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It is a basic fact of statistical physics that a system S, weakly
coupled to a large bath B, will be in a thermal state, if the full
system SB is described by a microcanonical ensemble. In
the quantum case, it has been suggested in Ref. [1] that a
much stronger statement is true, which has been coined
“canonical typicality”: almost all individual pure states Iin
the microcanonical subspace are locally close to a
thermal state.

However, the exact content of that statement has remained
somewhat unclear so far. In [2], it was proven that most pure
states are locally close to some fixed state, which is however
in general not of the thermal (Gibbs) form. Significant
progress has been made in Ref. [3], where canonical
typicality was rigorously proven for high temperatures (resp.
small interactions between S and B), under the assumption
that the bath has exponential spectral density.

In this work, we prove canonical typicality for translation-
invariant quantum many-body systems with finite-range
interaction. This removes the assumptions of high
temperature and exponential spectral density (the latter
being satisfied automatically in the many-body context). For
the case of small interaction, we give a sharp bound on the
finite bath size necessary for thermalization, and we show
that canonical typicality implies the finite de Finetti
Theorem as a special case.

A taste of the proof: Gibbs
’« states on infinite lattices |
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} The proof relies heavily on mathematical physics
classifications of Gibbs states on infinite quantum lattice

systems, described by quasilocal algebras:
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I Given any translation-invariant state W, its entropy density
W s(w) and energy density u(W) are defined by
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| ’ where H(A\) contains all interaction terms of the Hamiltonian l'
@ thatare fully contained in region A\, and w(A) is the |
“ ' reduced density matrix of W on A. |
!
i @ Variational principle. A translation-invariant state \\
w is a Gibbs state at inverse temperature B if and only k
v

if it maximizes the functional s(w)-Bu(w).
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@® Existence of a limit state. We prove that there
1 exists at least one limit point |
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and that the resulting state T on the infinite lattice
satisfies the variational principle, hence is a Gibbs state.
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Result in a nutshell
‘

onsider a 1D quantum system (theorem below: d
dimensions), described by some translation-invariant
Hamiltonian H with finite-range interaction.

n sites

*m sites"’

From the global energy window subspace,
corresponding to energy density u,

E )
— € (u—0n,u+9,) ¢

T\") .= span |E)
| n

/

draw a global pure state | [1)) € T\™) | at random.

Then its reduced state on the first m sites will look as if
the whole system was in the corresponding Gibbs

state p(ﬁn) .= exp(—PH)/Z :

With probability very close to one,

T (g 1,0 [0) (V| = Tr [ g1,m] P(gn)

| <e,
1

where ¢ tends to zero as n goes to infinity (while m
remains fixed). A

The main theorem

Theorem 1 Let H be a translation-invariant Hamiltonian
with finite-range interaction on a d-dimensional quantum lat-
tice system, and 3 > 0 some inverse temperature such that
there is a unique Gibbs state in the thermodynamic limit (if
d = 1, this is always satisfied), with energy and entropy rates
u = u(B) and s = s(B), respectively. Let (A, )ncn be a se-

. . n—oo .
quence of regions with \,, — oo in the sense of van Hove.

Choose some sequence of subspaces I Z(Ln) on \,, such that

o dimTf,gn) > elfnlsto(lAnl) gnd

o tr (T,LS"”L)H(AR)) < |An|u + o(|A,,

)

for qun) the maximally mixed state on qun) . Such a sequence
of subspaces always exists; if d = 1, we may choose the mi-
crocanonical (energy window) subspaces

i
An]

Tin) .= span{\En> | € (u—0p,u~+ 0p) },

where |E,,) denote an energy eigenvector on \,, correspond-
ing to energy E, and 0,, \, 0 slowly enough. For every

n, draw a pure state |1,) € 7™ at random, and deter-
mine the reduced state Tr yc |1y, ) {1y, | on some smaller region
N, C A, where m < n is fixed. Then we have

with probability one, where

pl) = mBH(A) /iy (Q—BH(Am)

Trpc ) (n| —

is the Gibbs state corresponding to all interaction terms that
are fully contained in the region \,,.

IS replaced by the

Note that the theorem becomes %/rgng If the reduction
of the global Gibbs state, Tryc p "
local Gibbs state P(gm)- i
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Finite size scaling for high
temperature

No interaction and qubits. In this case, that has
been briefly addressed in [2], we can give a sharp bound
on how large the “bath™ (n-m sites) has to be in order to
thermalize the “system® (m sites). This is based on the
results in Ref. [4]

In this case, the reduction of the global Gibbs state is

(n) _ (m) _ @m
Tr[m—l—l,n]pﬁ — Pg = Pg >
that is, the m-fold tensor product of the single-site Gibbs

state.

FIx some energy density u, and draw ‘¢> from

[ 9
T(") .= span< |E) | — = u}

“ n

\

at random (if that subspace is not empty). Then, with
probability at least

. , 82 onc
— 42 €X
P (n + 1)%21873
we have
4m n+1
Xm | |
| T m 0] = p5™|| < == + 5o+

where c is a constant that only depends on u and the
two energy levels of the single-site Hamiltonian.

Thus, the size of the full system, n, must grow
linearly with the size of the subsystem m in
order to obtain a fixed trace distance to the Gibbs state
locally.

Due to the perturbation theorem in [3], this scaling
remains valid in the case of very high temperature,
resp. very small interaction.

In the case of local Hilbert space dimension
larger than 2, the results in [4] cannot be used
directly, and scaling inequalities can be more difficult [5].
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Relation to
de Finetti Theorem

® No interaction and qubits. Suppose we are
instead drawing from a finite energy shell, of width €. Instead

of a single Gibbs state, we obtain a convex combination of
Gibbs states of different temperatures: there is a probability
measure J™ on R, converging to a O-distribution for large n,
such that the one-norm bound above still holds with high prob.:

Trpms [ (0] / P2 du™ (5).

@ A characteristic feature of microcanonical subspaces in
this case is their permutation invariance. Therefore, the
result is in close conceptual analogy to the finite de
Finetti theorem: permutation invariant
states can locally be well approximated
by convex combinations of

product states.
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