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1. Motivation

John A. Wheeler, New York Times, Dec. 12 2000:

„Quantum physics [...] has explained the structure of atoms 
and molecules, [...] the behavior of semiconductors [...] and 
the comings and goings of particles from neutrinos to 
quarks.

Successful, yes, but mysterious, too.
Why does the quantum exist?“
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1. Motivation

It is difficult to modify quantum theory.
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Our results:

• A derivation of the full quantum formalism 
from operational / physical axioms.
• Methods to construct natural consistent 
modifications of quantum theory.

Builds on:
• L. Hardy, Quantum Theory From Five 
Reasonable Axioms, 2001
• B. Dakić and Č. Brukner, Quantum Theory 
and Beyond: Is Entanglement Special?, 2009

See also:
• G. Chiribella et al., Informational derivation of Q.T., 2010
• L. Hardy, Reformulating and Reconstructing Q.T., 2011
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Extremal points are pure states, others mixed.
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φ
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2ϕ

Outcome probabilities are linear functionals E
with                          for all ψ.

here E(ψ)=0

0 ≤ E(ψ) ≤ 1

here E(ψ)=1

Measurements are 
with                          for all ψ.

(E1, E2, . . . , Ek)�
i Ei(ψ) = 1

Axiom V: All 
measurements are 
physically possible.

here E(ψ)=0.7
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3. The Subspace Axiom

Some 3-level system:

E1

E2

E3

=
E1

E2

ρ(3) =




· · 0
· · 0
0 0 0



 −→ ρ(2) =

�
· ·
· ·

�

QT:

CPT: P (3) = (P1, P2, 0) −→ P (2) = (P1, P2)

Otherwise, physics would be affected
by impossible potentialities.

2-level system.

Impossible to have system in 3rd level
⇒ find particle there with probab. 0
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                   such that 
(ω1, . . . ,ωn)
(E1, . . . , En) Ei(ωj) = δij .

If            then                     is complete.n = N (E1, . . . , En)

Equivalent = same state spaces up to
a linear map (physically the same!)

L

L−1
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• Facts on universal quantum computation,
• Wigner‘s theorem
• some other tricks
prove:

L(ω) := 1
2

�
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Theorem: Every theory satisfying Axioms I-V (rather than CPT)
               is equivalent to              , where
•       are the density matrices on 
•      is the group of unitaries, acting by conjugation,
• the measurements are exactly the POVMs.

(ΩN ,GN )

ΩN CN ,
GN



5. Some new developments 1 2 3



5. Some new developments

I. Local tomography
II. Reversibility
III. Subspace axiom
IV. Finite-dimensionality
V. All measurements allowed

The Axioms:

1 2 3



5. Some new developments

I. Local tomography
II. Continuous reversib.
III. Subspace axiom
IV. Finite-dimensionality
V. All measurements allowed

The Axioms:

1 2 3



5. Some new developments

I. Local tomography
II. Continuous reversib.
III. Subspace axiom
IV. Finite-dimensionality
V. All measurements allowed

The Axioms:

1 2 3

Conjecture: All state spaces satisfying 1,II,IV are
                     quantum systems.



5. Some new developments

I. Local tomography
II. Continuous reversib.
III. Subspace axiom
IV. Finite-dimensionality
V. All measurements allowed

The Axioms:

1 2 3

Conjecture: All state spaces satisfying 1,II,IV are
                     quantum systems.

Probably wrong. Task: find counterexamples.

True if two local systems are balls:
Ll. Masanes, MM, D. Pérez-García,
and R. Augusiak, arXiv:111.4060



5. Some new developments

I. Local tomography
II. Continuous reversib.
III. Subspace axiom
IV. Finite-dimensionality
V. All measurements allowed

The Axioms:

1 2 3

Conjecture: All state spaces satisfying 1,II,IV are
                     quantum systems.

Probably wrong. Task: find counterexamples.

True if two local systems are balls:
Ll. Masanes, MM, D. Pérez-García,
and R. Augusiak, arXiv:111.4060

⇒



5. Some new developments 1 2 3

Ll. Masanes, MM, R. Augusiak, and D. Pérez-García, A digital
approach to quantum theory, arXiv:1208.0493



5. Some new developments 1 2 3

Ll. Masanes, MM, R. Augusiak, and D. Pérez-García, A digital
approach to quantum theory, arXiv:1208.0493

Quantum theory follows from
• Local tomography,
• Continuous reversibility,
• Existence of an information unit:
   there is “nice“ binary system (“gbit“)
   such that the state of any system can
   be reversibly encoded in a sufficiently
   large number of gbits.

A digital approach to quantum theory

Lluı́s Masanes,1 Markus P. Müller,2 Remigiusz Augusiak,1 and David Pérez-Garcı́a3

1
ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain

2
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

3
Dpto. Analisis Matemático and IMI, Universidad Complutense de Madrid, 28040 Madrid, Spain

(Dated: August 3, 2012)

Does information play a significant role in the foundations of physics? Information is the abstraction that
allows us to refer to the states of systems when we choose to ignore the systems themselves. The viability
of this can be formalized by postulating the existence of an information unit such that the state of any system
can be reversibly encoded in a sufficient number of such units (bits/qubits in the classical/quantum case). This
property of classical and quantum theory is not true in general, so we promote it to a postulate. We derive the full
structure of quantum theory from the following operational postulates: Continuous Reversibility, Tomographic
Locality and Existence of an Information Unit, which includes Information Causality. This new axiomatization
provides an alternative perspective from which to look at the physical content of quantum theory, and opens the
possibility of modifying and generalizing it in new ways.

I. INTRODUCTION

The search for alternative axiomatizations of quantum the-
ory (QT) is an old topic that goes back to Birkhoff and von
Neumann [1–3]. More recently, initiated by Hardy’s work [4],
there has been a wave of contributions taking a more opera-
tional and less mathematical approach [5–8]. Each axioma-
tization emphasizes different definitorial aspects of QT, pro-
viding a new perspective from which to look at the physical
content of the theory, improving our understanding of it and
its relations to other theories (as, for instance, gravity), and
potentially, revealing new applications for quantum informa-
tion processing.

In mathematics it is often convenient to have alternative ax-
iomatizations for the same object. For example, a topolog-
ical space can be axiomatized in terms of its open sets, in
terms of its closure operator, and in a variety of other ways.
In physics, special relativity can be stated through Einstein’s
principles or the Minkowski space. One could say that the
Minkowski space straightforwardly specifies the mathemati-
cal structure of space-time, while Einstein’s principles have
a more direct physical meaning. Analogously, the standard
formulation of QT—in terms of Hilbert spaces and operators
acting on them—straightforwardly specifies the mathematical
structure of the states, dynamics and measurements, while the
axiomatization presented in this work is more of Einstein’s
type—it imposes some physically meaningful features that the
theory must satisfy.

In this work we introduce a postulate named Existence of
an Information Unit, which essentially states that there is only
one type of information within the theory. Consequently, any
physical process can be simulated with a suitably programmed
general purpose simulator. As the input and output of the sim-
ulation need not be classical, this also generalizes the Church-
Turing-Deutsch Principle (stated in [9]). An alternative way
way to read this is that, at some level, the dynamics of any
system is substrate-independent. Existence of an Information
Unit allows us to refer to states, dynamics and measurements
abstractly, without specifying the type of system they pertain
to. And this is exploited by quantum information scientists,
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FIG. 1. Coding is an ideal physical transformation which maps the
unknown state ω of an arbitrary system to an n-gbit state in a re-
versible way, and leaves the initial system in a reference state 0.
Reversibility means that there is another ideal physical transforma-
tion, decoding, which undoes the above, bringing the arbitrary sys-
tem back to its original state.

who design algorithms and protocols at an abstract level, with-
out considering whether they will be implemented with light,
atoms or any other type of physical substrate.

More precisely, Existence of an Information Unit states that
there is a type of system, the generalized bit or gbit, such that
the state of any other system can be reversibly encoded in a
sufficient number of gbits (see Figure 1). In classical prob-
ability theory the gbit is the bit, and in QT it is the qubit.
The reversibility of the encoding implies a correspondence be-
tween the states of any system and the states of a multi-gbit
system (or an appropriate subspace). This correspondence
also extends to dynamics and measurements: if our system
lacks a particular dynamics then we can encode its state into a
multi-gbit system, engineer the desired multi-gbit dynamics,
and decode back the resulting state to our system—effectively
implementing the desired dynamics in our system. We also re-
quire that gbits have some additional properties, in particular
Information Causality [10].

We prove that QT is the only theory satisfying the postu-
lates of Continuous Reversibility, Tomographic Locality (both
introduced in [4] and used in many other axiomatizations of
QT), and Existence of an Information Unit. As an immedi-
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Quantum theory: P123 − P12 − P23 − P13 + P1 + P2 + P3 = 0

⇒ no 3rd-order interference (R. Sorkin, Mod. Phys. Lett. A9, 3119 (1994))
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Def.: ω1, ..., ωn pure & perfectly distinguishable states are called a frame.
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1. (as above)
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MM and Ll. Masanes, Three-dimensionality of space and the quantum bit:
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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