A derivation of quantum theory from physical requirements

Markus Müller
Perimeter Institute for Theoretical Physics,Waterloo (Canada)

Joint work with Lluis Masanes arXiv: I004.I483

Outline

I. Motivation
2. General Probabilistic Theories
3. The Axioms

What do they mean?
4. Derivation of the Hilbert space formalism
5. What's beyond QT?

I. Motivation

John A.Wheeler, New York Times, Dec. 12 2000:
„Quantum physics [...] has explained the structure of atoms and molecules, $[. .$.$] the behavior of semiconductors [...] and$ the comings and goings of particles from neutrinos to quarks.

Successful, yes, but mysterious, too. Why does the quantum exist?"

I. Motivation

Testing Quantum Mechanics

Steven Weinberg*
Theory Group, Department of Physics, University of Texas, Austin, Texas 78712

Received March 6, 1989

This paper presents a general framework for introducing nonlinear corrections into ordinary quantum mechanics, that can serve as a guide to experiments that would be sensitive to such corrections. In the class of generalized theories described here, the equations that determine the time-dependence of the wave function are no longer linear, but are of Hamiltonian type. Also, wave functions that differ by a constant factor represent the same physical state and satisfy the same time-dependence equations. As a result, there is no difficulty in combining separated subsystems. Prescriptions are given for determining the states in which observables have definite values and for calculating the expectation values of observables for general states, but the calculation of probabilities requires detailed analysis of in and ind moncurpmont A studv is nresented of varione

I. Motivation

WEINBERG'S NON-LINEAR QUANTUM MECHANICS AND SUPRALUMINAL COMMUNICATIONS

N. GISIN

Group on Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
Received 16 October 1989; accepted for publication 3 November 1989
Communicated by J.P. Vigier

We show with an example that Weinberg's general framework for introducing non-linear corrections into quantum mechanics allows for arbitrarily fast communications.

Recently Weinberg has proposed a general framework for introducing non-linear corrections into ordinary quantum mechanics [1,2]. Although we fully support his emphasis on the importance of testing quantum mechanics, we would like in this Letter to draw attention to the difficulty of modifying quantum mechanics without introducing arbitrarily fast actions at a distance. Below we show how to construct, within Weinberg's framework, an arbitrarily fast telephone line. In ordinary quantum mechanics
to know what such an apparatus is... do you know what is inside your phone?) In order to simplify we consider only a single-bit message. The two directions z and u are in the $x z$-plane orthogonal to the incoming flow of particles, and are 45° from each other. The way the inhomogeneous magnetic field acts on the particles is well-known from experimental evidence. After the apparatus there are two counters. For each particle one of the counters will click. This click will be amplified until all readers of

I. Motivation

WEINBERG'S NON-LINEAR QUANTUM MECHANICS AND SUPRALUMINAL COMMUNICATIONS

N. GISIN

Group on Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
Received 16 October 1989; accepted for publication 3 November 1989
Communicated by J.P. Vigier

We show with an example that Weinberg's general framework for introducing non-linear corrections into quantum mechanics allows for arbitrarily fast communications.

Recently Weinberg has proposed a general framework for introducing non-linear corrections into ordinary quantum mechanics [1,2]. Although we fully support his emphasis on the importance of testing quantum mechanics, we would like in this Letter to draw attention to the difficulty of modifying quantum mechanics without introducing arbitrarily fast actions at a distance. Below we show how to construct, within Weinberg's framework, an arbitrarily fast telephone line. In ordinary quantum mechanics
to know what such an apparatus is... do you know what is inside your phone?) In order to simplify we consider only a single-bit message. The two directions z and u are in the $x z$-plane orthogonal to the incoming flow of particles, and are 45° from each other. The way the inhomogeneous magnetic field acts on the particles is well-known from experimental evidence. After the apparatus there are two counters. For each particle one of the counters will click. This click will be amplified until all readers of

Our results:

- A derivation of the full quantum formalism from operational / physical axioms.
- Methods to construct natural consistent modifications of quantum theory.

Our results:

- A derivation of the full quantum formalism from operational / physical axioms.
- Methods to construct natural consistent modifications of quantum theory.

Builds on:

- L. Hardy, Quantum Theory From Five Reasonable Axioms, 2001
- B. Dakić and Č. Brukner, Quantum Theory and Beyond: Is Entanglement Special?, 2009

See also:

- G. Chiribella et al., Informational derivation of Q.T., 2010
- L. Hardy, Reformulating and Reconstructing Q.T., 20 I I

Basic physical / operational
 assumptions

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

Basic physical / operational assumptions

General

 probabilistic theories

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

> Basic physical / operational assumptions

General probabilistic theories

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

Basic physical / operational assumptions

General probabilistic theories
ordered Banach spaces

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

Basic physical / operational assumptions

General probabilistic theories

- States, transformations, and measurements with outcome probabilities. - Combined systems: no-signalling.

The Axioms:

1. Local tomography
 1. Comimuoun Reversib.

> Determines QT uniquely!

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

Basic physical / operational assumptions

General probabilistic theories
ordered Banach spaces

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

Basic physical / operational assumptions

General probabilistic theories
release button

outcomes x and \bar{x}

- States, transformations, and measureme with outcome probabilities.
- Combined systems: no-signa'..ng.

The Axioms:

I. Local tomography
II. Reversibility
111. Suuspũこ axinm
IV. Finite-dimensionality
V.All measurements allowed

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

What our results are not:

- They offer no resolution of the measurement problem.
- No new interpretation of quantum theory.
- We assume that probabilities exist.
- Only finite-dimensional QT so far.
- Only abstract QT, no mechanics / field theory.

What our results are not:

- They offer no resolution of the measurement problem.
- No new interpretation of quantum theory.
- We assume that probabilities exist.
- Only finite-dimensional QT so far.
- Only abstract QT, no mechanics / field theory.

Statistical Mechanics=

Mechanics (Hamiltonian, phase space,...)

Probability Theory

Quantum Mechanics=

What our results are not:

STOP

- They offer no resolution of the measurement problem.
- No new interpretation of quantum theory.
- We assume that probabilities exist.
- Only finite-dimensional QT so far.
- Only abstract QT, no mechanics / field theory.

Statistical Mechanics=

Mechanics (Hamiltonian, phase space,...)

Probability Theory

Quantum Mechanics=

Abstract
Quantum Theory

2. General Probabilistic Theories

outcomes x and \bar{x}

2. General Probabilistic Theories

(Unnormalized) state $\omega=$ list of all probabilities of „yes"outcomes of all possible measurements. $\omega=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, \ldots\right)$

2. General Probabilistic Theories

(Unnormalized) state $\omega=$ list of all probabilities of "yes"outcomes of all possible measurements. $\omega=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, \ldots\right)$

Sometimes, all ω span a finite-dimensional subspace. Ex.: Qubit - What's the prob. of „spin up" in X-direction?

- What's the prob. of ,,spin up" in Y-direction?
- What's the prob. of „spin up" in Z-direction?
$\omega=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in \mathbb{R}^{4}$

2. General Probabilistic Theories

(Unnormalized) state $\omega=$ list of all probabilities of „yes"outcomes of all possible measurements. $\omega=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, \ldots\right)$

Sometimes, all ω span a finite-dimensional subspace. Ex.: Qubit - What's the prob. of „spin up" in X-direction?

- What's the prob. of ,"spin up" in Y-direction?
- What's the prob. of „spin up" in Z-direction?
- Is the particle there at all?

$$
\omega=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in \mathbb{R}^{4}
$$

Axiom IV:All state spaces are finite-dimensional.

2. General Probabilistic Theories

Prepare state ω or φ with prob. $1 / 2$. Result: $\frac{1}{2} \omega+\frac{1}{2} \varphi$

2. General Probabilistic Theories

Prepare state ω or φ with prob. $1 / 2$. Result: $\frac{1}{2} \omega+\frac{1}{2} \varphi$
(Normalized) state spaces are convex sets.

Extremal points are pure states, others mixed.

2. General Probabilistic Theories

Prepare state ω or φ with prob. $1 / 2$. Result: $\frac{1}{2} \omega+\frac{1}{2} \varphi$

(Normalized) state spaces are convex sets.
Extremal points are pure states, others mixed.
Outcome probabilities are linear functionals E with $0 \leq E(\psi) \leq 1$ for all ψ.

2. General Probabilistic Theories

Prepare state ω or φ with prob. $1 / 2$. Result: $\frac{1}{2} \omega+\frac{1}{2} \varphi$

2. General Probabilistic Theories

Axiom V:All measurements are physically possible.

Prepare state ω or φ with prob. $1 / 2$. Result: $\frac{1}{2} \omega+\frac{1}{2} \varphi$

(Normalized) state spaces are convex sets.
Extremal points are pure states, others mixed.
Outcome probabilities are linear functionals E with $0 \leq E(\psi) \leq 1$ for all ψ.

2. General Probabilistic Theories

2. General Probabilistic Theories

Transformations T map (unnormalized) states to states, and are linear.

2. General Probabilistic Theories

release button

outcomes x and \bar{x}

Transformations T map (unnormalized) states to states, and are linear.
Reversible transformations form a group \mathcal{G}_{A}. In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T\left(\Omega_{A}\right)=\Omega_{A}$

2. General Probabilistic Theories

release button

outcomes x and \bar{x}

Transformations T map (unnormalized) states to states, and are linear.
Reversible transformations form a group \mathcal{G}_{A}. In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T\left(\Omega_{A}\right)=\Omega_{A}$

2. General Probabilistic Theories

Not all symmetries have to be in \mathcal{G}_{A}.

Qubit: Ω_{A} is the 3D unit ball,

$$
\mathcal{G}_{A}=S O(3) \text { (no reflections!) }
$$

2. General Probabilistic Theories

Not all symmetries have to be in \mathcal{G}_{A}.

Qubit: Ω_{A} is the 3D unit ball,

$$
\mathcal{G}_{A}=S O(3) \text { (no reflections!) }
$$

\Rightarrow A system is a pair $\left(\Omega_{A}, \mathcal{G}_{A}\right)$.

2. General Probabilistic Theories

Not all symmetries have to be in \mathcal{G}_{A}.

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

Qubit: Ω_{A} is the 3D unit ball,

$$
\mathcal{G}_{A}=S O(3) \text { (no reflections!) }
$$

\Rightarrow A system is a pair $\left(\Omega_{A}, \mathcal{G}_{A}\right)$.

2. General Probabilistic Theories

Enforces some symmetry in state space:
Axiom II (Reversibility): If φ and ω are purs, then there is a reversible T with $T \varphi=\omega$.

2. General Probabilistic Theories

Enforces some symmetry in state space:
Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

2. General Probabilistic Theories

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

Enforces some symmetry in state space:

2. General Probabilistic Theories

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

Enforces some symmetry in state space:

2. General Probabilistic Theories

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

Enforces some symmetry in state space:

2. General Probabilistic Theories

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible T with $T \varphi=\omega$.

Enforces some symmetry in state space:

2. General Probabilistic Theories

No-signalling condition:
Alice's probabilities do not depend on Bob's choice of measurement.

2. General Probabilistic Theories

2. General Probabilistic Theories

Axiom I: States on $A B$ are uniquely determined by correlations of local measurements on A, B.

2. General Probabilistic Theories

Axiom I: States on $A B$ are uniquely determined by correlations of local measurements on A, B.

= „Local tomography":
No non-local measurements necessary.

2. General Probabilistic Theories

2. General Probabilistic Theories

2. General Probabilistic Theories

Global state space $\Omega_{A B} \subset A \otimes B$ but not uniquely fixed!

Basic physical / operational
 assumptions

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

Basic physical / operational assumptions

General

 probabilistic theories

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

> Basic physical / operational assumptions

General probabilistic theories

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

> Basic physical / operational assumptions

General probabilistic theories

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.
outcomes x and \bar{x}

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

The Axioms:

I. Local tomography II. Reversibility
III. Subspace axiom
IV. Finite-dimensionality
V.All measurements allowed

> Basic physical / operational assumptions

General probabilistic theories

- No Hilbert spaces, complex numbers,...
- State spaces: arbitrary convex sets.
- Many ways to combine systems.

The Axioms:
 I. Local tomography II. Reversibility
 III. Subspace axiom
 IV. Finite-dimensionality
 V.All measurements allowed

outcomes x and \bar{x}

- States, transformations, and measurements with outcome probabilities.
- Combined systems: no-signalling.

3. The Subspace Axiom

Some 3-level system:

Impossible to have system in 3rd level \Rightarrow find particle there with probab. 0

3.The Subspace Axiom

Some 3-level system:

3.The Subspace Axiom

Some 3-level system:

Impossible to have system in 3rd level
\Rightarrow find particle there with probab. 0

QT: $\quad \rho^{(3)}=\left(\begin{array}{lll}\bullet & \bullet & 0 \\ \bullet & \bullet & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow \rho^{(2)}=\left(\begin{array}{ll}\bullet & 0 \\ \bullet & \bullet\end{array}\right)$
CPT: $P^{(3)}=\left(P_{1}, P_{2}, 0\right) \longrightarrow P^{(2)}=\left(P_{1}, P_{2}\right)$

3.The Subspace Axiom

Some 3-level system:

Impossible to have system in 3rd level
\Rightarrow find particle there with probab. 0

QT: $\quad \rho^{(3)}=\left(\begin{array}{lll}\bullet & \bullet & 0 \\ \bullet & \bullet & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow \rho^{(2)}=\left(\begin{array}{ll}\bullet & 0 \\ \bullet & \bullet\end{array}\right)$
CPT: $P^{(3)}=\left(P_{1}, P_{2}, 0\right) \longrightarrow P^{(2)}=\left(P_{1}, P_{2}\right)$

2-level system.

Otherwise, physics would be affected by impossible potentialities.

3.The Subspace Axiom

Axiom III: Let Ω_{N} and Ω_{N-1} be systems with capacities N and N - I. If $\left(E_{1}, \ldots, E_{N}\right)$ is a complete measurement on Ω_{N}, then the set of states ω with $E_{N}(\omega)=0$ is equivalent to Ω_{N-1}.

3.The Subspace Axiom

> Axiom III: Let Ω_{N} and Ω_{N-1} be systems with capacities N and N-I. If $\left(E_{1}, \ldots, E_{N}\right)$ is a complete measurement on Ω_{N}, then the set of states ω with $E_{N}(\omega)=0$ is equivalent to Ω_{N-1}.

Capacity N of $\Omega=$ maximal \# of perfectly distinguishable states.
$\left(\omega_{1}, \ldots, \omega_{n}\right)$ perfectly distinguishable, if there is a measurement $\left(E_{1}, \ldots, E_{n}\right)$ such that $E_{i}\left(\omega_{j}\right)=\delta_{i j}$.

3.The Subspace Axiom

> Axiom III: Let Ω_{N} and Ω_{N-1} be systems with capacities N and N - I. If $\left(E_{1}, \ldots, E_{N}\right)$ is a complete measurement on Ω_{N}, then the set of states ω with $E_{N}(\omega)=0$ is equivalent to Ω_{N-1}.

Capacity N of $\Omega=$ maximal \# of perfectly distinguishable states.
$\left(\omega_{1}, \ldots, \omega_{n}\right)$ perfectly distinguishable, if there is a measurement $\left(E_{1}, \ldots, E_{n}\right)$ such that $E_{i}\left(\omega_{j}\right)=\delta_{i j}$.

If $n=N$ then $\left(E_{1}, \ldots, E_{n}\right)$ is complete.

3.The Subspace Axiom

> Axiom III: Let Ω_{N} and Ω_{N-1} be systems with capacities N and $N-I$. If $\left(E_{1}, \ldots, E_{N}\right)$ is a complete measurement on Ω_{N}, then the set of states ω with $E_{N}(\omega)=0$ is equivalent to Ω_{N-1}.

Capacity N of $\Omega=$ maximal \# of perfectly distinguishable states.
$\left(\omega_{1}, \ldots, \omega_{n}\right)$ perfectly distinguishable, if there is a measurement $\left(E_{1}, \ldots, E_{n}\right)$ such that $E_{i}\left(\omega_{j}\right)=\delta_{i j}$.
If $n=N$ then $\left(E_{1}, \ldots, E_{n}\right)$ is complete.
Equivalent = same state spaces up to a linear map (physically the same!)

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(I-E, E) is complete measurement.

$$
\Rightarrow\{\omega: E(\omega)=0\}=\left\{\omega_{0}\right\} \sim \Omega_{1} .
$$

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(I-E, E) is complete measurement.
$\Rightarrow\{\omega: E(\omega)=0\}=\left\{\omega_{0}\right\} \sim \Omega_{1}$.
$\Rightarrow \Omega_{1}$ contains a single state.

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(I-E, E) is complete measurement.
$\Rightarrow\{\omega: E(\omega)=0\}=\left\{\omega_{0}\right\} \sim \Omega_{1}$.
$\Rightarrow \Omega_{1}$ contains a single state.

If there is a face, similar reas
Ω_{1} contains ∞ many states.

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(I-E, E) is complete measurement.
$\Rightarrow\{\omega: E(\omega)=0\}=\left\{\omega_{0}\right\} \sim \Omega_{1}$.
$\Rightarrow \Omega_{1}$ contains a single state.

If there is a face, similar rea
Ω_{1} contains ∞ many states.

\Rightarrow no faces: Ω_{2}

4. Derivation of the Hilbert space formalism

Why a bit is described by a ball:

(I-E, E) is complete measurement.
$\Rightarrow\{\omega: E(\omega)=0\}=\left\{\omega_{0}\right\} \sim \Omega_{1}$.
$\Rightarrow \Omega_{1}$ contains a single state.

If there is a face, similar rea
Ω_{1} contains ∞ many states.

Reversibility axiom $\Rightarrow \Omega_{2}$ is a ball.

4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T \mu=\mu$ for all T,
- $\mu_{A B}=\mu_{A} \otimes \mu_{B}$,

4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T \mu=\mu$ for all T,
- $\mu_{A B}=\mu_{A} \otimes \mu_{B}$,
- There are N pure distinguishable states $\omega_{1}, \ldots, \omega_{N}$ with

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} \omega_{i},
$$

- capacity $N_{A B}=N_{A} N_{B}$ and bit ball dimension

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\}
$$

4. Derivation of the Hilbert space formalism

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T \mu=\mu$ for all T,
- $\mu_{A B}=\mu_{A} \otimes \mu_{B}$,
- There are N pure distinguishable states $\omega_{1}, \ldots, \omega_{N}$ with

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} \omega_{i},
$$

- capacity $N_{A B}=N_{A} N_{B}$ and bit ball dimension

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{, 7,15,31, \ldots\} .
$$

$\Omega_{2}={ }_{6}^{0}$
If $\operatorname{dim}\left(\Omega_{2}\right)=1$ then the theory is CPT (easy):

$\mathcal{G}_{N}=$ permutation group.

4. Derivation of the Hilbert space formalism

Generalized bit Ω_{2}

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.

4. Derivation of the Hilbert space formalism

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if $d=$ even, then many possibilities (like $S U(d / 2)$),
- if $d=$ odd and $d \neq 7$: only SO(d),
- if $d=7: S O(7)$ and Lie group G_{2}.

4. Derivation of the Hilbert space formalism

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.
Generalized bit Ω_{2}
Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if $d=$ odd and $d \neq 7$: only SO(d),
- if $d=7: S O(7)$ and Lie group G_{2}.

4. Derivation of the Hilbert space formalism

Generalized bit Ω_{2}

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- If $\sigma=e v e n$, timentmany possibilitios (like S/l/(d/2)),
- if $d=$ odd and $d \neq 7$: only SO(d),
- if $d=7: S O(7)$ and Lie group G_{2}.

\otimes

4. Derivation of the Hilbert space formalism

Generalized bit Ω_{2}

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if $d=$ odd and $d \neq 7$: only SO(d),
- if $d=7: S O(7)$ and Lie group G_{2}.

Local transformations contain $\mathcal{G}_{2} \otimes \mathcal{G}_{2}$.

4. Derivation of the Hilbert space formalism

Generalized bit Ω_{2}

$$
\operatorname{dim}\left(\Omega_{2}\right)=2^{r}-1 \in\{1,3,7,15,31, \ldots\} .
$$

By reversibility axiom, \mathcal{G}_{2} is transitive on the sphere.

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if $d=$ odd and $d \neq 7$: only SO(d),
- if $d=7: S O(7)$ and Lie group G_{2}.

$d \neq 7$: Local transformations contain $S O(d) \otimes S O(d)$.

4. Derivation of the Hilbert space formalism

Two bits:

$d \neq 7$: Local transformations contain $S O(d) \otimes S O(d)$.

4. Derivation of the Hilbert space formalism

Two bits:

$d \neq 7$: Local transformations contain $S O(d) \otimes S O(d)$.

Consider face (,„subspace") generated by $\omega_{0} \otimes \omega_{0}$ and $\omega_{1} \otimes \omega_{1}$ (again, a bit!)

4. Derivation of the Hilbert space formalism

Two bits:

$d \neq 7$: Local transformations contain $S O(d) \otimes S O(d)$.

Consider face (,,subspace") generated by $\omega_{0} \otimes \omega_{0}$ and $\omega_{1} \otimes \omega_{1}$ (again, a bit!)

- Stabilized by $S O(d-1) \otimes S O(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But $S O(d-I)$ is complex-reducible iff $d=3$!

4. Derivation of the Hilbert space formalism

Two bits:
 contain $S O(d) \otimes S O(d)$.

Consider face (,,subspace") generated by $\omega_{0} \otimes \omega_{0}$ and $\omega_{1} \otimes \omega_{1}$ (again, a bit!)

- Stabilized by $S O(d-1) \otimes S O(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But $S O(d-I)$ is complex-reducible iff $d=3$!

Take-home message: Bloch ball 3-dimensional because $S O(d-I)$ is reducible only for $d=3$.

4. Derivation of the Hilbert space formalism

Two bits:
 contain $S O(d) \otimes S O(d)$.

Consider face (,,subspace") generated by $\omega_{0} \otimes \omega_{0}$ and $\omega_{1} \otimes \omega_{1}$ (again, a bit!)

- Stabilized by $S O(d-1) \otimes S O(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But $S O(d-I)$ is complex-reducible iff $d=3$!

Take-home message: Bloch ball 3-dimensional because $S O(d-I)$ is Abelian only for $d=3$.

4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: $L(\omega):=\frac{1}{2}\left(1+\sum_{i=1}^{3} \omega_{i} \sigma_{i}\right)$

- Facts on universal quantum computation,
-Wigner‘s theorem
- some other tricks
prove:

4. Derivation of the Hilbert space formalism

Map 3-vectors to Hermitian matrices: $L(\omega):=\frac{1}{2}\left(1+\sum_{i=1}^{3} \omega_{i} \sigma_{i}\right)$

- Facts on universal quantum computation,
-Wigner‘s theorem
- some other tricks prove:

Theorem: Every theory satisfying Axioms I-V (rather than CPT) is equivalent to $\left(\Omega_{N}, \mathcal{G}_{N}\right)$, where

- Ω_{N} are the density matrices on \mathbb{C}^{N},
- \mathcal{G}_{N} is the group of unitaries, acting by conjugation,
- the measurements are exactly the POVMs.

5. Some new developments

5. Some new developments

The Axioms:
I. Local tomography
II. Reversibility
III. Subspace axiom
IV. Finite-dimensionality
V.All measurements allowed

5. Some new developments

The Axioms:
I. Local tomography
II. Contimuono reversib.
III. Suivopues 2xinm
IV. Finite-dimensionality

Conjecture:All state spaces satisfying I,II,IV are quantum systems.

The Axioms:
I. Local tomography
II. Contimuous reversib.

IV. Finite-dimensionality
V. All Illeasul ciluiã - Ilnnavd

5．Some new developments

Conjecture：All state spaces satisfying I，III，IV are quantum systems．

Probably wrong．Task：find counterexamples．

The Axioms：
I．Local tomography
1．Contimuoun reversib．
11．Suயைアデニニ ュwinm
IV．Finite－dimensionality

True if two local systems are balls： LI．Masanes，MM，D．Pérez－García， and R．Augusiak，arXiv：I I I． 4060

5. Some new developments

Conjecture:All state spaces satisfying I,III,IV are quantum systems.

Probably wrong. Task: find counterexamples.

The Axioms:

I. Local tomography

1. Contimuoun reversib.

IV. Finite-dimensionality

True if two local systems are balls: LI. Masanes, MM, D. Pérez-García, and R.Augusiak, arXiv: I I I. 4060

5. Some new developments

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, A digital approach to quantum theory, arXiv: $\mathbf{I} 208.0493$

5. Some new developments

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, A digital approach to quantum theory, arXiv:I208.0493

Quantum theory follows from

- Local tomography,
- Continuous reversibility,
- Existence of an information unit: there is "nice" binary system ("gbit") such that the state of any system can be reversibly encoded in a sufficiently
 large number of gbits.

5. Some new developments

5. Some new developments

[^0]
Ruling Out Multi-Order Interference in Quantum Mechanics

\pm Author Affiliations
\pm^{*} To whom correspondence should be addressed. E-mail: usinha@iqc.ca, gregor.weihs@uibk.ac.at

ABSTRACT

Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule-one of the axioms of quantum mechanics-could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10^{-2} of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the

5. Some new developments

[^1]
Ruling Out Multi-Order Interference in Quantum Mechanics

\pm Author Affiliations
\pm^{*} To whom correspondence should be addressed. E-mail: usinha@iqc.ca, gregor.weihs@uibk.ac.at

ABSTRACT

Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule-one of the axioms of quantum mechanics-could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10^{-2} of the expected two-path

Quantum theory: $P_{123}-P_{12}-P_{23}-P_{13}+P_{1}+P_{2}+P_{3}=0$ \Rightarrow no 3rd-order interference (R. Sorkin, Mod. Phys. Lett. A9, 3 |। 19 (I 994))

5. Some new developments

5. Some new developments

 (real, complex, quaternionic QM, octonionic 3-level QM, ball state spaces) 2nd order, but no 3rd-order interference

5. Some new developments

rarder

What are QT's closest cousins that show 3rd order interference?

5. Some new developments

 (real, complex, quaternionic QM, octonionic 3-level QM, ball state spaces) 2nd order, but no 3rd-order interference

-

What are QT's closest cousins that show 3rd order interference?

Def.: $\omega_{1}, \ldots, \omega_{n}$ pure \& perfectly distinguishable states are called a frame.

5. Some new developments

Joint work with Howard Barnum \& Cozmin Ududec:
I. Every state is in the convex hull of some frame.
2. All frames of the same size are related by reversible transformations.
3. Local tomography \Rightarrow QT + CPT

The landscape boxworld

5. Some new developments

Joint work with Howard Barnum \& Cozmin Ududec:
I. Every state is in the convex hull of some frame.
2.All frames of the same size are related by reversible transformations.
3. Local tomography $\Rightarrow \mathrm{QT}+\mathrm{CPT}$

5. Some new developments

Joint work with Howard Barnum \& Cozmin Ududec:
I. Every state is in the convex hull of some frame.
2.All frames of the same size are related by reversible transformations.
3. Local tomography \Rightarrow QT + CPT
I. (as above)
2. (as above)
\Rightarrow ???

The landscape boxworld
I. (as above)
2. (as above)

3‘. absence of 3rd order interference
\Rightarrow Jordan

5. Some new developments

5. Some new developments

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: how to derive both from information-theoretic postulates, arXiv: I 206.0630

5. Some new developments

MM and LI. Masanes, Three-dimensionality of space and the quantum bit: how to derive both from information-theoretic postulates, arXiv: I 206.0630

Invitation: Q+ Hangout Talk (online), Tuesday, Oct 23.
More info later at: mattleifer.info

Reference: arXiv:I004.I483

Book chapter summary:
 arXiv:I203.45I6

More references:
mpmueller.net

Thank you!

[^0]: < Prev | Table of Contents | Next >

[^1]: < Prev | Table of Contents | Next >

