretation: "almost all" of the n = 2" energy levels
are close to energy value m /2. [Foewes

1 x 107

o If [1)) is to have much 107
smaller energy, then it "does <107
not see" most of the levels = }xuwx
effectively lives in smaller dim.  px1w0*

m = 100

30 10078
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* In those cases where m.e.e. concentrates, typical reduced
density matrix is not of Gibbs
form. Instead, a sum of terms
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