
An information-theoretic approach to
space dimensionality and quantum theory

Markus P.  Müller
Perimeter Institute for Theoretical Physics, Waterloo (Canada)

Joint work with Lluís Masanes



Overview

• The motivation: a curious observation
• geometry of quantum states vs. physical space; von Weizsäcker‘s idea

• The framework
• d-dim. physical space; probabilistic events         convex state spaces

• Three information-theoretic postulates (A,B,C)
• A+B: d-dim. Bloch ball; physical geometry from probability measurements
• A+B+C: derive that d=3, quantum theory, unitary time evolution
• an impossible generalization

• What does this tell us? Some speculation
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1. Motivation: a curious observation

Quantum n-level state space:

Source: Nielsen, Chuang

• This is a particularly nice representation:

statistical mixtures      convex combinations

• S2 is Euclidean and 3-dimensional. But so 
is physical space! Just a coincidence?
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Physical consequence of ballness: 1:1 correspondence between noiseless
measurements on 2-level systems and “directions“ (of magnetic field)
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1. Motivation

1. Motivation: a curious observation
Physical consequence of ballness: 1:1 correspondence between noiseless
measurements on 2-level systems and “directions“ (of magnetic field)

By “rotating the magnet“, we can implement
all noiseless measurements.
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FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set ∆2 in it.

we consider the space curve

�x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), − sin(t)

�T
. (16)

Note that the curve is closed, �x(t) = �x(t + 2π), and be-

longs to the unit sphere, ||�x(t)|| = 1. Moreover

||�x(t)− �x(t+ 1
32π)|| =

√
3 (17)

for every value of t. Hence every point �x(t) belongs to

an equilateral triangle with vertices at

�x(t), �x(t+ 1
32π), and �x(t+ 2

32π) .

They span a plane including the z-axis for all times t.
During the time ∆t =

2π
3 this plane makes a full turn

about the z-axis, while the triangle rotates by the angle

2π/3 within the plane—so the triangle has returned to a

congruent position. The curve �x(t) is shown in Fig. 8 a)

together with exemplary positions of the rotating trian-

gle, and Fig. 8 b) shows its convex hull C. This convex

hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve �x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is

our best model so far of the set of quantum pure states,

although the likeness is not perfect.

It is interesting to think a bit more about the boundary

of C. There are three flat faces, two triangular ones and

one rectangular. The remaining part of the boundary

consists of ruled surfaces: they are curved, but contain

one dimensional faces (straight lines). The boundary of

the set shown in Fig. 7 has similar properties. The ruled

surfaces of C have an analogue in the boundary of the

set of quantum states Q3, we have already noted that a

generic point in the boundary of Q3 belongs to a copy of

Q2 (the Bloch ball), arising as the intersection of Q3 with

a hyperplane. The flat pieces of C have no analogues in

the boundary of Q3, apart from Bloch balls (rank two)

and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states

has self-intersections. Although it is created by rotating

a triangle, the triangles are not cross-sections of C. It

is not true that every point on the boundary belongs

to a face that touches the largest inscribed sphere, as

it happens for the set of quantum states [17]. Indeed its

boundary is not quite what we want it to be, in particular

Bengtsson, Weis, Zyczkowski, “Geometry of the
set of mixed quantum states: An apophatic approach“,
arXiv:1112.2347

convex set Sn

pure states (extremal points)

mixed states in topological boundary:

ρmix :=




1
2 0 0
0 1

2 0
0 0 0




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planes. Since the set of pure states is connected this is

our best model so far of the set of quantum pure states,

although the likeness is not perfect.

It is interesting to think a bit more about the boundary

of C. There are three flat faces, two triangular ones and

one rectangular. The remaining part of the boundary

consists of ruled surfaces: they are curved, but contain

one dimensional faces (straight lines). The boundary of
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and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states

has self-intersections. Although it is created by rotating

a triangle, the triangles are not cross-sections of C. It

is not true that every point on the boundary belongs
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Bengtsson, Weis, Zyczkowski, “Geometry of the
set of mixed quantum states: An apophatic approach“,
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pure states (extremal points)

mixed states in topological boundary:



1
2 0 0
0 1

2 + ε 0
0 0 −ε


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1. Motivation: a curious observation

Carl-Friedrich von Weizsäcker: theory of “ur alternatives“ (1955+)

• “ur“ = (pure) qubit = quantum 2-level system
• everything is composed of (delocalized) urs
• symmetry group of ur

becomes global symmetry group of universe.
U(2) = SU(2)⊗ U(1) ∼ S3 × S1.

space (?!) time (replaced by     )R1

Very vague. What does that mean?
How is decomposition into delocalized urs chosen?
Why not ternary ur-alternatives w/ SU(3)?
Why is the result global cosmic space-time?
...
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1. Motivation

1. Motivation: a curious observation

Goal of this work:
explore rigorously how spatial geometry and q-state space are related.

• Do not assume quantum theory; leave spatial dimension d arbitrary.
• Consider simple experimental scenario only

• Give three information-theoretic postulates on how probabilities and 
rotations are related.
• Prove that we must have d=3 and quantum theory necessarily.
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• Physical systems can be in some state ω. From this, all outcome
probabilities of all subsequent events can be computed:

Prob(outcome ”yes” | meas. M on state ω) =: M(ω).

ω M

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes
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2. The framework

Assumption: there are some events that happen probabilistically.

“yes“

“no“

• Physical systems can be in some state ω. From this, all outcome
probabilities of all subsequent events can be computed:

Prob(outcome ”yes” | meas. M on state ω) =: M(ω).

ω M

• Statistical mixtures are described by convex combinations:
  prepare ω with prob. p and state φ with prob. (1-p), result:

pω+(1− p)ϕ
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Assumption: there are some events that happen probabilistically.

“yes“

“no“

• Consequence: measurements (“effects“)       are affine-linear:

ω M

M
M(pω + (1− p)ϕ) = pM(ω) + (1− p)M(ϕ).

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes



2. Framework

2. The framework

Assumption: there are some events that happen probabilistically.

“yes“

“no“

• Consequence: measurements (“effects“)       are affine-linear:
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M
M(pω + (1− p)ϕ) = pM(ω) + (1− p)M(ϕ).

• State space Ω = set of all possible states ω.
  Convex, compact, finite-dimensional.
  Otherwise arbitrary.

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes



2. Framework

2. The framework

Assumption: there are some events that happen probabilistically.

“yes“

“no“

• Consequence: measurements (“effects“)       are affine-linear:

ω M

M
M(pω + (1− p)ϕ) = pM(ω) + (1− p)M(ϕ).

• State space Ω = set of all possible states ω.
  Convex, compact, finite-dimensional.
  Otherwise arbitrary.

Extremal points are pure states, others mixed.
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Some examples:

• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).
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• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).

a), b), c): classical 2-, 3-, 4-level systems.
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Some examples:

• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).

a), b), c): classical 2-, 3-, 4-level systems.

• d): quantum 2-level system (qubit)
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Some examples:

• e), f), g): neither classical nor quantum.
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• e), f), g): neither classical nor quantum.
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• e), f): let χ=measurement “is spin up in x-direction?“
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• e), f), g): neither classical nor quantum.
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• e), f): let χ=measurement “is spin up in x-direction?“

X (·) = 0 X (·) = 1 X (·) = 0 X (·) = 1
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• e), f): let χ=measurement “is spin up in x-direction?“

X (·) = 0 X (·) = 1 X (·) = 0 X (·) = 1

analogously for ϒ.

Y(·) = 1

Y(·) = 0
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• e), f): let χ=measurement “is spin up in x-direction?“

X (·) = 0 X (·) = 1 X (·) = 0 X (·) = 1

analogously for ϒ.

Y(·) = 1

Y(·) = 0

Square: there is a state ω with X (ω) = Y(ω) = 1.

Circle: if                  then necessarilyX (ω) = 1 Y(ω) = 1/2.

ω
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• e), f), g): neither classical nor quantum.
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• e), f): let χ=measurement “is spin up in x-direction?“

X (·) = 0 X (·) = 1 X (·) = 0 X (·) = 1

analogously for ϒ.

Y(·) = 1

Y(·) = 0

Square: there is a state ω with X (ω) = Y(ω) = 1.

Circle: if                  then necessarilyX (ω) = 1 Y(ω) = 1/2.

ω

complementarity/
uncertainty
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Transformations T map states to states and are linear.
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2. Framework

2. The framework

“yes“

“no“

ω M
T

Transformations T map states to states and are linear.

• Here, only interested in reversible transformations T (i.e. invertible).
• They form a compact (maybe finite) group
• In quantum theory, these are the unitaries:

G.

ρ �→ UρU †.
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2. The framework

Assumption: physics takes place in d spatial dimensions (+ time).
All we consider happens locally + at rest           Euclidean space.
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Assumption: physics takes place in d spatial dimensions (+ time).
All we consider happens locally + at rest           Euclidean space.

• Macroscopic objects can be subjected to SO(d) rotations.

• Rotation of measurement device      : linear group representation
                                 such that

M
GR (R ∈ SO(d)) M �→ GR(M).

“yes“

“no“

ω M
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2. Framework

2. The framework

Assumption: physics takes place in d spatial dimensions (+ time).
All we consider happens locally + at rest           Euclidean space.

• Macroscopic objects can be subjected to SO(d) rotations.

• Rotation of measurement device      : linear group representation
                                 such that

M
GR (R ∈ SO(d)) M �→ GR(M).

“yes“

“no“

ω MGR(M)

GR(M)(ω) = M(G∗
R(ω)).
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3. Postulates A and B

There exist certain systems that behave like “binary units of direction info“.
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3. Postulates A+B

There exist certain systems that behave like “direction bits“.

• Function of device depends only 
on “direction vector“ 

• Resulting yes-probability:

x ∈ Rd, |x| = 1.

Mx(ω).

3. Postulates A and B
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3. Postulates A+B

There exist certain systems that behave like “direction bits“.

• Function of device depends only 
on “direction vector“ 

• Resulting yes-probability:

x ∈ Rd, |x| = 1.

Mx(ω).

Postulate A (rotations matter):
There exists a state      and a 
direction              such that

but                      for all 

ω
x ∈ Rd

Mx(ω) = 1
My(ω) < 1 y �= x.

3. Postulates A and B
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Postulate A (rotations matter):
There exists a state      and a 
direction              such that

but                      for all 

ω
x ∈ Rd

Mx(ω) = 1
My(ω) < 1 y �= x.

A trivial solution: system = (stopped) watch, device determines relative angle 
Θ and outputs “yes“ with probability (θ/180◦)6.
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A trivial solution: system = (stopped) watch, device determines relative angle 
Θ and outputs “yes“ with probability (θ/180◦)6.

But: this watch carries lots of extra information!

Postulate B (minimality):
If     and      are states that attain 
the same maximal yes-probability
                      in the same 
direction x, then ω = ω�.

ω ω�

maxx Mx(ω)
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3. Postulates A+B

A trivial solution: system = (stopped) watch, device determines relative angle 
Θ and outputs “yes“ with probability (θ/180◦)6.

But: this watch carries lots of extra information!

Postulate B (minimality):
If     and      are states that attain 
the same maximal yes-probability
                      in the same 
direction x, then ω = ω�.

ω ω�

maxx Mx(ω)

• Interpretation: system carries 
information on direction x (and 
intensity) and nothing else.
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3. Postulates A+B

Theorem: From Postulates A and B, it follows that the 
direction bit state space is a d-dimensional unit ball.
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Theorem: From Postulates A and B, it follows that the 
direction bit state space is a d-dimensional unit ball.

spatial dimension
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Proof sketch:

• Postulate A ⇒ for every                              there is

   a state        such that

x ∈ Rd, |x| = 1,

ωx Mx(ωx) = 1, My(ωx) < 1 if y �= x.
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Proof sketch:

• Postulate A ⇒ for every                              there is

   a state        such that

x ∈ Rd, |x| = 1,

ωx Mx(ωx) = 1, My(ωx) < 1 if y �= x.

• Maximally mixed state µ :=
�
SO(d) ωRx dR ⇒ GRµ = µ.

• Bloch vector:                          If                then�ω := ω − µ. y = Rx �ωy = GR�ωx.
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Theorem: From Postulates A and B, it follows that the 
direction bit state space is a d-dimensional unit ball.

spatial dimension
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Proof sketch:

• Postulate A ⇒ for every                              there is

   a state        such that

x ∈ Rd, |x| = 1,

ωx Mx(ωx) = 1, My(ωx) < 1 if y �= x.

• Maximally mixed state µ :=
�
SO(d) ωRx dR ⇒ GRµ = µ.

• Bloch vector:                          If                then�ω := ω − µ. y = Rx �ωy = GR�ωx.

• Group rep. theory: inner product such that |�ωy| = 1 for all y.

• Postulate B ⇒ every state can be written

⇒ D-dim. ball. Dimension counting ⇒ D=d.

ω = λωx + (1− λ)µ.
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Theorem: From Postulates A and B, it follows that the 
direction bit state space is a d-dimensional unit ball.
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• This is a non-classical state space with d independent
  mutually complementary measurements.
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• This is a non-classical state space with d independent
  mutually complementary measurements.

•                is a group automorphism, thus of the form
  ⇒ there is orthogonal matrix O such that �ωx = Ox.

R �→ GR GR = ORO−1
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• This is a non-classical state space with d independent
  mutually complementary measurements.

•                is a group automorphism, thus of the form
  ⇒ there is orthogonal matrix O such that �ωx = Ox.

R �→ GR GR = ORO−1

Wants to measure
has no geometric tools at all,
but lots of other preparation / 
measurement devices lying around.

∠(x, y),
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3. Postulates A+B

Wants to measure
has no geometric tools at all,
but lots of other preparation / 
measurement devices lying around.

∠(x, y),

Protocol: • Select d preparations                     with lin. independent
   Bloch vectors                      (otherwise protocol will fail).
• By trial+error, find                       with

ω1, . . . ,ωd

�ω1, . . . , �ωd
M1, . . . ,Md Mi(ωi) ≈ 1.

• Using                                                 determine the
  matrix                            Compute solution to

Mi(ωj) ≈ c+ (1− c)��ωi, �ωj�,
Xij := ��ωi, �ωj�.

• Columns of S give rep. of                      in some ONB.�ω1, . . . , �ωd

STS = X.

• From               and                obtain rep. of        and 
   in ONB. Then

Mx(ωi) My(ωi) �ωx �ωy

∠(x, y) = ∠(�ωx, �ωy).
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3. Postulates A+B

So far: due to symmetry, measurements
characterized by vector x ∈ Rd, |x| = 1.
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So far: due to symmetry, measurements
characterized by vector x ∈ Rd, |x| = 1.

For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :
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3. Postulates A+B

So far: due to symmetry, measurements
characterized by vector x ∈ Rd, |x| = 1.

For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :

Theorem: The analogs of Postulates A+B (for “orientation“ 
instead of “direction“) do not have any solution.
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3. Postulates A+B

So far: due to symmetry, measurements
characterized by vector x ∈ Rd, |x| = 1.

For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :

Theorem: The analogs of Postulates A+B (for “orientation“ 
instead of “direction“) do not have any solution.

Proof: State space would again be a unit ball. Pure states:
But SO(d) is not simply connected, and the sphere is.

{ωX}X∈SO(d)
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4. Postulate C
Our final postulate says that two direction bits can interact
via some continuous reversible time evolution:
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4. Postulate C
Our final postulate says that two direction bits can interact
via some continuous reversible time evolution:

Postulate C (interaction):
On the joint state space of two direction bits A 
and B, there is a continuous one-parameter 
group of transformations                 which is not
a product of local transformations,

{TAB
t }t∈R

TAB
t �= TA

t TB
t .
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and B, there is a continuous one-parameter 
group of transformations                 which is not
a product of local transformations,
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t �= TA

t TB
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Some standard assumptions on composite state space AB:

• Contains “product states“ ωAωB .

ωA ωB
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4. Postulate C
Our final postulate says that two direction bits can interact
via some continuous reversible time evolution:

Postulate C (interaction):
On the joint state space of two direction bits A 
and B, there is a continuous one-parameter 
group of transformations                 which is not
a product of local transformations,

{TAB
t }t∈R

TAB
t �= TA

t TB
t .

Some standard assumptions on composite state space AB:

• Contains “product states“ ωAωB .

ωA ωB

• Allows for “product measurements“ MAMB :

MAMB(ωAωB) = MA(ωA) · MB(ωB).
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R ∈ SO(d),

R R



4. Postulate C

ωA ωB

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

Given                      we want a unique way to 
specify the global rotation on the composite system.

R ∈ SO(d),

• We know what happens locally: ωA �→ GRωA.

• Thus, it‘s clear for product states: ωAωB �→ (GRωA)(GRωB).
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• We know what happens locally: ωA �→ GRωA.

• Thus, it‘s clear for product states: ωAωB �→ (GRωA)(GRωB).

Assumption: The product states span the composite state space.

• Equivalent to “tomographic locality“: global states are uniquely
   determined by probabilities of local measurements and their correlations.

R R

• True for classical prob. theory, quantum theory, almost all other convex
   theories studied so far.
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Given                      we want a unique way to 
specify the global rotation on the composite system.

R ∈ SO(d),

• We know what happens locally: ωA �→ GRωA.

• Thus, it‘s clear for product states: ωAωB �→ (GRωA)(GRωB).

Assumption: The product states span the composite state space.

• True for classical prob. theory, quantum theory, almost all other convex
   theories studied so far.

• Equivalent to “tomographic locality“: global states are uniquely
   determined by probabilities of local measurements and their correlations.

• Allows to represent product states via tensor product:

ωAωB = ωA ⊗ ωB . ωAB �→ GR ⊗GR(ωAB).

R R
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Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

• Consider global Lie group          generated by                   andGAB {TAB
t }t∈R GA ⊗GB .

• Global Lie algebra element                  thenX ∈ gAB ,

Mx ⊗My

�
etX(ωx ⊗ ωy)

�
∈ [0, 1].

• But this equals    for            thus

Mx ⊗My X ωx ⊗ ωy = 0,

Mx ⊗My X
2 ωx ⊗ ωy ≤ 0.

1 t = 0,

�0.6 �0.4 �0.2 0.0 0.2

0.2
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0.6

0.8

1.0

t



4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

Theorem: From Postulates A, B and C, it follows that d=3.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)



4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

Theorem: From Postulates A, B and C, it follows that d=3.

• We get several constraints on X ∈ gAB :

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

Mx ⊗MyXωx ⊗ ωy = 0,

Mx ⊗MyX
2ωx ⊗ ωy ≤ 0, . . .



4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

Theorem: From Postulates A, B and C, it follows that d=3.

• We get several constraints on X ∈ gAB :

• If              the only X satisfying them all are of the form
   with local rotation generators

X = XA +XBd �= 3,
XA, XB .

These generate non-interacting dynamics.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

Mx ⊗MyXωx ⊗ ωy = 0,

Mx ⊗MyX
2ωx ⊗ ωy ≤ 0, . . .



4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

Theorem: From Postulates A, B and C, it follows that d=3.

• We get several constraints on X ∈ gAB :

• If              the only X satisfying them all are of the form
   with local rotation generators

X = XA +XBd �= 3,
XA, XB .

These generate non-interacting dynamics.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

Mx ⊗MyXωx ⊗ ωy = 0,

Mx ⊗MyX
2ωx ⊗ ωy ≤ 0, . . .

• For             evaluating constraints involves integrals liked ≥ 3,

X �→
�

SO(d−1)
GA ⊗ 1BX(GA)−1 ⊗ 1B dGA.

This behaves very differently if SO(d-1) is Abelian, i.e. iff d=3.
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space (i.e. the set of 4x4 density matrices), and time 
evolution is given by a one-parameter group of unitaries,

ρ �→ U(t)ρU(t)†.
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evolution is given by a one-parameter group of unitaries,

ρ �→ U(t)ρU(t)†.
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• We have d=3. Embed the 3-ball in the unit trace matrices of C2×2
s.a.

(r1, r2, r3) �→
�

1
2 + r3 r1 − ir2
r1 + ir2

1
2 − r3

�
.

• Thus, global states will be unit trace matrices in C2×2
s.a. ⊗ C2×2

s.a. = C4×4
s.a.

• Now some                           satisfy constraints. But they all generateX �= XA +XB

maps of the form                              with U ∈ SU(4).etX(ρ) = UρU †
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Theorem: From Postulates A, B and C, it follows that the 
state space of two direction bits is 2-qubit quantum state 
space (i.e. the set of 4x4 density matrices), and time 
evolution is given by a one-parameter group of unitaries,

ρ �→ U(t)ρU(t)†.

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482)

• We have at least one entangling unitary (Postulate C) and all local
   unitaries (rotations). This generates all unitaries!

• But these generate all 4-level quantum states. 

• If there were additional states, these would generate
   negative probabilities.
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5. Conclusions

Attempt to clarify the relationship between spatial geometry and
the qubit (based on old ideas & new techniques):

• Three “information-theoretic“ postulates on the relation
  between spatial geometry (rotations) and probability

• Start with d spatial dimensions, not assuming quantum theory.

• Proof that these determine d=3 and quantum theory on 2 bits.

“yes“

“no“

ω M



5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

5. Conclusions

What does that mean? We don‘t know...



5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

5. Conclusions

What does that mean? We don‘t know...

• The “neat“ behaviour of a Stern-Gerlach
  device is only possible in d=3 dimensions.



5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

5. Conclusions

What does that mean? We don‘t know...

• The “neat“ behaviour of a Stern-Gerlach
  device is only possible in d=3 dimensions.

• It is interesting to consider generalizations of quantum theory
   in the context of fundamental physics.



5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

5. Conclusions

What does that mean? We don‘t know...

• The “neat“ behaviour of a Stern-Gerlach
  device is only possible in d=3 dimensions.

• It is interesting to consider generalizations of quantum theory
   in the context of fundamental physics.

• Possible (relativistic) generalizations of the result?



5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.                  M. Müller*, Ll. Masanes

5. Conclusions

What does that mean? We don‘t know...

• The “neat“ behaviour of a Stern-Gerlach
  device is only possible in d=3 dimensions.

• It is interesting to consider generalizations of quantum theory
   in the context of fundamental physics.

• Possible (relativistic) generalizations of the result?

• Speculation: do space(-time) and quantum theory have a
   common information-theoretic origin?
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Thank you to Lucien Hardy, Lee Smolin; my co-authors;
Danny Terno, FJ Schmitt, Hilary Carteret, Mauro d‘Ariano,
Raymond Lal, Tobias Fritz, ...

• ruling out d≠3:
   Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060

• d=3 implies quantum theory:
   G. de la Torra, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482

• results of this talk:
   MM, Ll. Masanes, arXiv:hopefully.soon

• introduction to convex probabilistic theories:
   J. Barrett, arXiv:quant-ph/0508211


