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| . Motivation

John A.Wheeler, New York Times, Dec. 12 2000:

,,Quantum physics [...] has explained the structure of atoms
and molecules, [...] the behavior of semiconductors |[...] and
the comings and goings of particles from neutrinos to
quarks.

Successful, yes, but mysterious, too.
Why does the quantum exist?*

The New York Times
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ANNALS OF PHYSICS 194, 336-386 (1989)

Testing Quantum Mechanics
- STEVEN WEINBERG*

Theory Group, Department of Physics,
University of Texas, Austin, Texas 78712

Received March 6, 1989

This_paper_presents a_general framework for introducing nonlinear corrections into
ordinary quantum mechanics, that can serve as a guide to experiments that would be sensitive

to such corrections. In the class of generalized theories described here, the equations that
determine the time-dependence of the wave function are no longer linear, but are of
Hamiltonian type. Also, wave functions that differ by a constant factor represent the same
physical state and satisfy the same time-dependence equations. As a result, there is no
difficulty in combining separated subsystems. Prescriptions are given for determining the
states in which observables have definite values and for calculating the expectation values of
observables for general states, but the calculation of probabilities requires detailed analysis
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ANNALS OF PHYSICS 194, 336-386 (1989)

Volume 143, number 1,2

PHYSICS LETTERS A

1 January 1990

WEINBERG’S NON-LINEAR QUANTUM MECHANICS

AND SUPRALUMINAL COMMUNICATIONS

N. GISIN

Group on Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

Received 16 October 1989; accepted for publication 3 November 1989

Communicated by J.P. Vigier

We show with an example that Weinberg's general framework for introducing non-linear corrections into quantum mechanics

allows for arbitrarily fast communications.

Recently Weinberg has proposed a general frame-
work for introducing non-linear corrections into or-
dinary quantum mechanics [ 1,2]. Although we fully
support his emphasis on the importance of testing
quantum mechanics, we would like in this Letter to

draw attention to _the difficulty of modifying quan-

tum_mechanics without introducing arbitrarily fast
actions at a distance. Below we show how to con-

struct, within Weinberg's framework, an arbitrarily
fast telephone line. In ordinary quantum mechanics

‘ II.- e S

to know what such an apparatus is... do you know
what is inside your phone?) In order to simplify we
consider only a single-bit message. The two direc-
tions z and u are in the xz-plane orthogonal to the
incoming flow of particles, and are 45° from each
other. The way the inhomogeneous magnetic field
acts on the particles is well-known from experimen-
tal evidence. After the apparatus there are two
counters. For each particle one of the counters will
click. This click will be amplified until all readers of
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Our results:

* A derivation of the full quantum formalism
from operational / physical axioms.

* Methods to construct natural consistent
modifications of quantum theory.



Our results:

* A derivation of the full quantum formalism
from operational / physical axioms.

* Methods to construct natural consistent
modifications of quantum theory.

Builds on:

* L. Hardy, Quantum Theory From Five
Reasonable Axioms, 200 |

e B. Daki¢ and C. Brukner, Quantum Theory
and Beyond: Is Entanglement Special?, 2009

See also:

* G. Chiribella et al., Informational derivation of Q.T.,2010
* L. Hardy, Reformulating and Reconstructing Q.T., 201 |



Basic physical /
operational
assumptions

release button _
J outcomes z and T

physical system

¢ States, transformations, and measurements
with outcome probabilities.
* Combined systems: no=signalling.
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* No Hilbert spaces, complex numbers,...
* State spaces: arbitrary convex sets.
* Many ways to combine systems.
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11F auuq;;:: Sviam

IV. Finite-dimensionality * No Hilbert spaces, complex nhumbers,...
V.All measurements allowed | * State spaces: arbitrary convex sets.
* Many ways to combine systems.
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What our results are not:

* They offer no resolution of the
measurement problem.

* No new interpretation of quantum theory.

* We assume that probabilities exist.

* Only finite-dimensional QT so far.

* Only abstract QT, no mechanics / field theory.

Statistical Mechanics= Quantum Mechanics=
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+ +1 Quantum
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are uniquely determined

° /‘ by correlations of local
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No non-local measurements
necessary.

Global state space (Ayp C A® B
"/ but not uniquely fixed!
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If there is a face, similar reasoning: *+~_ 0, .

D

()1 contains o many states. I s *here E(w)=0

5

5
D

5
L 4

D

=no faces: { ©2) Reversibility axiom = ), is a ball.
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4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

* There is maximally mixed state p with Ty = p for all T,
®* UAB = A D UB,

* There are N pure distinguishable states w1, ..., wxN with
N
1
K= N le’ia

® capacity N = N4Np and bit ball dimension

dim() =2" —1€ {1 3,7,15,31,...}.

If dim(Q9) = 1 then the theory is CPT (easy):

4} Gn=permutation group.
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Generalized bit (),

Onishchik "63: Compact connected transitive groups on S¢—1 .
* if d=even, then many possibilities (like SU(d/2)),

* if d=odd and d# 7: only SO(d),
e if d=7/: SO(7) and Lie group G..
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dim(Q) =2" — 1€ {1,3,7,15,31,...}.
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o To=ever bifitios-(iko-SLdL2)

* if d=odd and d# 7: only SO(d),
e if d=7/: SO(7) and Lie group G..
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dim(Q) =2" — 1€ {1,3,7,15,31,...}.
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Ok d+7: Local transformations
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contain SO(d) ® SO(d).

Two bits:

Consider face (,,subspace™) generated by wg ® wq
and w1 ® w1 (again, a bit!)

* Stabilized by SO(d — 1) ® SO(d — 1).
* Counting dimensions with group rep. theory:

if local transformations irreducible then orbit too large.
* But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional

because SO(d-1) is Abelian only for d=3.
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Map 3-vectors to Hermitian matrices: L(w) := = (1 +57 wmi)
* Facts on universal quantum computation,

* Wigner's theorem

* some other tricks

prove:

Theorem: Every theory satisfying Axioms |-V (rather than CPT)
is equivalent to (2, Gn ), where
* )y are the density matrices on C¥,

e Gn is the group of unitaries, acting by conjugation,
* the measurements are exactly the POVMs.
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LIl. Masanes, MM, R. Augusiak, and D. Perez-Garcia, A digital
approach to quantum theory, arXiv:1208.0493

ENCODER
Quantum theory follows from 0 — — - _’Q
- [ |
* | ocal tomography, ' — & w i
e Continuous reversibility, - ) ,
h \\\ ///

e Existence of an information unit:
there is “nice” binary system (“gbit™)
such that the state of any system can

be reversibly encoded in a sufficiently
large number of gbits.
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ABSTRACT
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in 2
describing the physical world around us, they seem to be incompatible theories. There are —_— /

suggestions that one of these theories must be generalized to achieve unification. For example,
Born’s rule—one of the axioms of quantum mechanics—could be violated. Born’s rule predicts that
quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths.
A generalized version of guantum mechanics might allow multipath (i.e., higher-order) interference
thus leading to a deviation from the theory. We performed a three-slit experiment with photons and
bounded the magnitude of three-path interference to less than 10~2 of the expected two-path
interference, thus ruling out third- and higher-order interference and providing a bound on the

Quantum theory: Pios — Pio — Pos — Pis+ P +P+P;=0
= no 3rd-order interference (R. Sorkin, Mod. Phys. Lett. A9, 3119 (1994))
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Jordan algebra state spaces

(real, complex, quaternionic
QM, octonionic 3-level QM,
ball state spaces)

2nd order, but no 3rd-order
interference

What are QT's closest cousins
that show 3rd order interference?

Def.: Wy, ..., W, pure & perfectly distinguishable states are called a frame.
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MM and LIl. Masanes, Three-dimensionality of space and the quantum bit:
how to derive both from information-theoretic postulates, arXiv:1206.0630

Invitation: Q+ Hangout Talk (online), Tuesday, Oct 23.
More info later at;: mattleifer.info
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