An information-theoretic approach to space dimensionality and quantum theory

Markus P. Müller

Perimeter Institute for Theoretical Physics, Waterloo (Canada)

Overview

- The motivation: a curious observation
- geometry of quantum states vs. physical space; von Weizsäcker's idea
- The framework
- d-dim. physical space; probabilistic events \longrightarrow convex state spaces
- Three information-theoretic postulates (A,B,C)
- A+B: d-dim. Bloch ball; physical geometry from probability measurements
- $A+B+C$: derive that $d=3$, quantum theory, unitary time evolution
- an impossible generalization
- What does this tell us? Some speculation

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{s . a .}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{\text {s.a. }}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.

$$
S_{2}=\left\{\left.\left(\begin{array}{cc}
\frac{1}{2}+r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & \frac{1}{2}-r_{3}
\end{array}\right)| | \vec{r} \right\rvert\, \leq 1\right\}
$$

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{\text {s.a. }}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.

$$
S_{2}=\left\{\left.\left(\begin{array}{cc}
\frac{1}{2}+r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & \frac{1}{2}-r_{3}
\end{array}\right)| | \vec{r} \right\rvert\, \leq 1\right\}
$$

- This is a particularly nice representation:

$$
p \rho+(1-p) \rho^{\prime} \quad \mapsto p \vec{r}+(1-p) \vec{r}^{\prime}
$$

statistical mixtures \longrightarrow convex combinations

- S_{2} is Euclidean and 3-dimensional. But so is physical space! Just a coincidence?

I. Motivation: a curious observation

Physical consequence of ballness: I:I correspondence between noiseless measurements on 2-level systems and "directions" (of magnetic field)

I. Motivation: a curious observation

Physical consequence of ballness: I:I correspondence between noiseless measurements on 2-level systems and "directions" (of magnetic field)

By "rotating the magnet", we can implement all noiseless measurements.

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{s . a .}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.
Recall that quantum 3-level systems (and higher) are not balls:

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{s . a .}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.
Recall that quantum 3-level systems (and higher) are not balls:

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{s . a .}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.
Recall that quantum 3-level systems (and higher) are not balls:

mixed states in topological boundary:

Bengtsson, Weis, Zyczkowski, "Geometry of the set of mixed quantum states: An apophatic approach", arXiv: I I I 2.2347

I. Motivation: a curious observation

Quantum n-level state space: $\quad S_{n}=\left\{\rho \in \mathbb{C}_{s . a .}^{n \times n} \mid \rho \geq 0, \operatorname{tr}(\rho)=1\right\}$.
Recall that quantum 3-level systems (and higher) are not balls:

I. Motivation: a curious observation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (I955+)

I. Motivation: a curious observation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (I955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

$$
U(2)=S U(2) \otimes U(1) \sim S^{3} \times S^{1}
$$

becomes global symmetry group of universe.

I. Motivation: a curious observation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (I955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

$$
U(2)=S U(2) \otimes U(1) \sim S^{3} \times S^{1}
$$

becomes global symmetry group of univgrse.

I. Motivation: a curious observation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (I955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

$$
U(2)=S U(2) \otimes U(1) \sim S^{3} \times S^{1}
$$

becomes global symmetry group of univgrse.
space (?!) time (replaced by \mathbb{R}^{1})

4

Very vague.What does that mean?

How is decomposition into delocalized urs chosen?
Why not ternary ur-alternatives w/ $\mathrm{SU}(3)$?
Why is the result global cosmic space-time?

I. Motivation: a curious observation

Goal of this work:
explore rigorously how spatial geometry and q-state space are related.

I. Motivation: a curious observation

Goal of this work: explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

I. Motivation: a curious observation

Goal of this work:
explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

I. Motivation: a curious observation

Goal of this work:
explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

- Give three information-theoretic postulates on how probabilities and rotations are related.
- Prove that we must have $d=3$ and quantum theory necessarily.

2.The framework

Assumption: there are some events that happen probabilistically.

2.The framework

Assumption: there are some events that happen probabilistically.

- Physical systems can be in some state ω. From this, all outcome probabilities of all subsequent events can be computed:

$$
\operatorname{Prob}(\text { outcome "yes" } \mid \text { meas. } \mathcal{M} \text { on state } \omega)=: \mathcal{M}(\omega) .
$$

2.The framework

Assumption: there are some events that happen probabilistically.

- Physical systems can be in some state ω. From this, all outcome probabilities of all subsequent events can be computed:

$$
\operatorname{Prob}(\text { outcome "yes" } \mid \text { meas. } \mathcal{M} \text { on state } \omega)=: \mathcal{M}(\omega)
$$

- Statistical mixtures are described by convex combinations: prepare ω with prob. p and state φ with prob. (I-p), result:

$$
p \omega+(1-p) \varphi
$$

2.The framework

Assumption: there are some events that happen probabilistically.

- Consequence: measurements ("effects") \mathcal{M} are affine-linear:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

2.The framework

Assumption: there are some events that happen probabilistically.

- Consequence: measurements ("effects") \mathcal{M} are affine-linear:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

- State space $\Omega=$ set of all possible states ω. Convex, compact, finite-dimensional. Otherwise arbitrary.

2.The framework

Assumption: there are some events that happen probabilistically.

- Consequence: measurements ("effects") \mathcal{M} are affine-linear:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

- State space $\Omega=$ set of all possible states ω. Convex, compact, finite-dimensional. Otherwise arbitrary.
Extremal points are pure states, others mixed.

Some examples:

d)

e)

f)

Some examples:

d)

e)

f)

- Classical n-level system:

$$
\Omega=\left\{\omega=\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right\}
$$

n pure states: $\omega_{1}=(1,0, \ldots, 0), \ldots, \omega_{n}=(0, \ldots, 0,1)$.

Some examples:

d)

e)

f)

- Classical n-level system:

$$
\Omega=\left\{\omega=\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right\}
$$

n pure states: $\omega_{1}=(1,0, \ldots, 0), \ldots, \omega_{n}=(0, \ldots, 0,1)$.
a), b), c): classical 2-, 3-, 4-level systems.

a)

b)

Some examples:

- Classical n-level system:

$$
\Omega=\left\{\omega=\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right\}
$$

n pure states: $\omega_{1}=(1,0, \ldots, 0), \ldots, \omega_{n}=(0, \ldots, 0,1)$.
a), b), c): classical 2-, 3-, 4-level systems.

- d): quantum 2-level system (qubit)

Some examples:

- e), f), g): neither classical nor quantum.

- e), f$), \mathrm{g}$): neither classical nor quantum.
- e), f): let $\mathrm{X}=$ measurement "is spin up in x-direction?"

- e), f , g): neither classical nor quantum.
- e), f): let $\mathrm{X}=$ measurement "is spin up in x -direction?"

- e), f$), \mathrm{g}$): neither classical nor quantum.
- e), f): let $X=$ measurement "is spin up in x-direction?" analogously for Y.

- e), f$), \mathrm{g}$): neither classical nor quantum.
- e), f): let $X=$ measurement "is spin up in x-direction?" analogously for Y.

Square: there is a state ω with $\mathcal{X}(\omega)=\mathcal{Y}(\omega)=1$.
Circle: if $\mathcal{X}(\omega)=1$ then necessarily $\mathcal{Y}(\omega)=1 / 2$.

$$
\mathcal{Y}(\cdot)=1
$$

- e), f), g): neither classical nor quantum.
- e), f): let $X=$ measurement "is spin up in x-direction?" analogously for Y.

Square: there is a state ω with $\mathcal{X}(\omega)=\mathcal{Y}(\omega)=1$.
Circle: if $\mathcal{X}(\omega)=1$ then necessarily $\mathcal{Y}(\omega)=1 / 2$.

2.The framework

2.The framework

Transformations T map states to states and are linear.

2.The framework

Transformations T map states to states and are linear.

- Here, only interested in reversible transformations T (i.e. invertible).
- They form a compact (maybe finite) group \mathcal{G}.
- In quantum theory, these are the unitaries:

$$
\rho \mapsto U \rho U^{\dagger}
$$

2.The framework

Assumption: physics takes place in d spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

2.The framework

Assumption: physics takes place in d spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

- Macroscopic objects can be subjected to $\mathrm{SO}(\mathrm{d})$ rotations.

2.The framework

Assumption: physics takes place in d spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

- Macroscopic objects can be subjected to $\mathrm{SO}(\mathrm{d})$ rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_{R} \quad(R \in S O(d))$ such that $\mathcal{M} \mapsto G_{R}(\mathcal{M})$.

2.The framework

Assumption: physics takes place in d spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

preparation

- Macroscopic objects can be subjected to $\mathrm{SO}(\mathrm{d})$ rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_{R} \quad(R \in S O(d))$ such that $\mathcal{M} \mapsto G_{R}(\mathcal{M})$.

2.The framework

Assumption: physics takes place in d spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

preparation

- Macroscopic objects can be subjected to $\mathrm{SO}(\mathrm{d})$ rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_{R} \quad(R \in S O(d))$ such that $\mathcal{M} \mapsto G_{R}(\mathcal{M})$.

$$
G_{R}(\mathcal{M})(\omega)=\mathcal{M}\left(G_{R}^{*}(\omega)\right)
$$

3. Postulates A and B

There exist certain systems that behave like "binary units of direction info".

3. Postulates A and B

There exist certain systems that behave like "direction bits".

3. Postulates A and B

There exist certain systems that behave like "direction bits".

3. Postulates A and B

There exist certain systems that behave like "direction bits".

3. Postulates A and B

There exist certain systems that behave like "direction bits".

A trivial solution: system $=$ (stopped) watch, device determines relative angle Θ and outputs "yes" with probability $\left(\theta / 180^{\circ}\right)^{6}$.

> Postulate A (rotations matter): There exists a state ω and a direction $x \in \mathbb{R}^{d}$ such that $$
\mathcal{M}_{x}(\omega)=1
$$ but $\mathcal{M}_{y}(\omega)<1$ for all $y \neq x$

A trivial solution: system $=$ (stopped) watch, device determines relative angle Θ and outputs "yes" with probability $\left(\theta / 180^{\circ}\right)^{6}$.
But: this watch carries lots of extra information!

A trivial solution: system = (stopped) watch, device determines relative angle Θ and outputs "yes" with probability $\left(\theta / 180^{\circ}\right)^{6}$.
But: this watch carries lots of extra information!

> Postulate B (minimality): If ω and ω^{\prime} are states that attain the same maximal yes-probability $\max _{x} \mathcal{M}_{x}(\omega)$ in the same direction x, then $\omega=\omega^{\prime}$.

A trivial solution: system $=($ stopped $)$ watch, device determines relative angle Θ and outputs "yes" with probability $\left(\theta / 180^{\circ}\right)^{6}$.
But: this watch carries lots of extra information!

Postulate B (minimality):

 If ω and ω^{\prime} are states that attain the same maximal yes-probability $\max _{x} \mathcal{M}_{x}(\omega)$ in the same direction x, then $\omega=\omega^{\prime}$.- Interpretation: system carries information on direction x (and intensity) and nothing else.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

spatial dimension

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

Proof sketch:

- Postulate $\mathrm{A} \Rightarrow$ for every $x \in \mathbb{R}^{d},|x|=1$, there is
 a state ω_{x} such that $\mathcal{M}_{x}\left(\omega_{x}\right)=1, \mathcal{M}_{y}\left(\omega_{x}\right)<1$ if $y \neq x$.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

Proof sketch:

- Postulate $\mathrm{A} \Rightarrow$ for every $x \in \mathbb{R}^{d},|x|=1$, there is
 a state ω_{x} such that $\mathcal{M}_{x}\left(\omega_{x}\right)=1, \mathcal{M}_{y}\left(\omega_{x}\right)<1$ if $y \neq x$.
- Maximally mixed state $\mu:=\int_{S O(d)} \omega_{R x} d R \Rightarrow G_{R} \mu=\mu$.
- Bloch vector: $\vec{\omega}:=\omega-\mu$. If $y=R x$ then $\vec{\omega}_{y}=G_{R} \vec{\omega}_{x}$.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

Proof sketch:

- Postulate $\mathrm{A} \Rightarrow$ for every $x \in \mathbb{R}^{d},|x|=1$, there is
 a state ω_{x} such that $\mathcal{M}_{x}\left(\omega_{x}\right)=1, \mathcal{M}_{y}\left(\omega_{x}\right)<1$ if $y \neq x$.
- Maximally mixed state $\mu:=\int_{S O(d)} \omega_{R x} d R \Rightarrow G_{R} \mu=\mu$.
- Bloch vector: $\vec{\omega}:=\omega-\mu$. If $y=R x$ then $\vec{\omega}_{y}=G_{R} \vec{\omega}_{x}$.
- Group rep. theory: inner product such that $\left|\vec{\omega}_{y}\right|=1$ for all y.
- Postulate $\mathbf{B} \Rightarrow$ every state can be written $\omega=\lambda \omega_{x}+(1-\lambda) \mu$.
$\Rightarrow D$-dim. ball. Dimension counting $\Rightarrow D=\mathrm{d}$.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

spatial dimension

- This is a non-classical state space with d independent mutually complementary measurements.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

spatial dimension

- This is a non-classical state space with d independent mutually complementary measurements.

- $R \mapsto G_{R}$ is a group automorphism, thus of the form $G_{R}=O R O^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_{x}=O x$.

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

- This is a non-classical state space with d independent mutually complementary measurements.

- $R \mapsto G_{R}$ is a group automorphism, thus of the form $G_{R}=O R O^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_{x}=O x$.

Wants to measure $\angle(x, y)$, has no geometric tools at all,

Theorem: From Postulates A and B, it follows that the direction bit state space is a d-dimensional unit ball.

spatial dimension

- This is a non-classical state space with d independent mutually complementary measurements.

- $R \mapsto G_{R}$ is a group automorphism, thus of the form $G_{R}=O R O^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_{x}=O x$.

Wants to measure $\angle(x, y)$, has no geometric tools at all, but lots of other preparation / measurement devices lying around.

Protocol:

Wants to measure $\angle(x, y)$, has no geometric tools at all, but lots of other preparation / measurement devices lying around.

3. Postulates $A+B$

Protocol: - Select d preparations $\omega_{1}, \ldots, \omega_{d}$ with lin. independent Bloch vectors $\vec{\omega}_{1}, \ldots, \vec{\omega}_{d}$ (otherwise protocol will fail).

Wants to measure $\angle(x, y)$, has no geometric tools at all, but lots of other preparation / measurement devices lying around.

Protocol: - Select d preparations $\omega_{1}, \ldots, \omega_{d}$ with lin. independent Bloch vectors $\vec{\omega}_{1}, \ldots, \vec{\omega}_{d}$ (otherwise protocol will fail).

- By trial+error, find $\mathcal{M}_{1}, \ldots, \mathcal{M}_{d}$ with $\mathcal{M}_{i}\left(\omega_{i}\right) \approx 1$.
- Using $\mathcal{M}_{i}\left(\omega_{j}\right) \approx c+(1-c)\left\langle\vec{\omega}_{i}, \vec{\omega}_{j}\right\rangle$, determine the matrix $X_{i j}:=\left\langle\vec{\omega}_{i}, \vec{\omega}_{j}\right\rangle$. Compute solution to $S^{T} S=X$.

Wants to measure $\angle(x, y)$, has no geometric tools at all, but lots of other preparation / measurement devices lying around.

Protocol: - Select d preparations $\omega_{1}, \ldots, \omega_{d}$ with lin. independent Bloch vectors $\vec{\omega}_{1}, \ldots, \vec{\omega}_{d}$ (otherwise protocol will fail).

- By trial+error, find $\mathcal{M}_{1}, \ldots, \mathcal{M}_{d}$ with $\mathcal{M}_{i}\left(\omega_{i}\right) \approx 1$.
- Using $\mathcal{M}_{i}\left(\omega_{j}\right) \approx c+(1-c)\left\langle\vec{\omega}_{i}, \vec{\omega}_{j}\right\rangle$, determine the matrix $X_{i j}:=\left\langle\vec{\omega}_{i}, \vec{\omega}_{j}\right\rangle$. Compute solution to $S^{T} S=X$.
- Columns of S give rep. of $\vec{\omega}_{1}, \ldots, \vec{\omega}_{d}$ in some ONB.
- From $\mathcal{M}_{x}\left(\omega_{i}\right)$ and $\mathcal{M}_{y}\left(\omega_{i}\right)$ obtain rep. of $\vec{\omega}_{x}$ and $\vec{\omega}_{y}$ in ONB. Then $\angle(x, y)=\angle\left(\vec{\omega}_{x}, \vec{\omega}_{y}\right)$.

Wants to measure $\angle(x, y)$, has no geometric tools at all, but lots of other preparation / measurement devices lying around.

So far: due to symmetry, measurements

 characterized by vector $x \in \mathbb{R}^{d},|x|=1$.

So far: due to symmetry, measurements characterized by vector $x \in \mathbb{R}^{d},|x|=1$.

For $d \geq 3$:what if device does not have this symmetry? Orientation characterized by matrix $X \in S O(d)$.

So far: due to symmetry, measurements characterized by vector $x \in \mathbb{R}^{d},|x|=1$.

For $d \geq 3$:what if device does not have this symmetry? Orientation characterized by matrix $X \in S O(d)$.

Theorem:The analogs of Postulates A+B (for "orientation" instead of "direction") do not have any solution.

So far: due to symmetry, measurements characterized by vector $x \in \mathbb{R}^{d},|x|=1$.

For $d \geq 3$:what if device does not have this symmetry? Orientation characterized by matrix $X \in S O(d)$.

Theorem:The analogs of Postulates A+B (for "orientation" instead of "direction") do not have any solution.

Proof: State space would again be a unit ball. Pure states: $\left\{\omega_{X}\right\}_{X \in S O(d)}$ But $\mathrm{SO}(\mathrm{d})$ is not simply connected, and the sphere is.

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

> Postulate C (interaction):
> On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ which is not a product of local transformations, $T_{t}^{A B} \neq T_{t}^{A} T_{t}^{B}$

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

Postulate C (interaction):
On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ which is not a product of local transformations, $T_{t}^{A B} \neq T_{t}^{A} T_{t}^{B}$.

Some standard assumptions on composite state space $A B$:

- Contains "product states" $\omega^{A} \omega^{B}$.

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

Postulate C (interaction):
On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ which is not a product of local transformations, $T_{t}^{A B} \neq T_{t}^{A} T_{t}^{B}$.

Some standard assumptions on composite state space $A B$:

- Contains "product states" $\omega^{A} \omega^{B}$.

- Allows for "product measurements" $\mathcal{M}^{A} \mathcal{M}^{B}$:

$$
\mathcal{M}^{A} \mathcal{M}^{B}\left(\omega^{A} \omega^{B}\right)=\mathcal{M}^{A}\left(\omega^{A}\right) \cdot \mathcal{M}^{B}\left(\omega^{B}\right)
$$

Given $R \in S O(d)$, we want a unique way to specify the global rotation on the composite system.

Given $R \in S O(d)$, we want a unique way to specify the global rotation on the composite system.

- We know what happens locally: $\quad \omega^{A} \mapsto G_{R} \omega^{A}$.
- Thus, it's clear for product states: $\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$.

Given $R \in S O(d)$, we want a unique way to specify the global rotation on the composite system.

- We know what happens locally: $\quad \omega^{A} \mapsto G_{R} \omega^{A}$.

- Thus, it's clear for product states: $\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$.

Assumption:The product states span the composite state space.

Given $R \in S O(d)$, we want a unique way to specify the global rotation on the composite system.

- We know what happens locally: $\quad \omega^{A} \mapsto G_{R} \omega^{A}$.

- Thus, it's clear for product states: $\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$.

Assumption:The product states span the composite state space.

- True for classical prob. theory, quantum theory, almost all other convex theories studied so far.
- Equivalent to "tomographic locality": global states are uniquely determined by probabilities of local measurements and their correlations.

Given $R \in S O(d)$, we want a unique way to specify the global rotation on the composite system.

- We know what happens locally: $\quad \omega^{A} \mapsto G_{R} \omega^{A}$.

- Thus, it's clear for product states: $\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$.

Assumption:The product states span the composite state space.

- True for classical prob. theory, quantum theory, almost all other convex theories studied so far.
- Equivalent to "tomographic locality": global states are uniquely determined by probabilities of local measurements and their correlations.
- Allows to represent product states via tensor product:

$$
\omega^{A} \omega^{B}=\omega^{A} \otimes \omega^{B} . \quad \quad \omega^{A B} \mapsto G_{R} \otimes G_{R}\left(\omega^{A B}\right)
$$

Theorem: From Postulates A, B and C , it follows that $\mathrm{d}=3$.

Theorem: From Postulates A, B and C, it follows that $d=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- Consider global Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and $G^{A} \otimes G^{B}$.

Theorem: From Postulates A, B and C, it follows that $d=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- Consider global Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and $G^{A} \otimes G^{B}$.
- Global Lie algebra element $X \in \mathfrak{g}^{A B}$, then
$\mathcal{M}_{x} \otimes \mathcal{M}_{y}\left(e^{t X}\left(\omega_{x} \otimes \omega_{y}\right)\right) \in[0,1]$.

Theorem: From Postulates A, B and C , it follows that $\mathrm{d}=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- Consider global Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and $G^{A} \otimes G^{B}$.
- Global Lie algebra element $X \in \mathfrak{g}^{A B}$, then
$\mathcal{M}_{x} \otimes \mathcal{M}_{y}\left(e^{t X}\left(\omega_{x} \otimes \omega_{y}\right)\right) \in[0,1]$.

- But this equals 1 for $t=0$, thus

$$
\begin{aligned}
& \mathcal{M}_{x} \otimes \mathcal{M}_{y} X \omega_{x} \otimes \omega_{y}=0 \\
& \mathcal{M}_{x} \otimes \mathcal{M}_{y} X^{2} \omega_{x} \otimes \omega_{y} \leq 0
\end{aligned}
$$

Theorem: From Postulates A, B and C, it follows that $d=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

Theorem: From Postulates A, B and C, it follows that $d=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- We get several constraints on $X \in \mathfrak{g}^{A B}$:

$$
\begin{array}{r}
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X \omega_{x} \otimes \omega_{y}=0 \\
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X^{2} \omega_{x} \otimes \omega_{y} \leq 0
\end{array}
$$

Theorem: From Postulates A, B and C , it follows that $\mathrm{d}=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- We get several constraints on $X \in \mathfrak{g}^{A B}$:

$$
\begin{array}{r}
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X \omega_{x} \otimes \omega_{y}=0 \\
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X^{2} \omega_{x} \otimes \omega_{y} \leq 0
\end{array}
$$

- If $d \neq 3$, the only X satisfying them all are of the form $X=X^{A}+X^{B}$ with local rotation generators X^{A}, X^{B}.
These generate non-interacting dynamics.

Theorem: From Postulates A, B and C , it follows that $\mathrm{d}=3$.

Proof idea (LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I I.4060)

- We get several constraints on $X \in \mathfrak{g}^{A B}$:

$$
\begin{array}{r}
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X \omega_{x} \otimes \omega_{y}=0 \\
\mathcal{M}_{x} \otimes \mathcal{M}_{y} X^{2} \omega_{x} \otimes \omega_{y} \leq 0
\end{array}
$$

- If $d \neq 3$, the only X satisfying them all are of the form $X=X^{A}+X^{B}$ with local rotation generators X^{A}, X^{B}.
These generate non-interacting dynamics.
- For $d \geq 3$, evaluating constraints involves integrals like

$$
X \mapsto \int_{S O(d-1)} G^{A} \otimes \mathbf{1}^{B} X\left(G^{A}\right)^{-1} \otimes \mathbf{1}^{B} d G^{A}
$$

This behaves very differently if $S O(d-I)$ is Abelian, i.e. iff $d=3$. \square

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries,

$$
\rho \mapsto U(t) \rho U(t)^{\dagger} .
$$

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries,

$$
\rho \mapsto U(t) \rho U(t)^{\dagger} .
$$

Proof idea (G. de la Torre, LI. Masanes, A. J. Short, MM, arXiv: I I I 0.5482)

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries,

$$
\rho \mapsto U(t) \rho U(t)^{\dagger} .
$$

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: / / I 0.5482)
-We have $d=3$. Embed the 3 -ball in the unit trace matrices of $\mathbb{C}_{s . a .}^{2 \times 2}$

$$
\left(r_{1}, r_{2}, r_{3}\right) \mapsto\left(\begin{array}{cc}
\frac{1}{2}+r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & \frac{1}{2}-r_{3}
\end{array}\right) .
$$

- Thus, global states will be unit trace matrices in $\mathbb{C}_{s . a .}^{2 \times 2} \otimes \mathbb{C}_{s . a .}^{2 \times 2}=\mathbb{C}_{s . a .}^{4 \times 4}$

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries, $\rho \mapsto U(t) \rho U(t)^{\dagger}$.

Proof idea (G. de la Torre, LI. Masanes, A. J. Short, MM, arXiv: / / I 0.5482)
-We have $d=3$. Embed the 3 -ball in the unit trace matrices of $\mathbb{C}_{s . a .}^{2 \times 2}$

$$
\left(r_{1}, r_{2}, r_{3}\right) \mapsto\left(\begin{array}{cc}
\frac{1}{2}+r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & \frac{1}{2}-r_{3}
\end{array}\right) .
$$

- Thus, global states will be unit trace matrices in $\mathbb{C}_{s . a .}^{2 \times 2} \otimes \mathbb{C}_{s . a .}^{2 \times 2}=\mathbb{C}_{s . a .}^{4 \times 4}$
- Now some $X \neq X^{A}+X^{B}$ satisfy constraints. But they all generate maps of the form $e^{t X}(\rho)=U \rho U^{\dagger}$ with $U \in S U(4)$.

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries,

$$
\rho \mapsto U(t) \rho U(t)^{\dagger} .
$$

Proof idea (G. de la Torre, LI. Masanes, A. J. Short, MM, arXiv: I I I 0.5482)

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries,

$$
\rho \mapsto U(t) \rho U(t)^{\dagger} .
$$

Proof idea (G. de la Torre, LI. Masanes, A.J. Short, MM, arXiv: / I I 0.5482)

- We have at least one entangling unitary (Postulate C) and all local unitaries (rotations). This generates all unitaries!

Theorem: From Postulates A, B and C , it follows that the state space of two direction bits is 2 -qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a one-parameter group of unitaries, $\rho \mapsto U(t) \rho U(t)^{\dagger}$.

Proof idea (G. de la Torre, LI. Masanes, A.J. Short, MM, arXiv: / I I O.5482)

- We have at least one entangling unitary (Postulate C) and all local unitaries (rotations). This generates all unitaries!
- But these generate all 4-level quantum states.
- If there were additional states, these would generate negative probabilities.

5. Conclusions

Attempt to clarify the relationship between spatial geometry and the qubit (based on old ideas \& new techniques):

5. Conclusions

Attempt to clarify the relationship between spatial geometry and the qubit (based on old ideas \& new techniques):

- Start with d spatial dimensions, not assuming quantum theory.
- Three "information-theoretic" postulates on the relation between spatial geometry (rotations) and probability
- Proof that these determine $d=3$ and quantum theory on 2 bits.

5. Conclusions

What does that mean? We don't know...

5. Conclusions

What does that mean? We don't know...

- The "neat" behaviour of a Stern-Gerlach device is only possible in $d=3$ dimensions.

5. Conclusions

What does that mean? We don't know...

- The "neat" behaviour of a Stern-Gerlach device is only possible in $d=3$ dimensions.

- It is interesting to consider generalizations of quantum theory in the context of fundamental physics.

| | | | 5. Conclusions |
| :--- | :--- | :--- | :--- | :--- |
| An information-theoretic approach to space dimensionality and quantum theory. | M. Müller*, LI. Masanes | | |

5. Conclusions

What does that mean? We don't know...

- The "neat" behaviour of a Stern-Gerlach device is only possible in $d=3$ dimensions.

- It is interesting to consider generalizations of quantum theory in the context of fundamental physics.
- Possible (relativistic) generalizations of the result?

5. Conclusions

What does that mean? We don't know...

- The "neat" behaviour of a Stern-Gerlach device is only possible in $d=3$ dimensions.

- It is interesting to consider generalizations of quantum theory in the context of fundamental physics.
- Possible (relativistic) generalizations of the result?
- Speculation: do space(-time) and quantum theory have a common information-theoretic origin?

5. Conclusions

Thank you to Lucien Hardy, Lee Smolin; my co-authors; Danny Terno, FJ Schmitt, Hilary Carteret, Mauro d'Ariano, Raymond Lal, Tobias Fritz, ...

5. Conclusions

Thank you to Lucien Hardy, Lee Smolin; my co-authors; Danny Terno, FJ Schmitt, Hilary Carteret, Mauro d'Ariano, Raymond Lal, Tobias Fritz, ...

- introduction to convex probabilistic theories:
J. Barrett, arXiv:quant-ph/05082 I I
- ruling out $d \neq 3$:
LI. Masanes, MM, D. Pérez-García, R.Augusiak, arXiv: I I I . 4060
- $d=3$ implies quantum theory: G. de la Torra, LI. Masanes, A. J. Short, MM, arXiv: I I I 0.5482
- results of this talk:

MM, LI. Masanes, arXiv:hopefully.soon

