Markus P. Müller

Perimeter Institute for Theoretical Physics, Waterloo (Canada)

Joint work with Lluís Masanes

Overview

- The motivation: a curious observation
 - geometry of quantum states vs. physical space; von Weizsäcker's idea
- The framework
- Three information-theoretic postulates (A,B,C)
 - A+B: d-dim. Bloch ball; physical geometry from probability measurements
 - A+B+C: derive that d=3, quantum theory, unitary time evolution
 - an impossible generalization
- What does this tell us? Some speculation

Quantum *n*-level state space: $S_n = \{ \rho \in \mathbb{C}_{s.a.}^{n \times n} \mid \rho \ge 0, \operatorname{tr}(\rho) = 1 \}.$

I. Motivation

Quantum *n*-level state space: $S_n = \{ \rho \in \mathbb{C}_{s.a.}^{n \times n} \mid \rho \ge 0, \operatorname{tr}(\rho) = 1 \}.$

$$S_2 = \left\{ \begin{pmatrix} \frac{1}{2} + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & \frac{1}{2} - r_3 \end{pmatrix} \middle| |\vec{r}| \le 1 \right\}$$

I. Motivation

Masanes	PERIMETER INSTITUTE

M. Müller*, Ll

Quantum *n*-level state space: $S_n = \{ \rho \in \mathbb{C}_{s.a.}^{n \times n} \mid \rho \ge 0, \operatorname{tr}(\rho) = 1 \}.$

$$S_2 = \left\{ \begin{pmatrix} \frac{1}{2} + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & \frac{1}{2} - r_3 \end{pmatrix} \middle| |\vec{r}| \le 1 \right\}$$

- This is a particularly nice representation: $p\rho + (1-p)\rho' \mapsto p\vec{r} + (1-p)\vec{r}'$ statistical mixtures \rightarrow convex combinations
- S₂ is Euclidean and 3-dimensional. But so is physical space! Just a coincidence?

I. Motivation

An information-theoretic approach to space dimensionality and quantum theory.

Physical consequence of ballness: I:I correspondence between noiseless measurements on 2-level systems and "directions" (of magnetic field)

I. Motivation							
An information-theoretic approach to space dimensionality and quantum theory.			M. Müller*,	, LI. Masanes	PERIMETER I	INSTITU CAL PHYS	

Physical consequence of ballness: I:I correspondence between noiseless measurements on 2-level systems and "directions" (of magnetic field)

By "rotating the magnet", we can implement all noiseless measurements.

An information-theoretic approach to space dimensionality and quantum theory.

I. Motivation

Quantum *n*-level state space: $S_n = \{ \rho \in \mathbb{C}_{s.a.}^{n \times n} \mid \rho \ge 0, \operatorname{tr}(\rho) = 1 \}.$

Recall that quantum 3-level systems (and higher) are not balls:

I. Motivation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (1955+)

I. Motivation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (1955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

 $U(2) = SU(2) \otimes U(1) \sim S^3 \times S^1.$

becomes global symmetry group of universe.

I. Motivation

An information-theoretic approach to space dimensionality and quantum theory.

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (1955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

 $U(2) = SU(2) \otimes U(1) \sim S^3 \times S^1.$ becomes global symmetry group of universe.

space (?!) time (replaced by \mathbb{R}^1)

I. Motivation

Carl-Friedrich von Weizsäcker: theory of "ur alternatives" (1955+)

- "ur" = (pure) qubit = quantum 2-level system
- everything is composed of (delocalized) urs
- symmetry group of ur

 $U(2) = SU(2) \otimes U(1) \sim S^3 \times S^1.$ becomes global symmetry group of universe.

space (?!) time (replaced by \mathbb{R}^1)

Very vague. What does that mean?

How is decomposition into *delocalized* urs chosen? Why not ternary ur-alternatives w/ SU(3)? Why is the result global cosmic space-time?

I. Motivation

Goal of this work:

explore rigorously how spatial geometry and q-state space are related.

I. Motivation

Goal of this work: explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

Goal of this work: explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

Goal of this work: explore rigorously how spatial geometry and q-state space are related.

- Do not assume quantum theory; leave spatial dimension d arbitrary.
- Consider simple experimental scenario only

- Give three information-theoretic postulates on how probabilities and rotations are related.
- Prove that we must have d=3 and quantum theory necessarily.

An information-theoretic approach to space dimensionality and quantum theory.

I. Motivation

Assumption: there are some events that happen probabilistically.

An information-theoretic approach to space dimensionality and quantum theory.

2. Framework

Assumption: there are some events that happen probabilistically.

• Physical systems can be in some state ω . From this, all outcome probabilities of all subsequent events can be computed:

Prob(outcome "yes" | meas. \mathcal{M} on state ω) =: $\mathcal{M}(\omega)$.

2. Framework

Assumption: there are some events that happen probabilistically.

• Physical systems can be in some state ω . From this, all outcome probabilities of all subsequent events can be computed:

Prob(outcome "yes" | meas. \mathcal{M} on state ω) =: $\mathcal{M}(\omega)$.

• Statistical mixtures are described by convex combinations: prepare ω with prob. *p* and state φ with prob. (*I-p*), result:

$$p \omega + (1-p)\varphi$$

Assumption: there are some events that happen probabilistically.

• Consequence: measurements ("effects") \mathcal{M} are affine-linear:

 $\mathcal{M}(p\omega + (1-p)\varphi) = p\mathcal{M}(\omega) + (1-p)\mathcal{M}(\varphi).$

	2. Framework				
An information-theoretic approach to space dimensionality and quantum theory.			M. Müller*, Ll. Masanes	PERIMI	

Assumption: there are some events that happen probabilistically.

• Consequence: measurements ("effects") \mathcal{M} are affine-linear:

 $\mathcal{M}(p\omega + (1-p)\varphi) = p\mathcal{M}(\omega) + (1-p)\mathcal{M}(\varphi).$

• State space Ω = set of all possible states ω . Convex, compact, finite-dimensional. Otherwise arbitrary.

2. Framework

An information-theoretic approach to space dimensionality and quantum theory.

Assumption: there are some events that happen probabilistically.

• Consequence: measurements ("effects") \mathcal{M} are affine-linear:

 $\mathcal{M}(p\omega + (1-p)\varphi) = p\mathcal{M}(\omega) + (1-p)\mathcal{M}(\varphi).$

• State space Ω = set of all possible states ω . Convex, compact, finite-dimensional. Otherwise arbitrary.

Extremal points are pure states, others mixed.

2. Framework

An information-theoretic approach to space dimensionality and quantum theory.

2. Framework

• Classical n-level system:

 $\Omega = \{ \omega = (p_1, \dots, p_n) \mid p_i \ge 0, \ \sum_i p_i = 1 \}.$

n pure states: $\omega_1 = (1, 0, \dots, 0), \dots, \omega_n = (0, \dots, 0, 1).$

2. Framework

• Classical n-level system:

 $\Omega = \{ \omega = (p_1, \dots, p_n) \mid p_i \ge 0, \ \sum_i p_i = 1 \}.$

n pure states: $\omega_1 = (1, 0, \dots, 0), \dots, \omega_n = (0, \dots, 0, 1).$ a), b), c): classical 2-, 3-, 4-level systems.

2. Framework

• Classical n-level system:

 $\Omega = \{ \omega = (p_1, \dots, p_n) \mid p_i \ge 0, \sum_i p_i = 1 \}.$

n pure states: $\omega_1 = (1, 0, \dots, 0), \dots, \omega_n = (0, \dots, 0, 1).$ a), b), c): classical 2-, 3-, 4-level systems.

• d): quantum 2-level system (qubit)

2. Framework

• e), f), g): neither classical nor quantum.

2. Framework

- e), f), g): neither classical nor quantum.
- e), f): let x=measurement "is spin up in x-direction?"

2. Framework

- e), f), g): neither classical nor quantum.
- e), f): let χ=measurement "is spin up in x-direction?"

2. Framework

- e), f), g): neither classical nor quantum.
- e), f): let χ=measurement "is spin up in x-direction?" analogously for Υ.

2. Framework

- e), f), g): neither classical nor quantum.
- e), f): let χ=measurement "is spin up in x-direction?" analogously for Υ.

Square: there is a state $\boldsymbol{\omega}$ with $\mathcal{X}(\omega) = \mathcal{Y}(\omega) = 1$. Circle: if $\mathcal{X}(\omega) = 1$ then necessarily $\mathcal{Y}(\omega) = 1/2$.

2. Framework

- e), f), g): neither classical nor quantum.
- e), f): let χ=measurement "is spin up in x-direction?" analogously for Υ.

Square: there is a state $\boldsymbol{\omega}$ with $\mathcal{X}(\omega) = \mathcal{Y}(\omega) = 1$. Circle: if $\mathcal{X}(\omega) = 1$ then necessarily $\mathcal{Y}(\omega) = 1/2$.

2. Framework

2. Framework

An information-theoretic approach to space dimensionality and quantum theory.

Transformations T map states to states and are linear.

2. Framework

Transformations T map states to states and are linear.

- Here, only interested in reversible transformations T (i.e. invertible).
- They form a compact (maybe finite) group $\mathcal{G}_{.}$
- In quantum theory, these are the unitaries:

 $\rho \mapsto U \rho U^{\dagger}.$

ERIMETER INSTITUTE

2. Framework

Assumption: physics takes place in *d* spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

ERIMETER INSTITUTE

2. Framework

Assumption: physics takes place in *d* spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

• Macroscopic objects can be subjected to SO(d) rotations.

2. Framework

An information-theoretic approach to space dimensionality and quantum theory.

Assumption: physics takes place in *d* spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

- Macroscopic objects can be subjected to SO(d) rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_R \quad (R \in SO(d))$ such that $\mathcal{M} \mapsto G_R(\mathcal{M})$.

2. Framework

Assumption: physics takes place in *d* spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

- Macroscopic objects can be subjected to SO(d) rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_R \quad (R \in SO(d))$ such that $\mathcal{M} \mapsto G_R(\mathcal{M})$.

2. Framework

An information-theoretic approach to space dimensionality and quantum theory.

Assumption: physics takes place in *d* spatial dimensions (+ time). All we consider happens locally + at rest \longrightarrow Euclidean space.

- Macroscopic objects can be subjected to SO(d) rotations.
- Rotation of measurement device \mathcal{M} : linear group representation $G_R \quad (R \in SO(d))$ such that $\mathcal{M} \mapsto G_R(\mathcal{M})$.

$$G_R(\mathcal{M})(\omega) = \mathcal{M}(G_R^*(\omega)).$$

There exist certain systems that behave like "binary units of direction info".

An information-theoretic approach to space dimensionality and quantum theory.

3. Postulates A+B

There exist certain systems that behave like "direction bits".

3. Postulates A+B

There exist certain systems that behave like "direction bits".

An information-theoretic approach to space dimensionality and quantum theory.

3. Postulates A+B

There exist certain systems that behave like "direction bits".

- Function of device depends only on "direction vector" $x \in \mathbb{R}^d$, |x| = 1.
- Resulting yes-probability: $\mathcal{M}_x(\omega)$.

An information-theoretic approach to space dimensionality and quantum theory.

3. Postulates A+B

There exist certain systems that behave like "direction bits".

3. Postulates A+B

 $\begin{array}{l} \displaystyle \underbrace{\text{Postulate A}}_{\text{OSTULATE A}} \text{ (rotations matter):} \\ \displaystyle \text{There exists a state } \omega \text{ and a} \\ \displaystyle \text{direction } x \in \mathbb{R}^d \text{ such that} \\ \displaystyle \mathcal{M}_x(\omega) = 1 \\ \displaystyle \text{but } \mathcal{M}_y(\omega) < 1 \text{ for all } y \neq x. \end{array}$

3. Postulates A+B

An information-theoretic approach to space dimensionality and quantum theory.

3. Postulates A+B

But: this watch carries lots of extra information!

An information-theoretic approach to space dimensionality and quantum theory.

But: this watch carries lots of extra information!

```
Postulate B (minimality):

If \omega and \omega' are states that attain

the same maximal yes-probability

\max_x \mathcal{M}_x(\omega) in the same

direction x, then \omega = \omega'.
```

3. Postulates A+B

But: this watch carries lots of extra information!

```
Postulate B (minimality):

If \omega and \omega' are states that attain

the same maximal yes-probability

\max_x \mathcal{M}_x(\omega) in the same

direction x, then \omega = \omega'.
```

• Interpretation: system carries information on direction *x* (and intensity) *and nothing else*.

3. F	ostu	lates /	A+B

3. Postulates A+B

spatial dimension

spatial dimension

Proof sketch:

- Postulate $A \Rightarrow$ for every $x \in \mathbb{R}^d$, |x| = 1, there is
 - a state ω_x such that $\mathcal{M}_x(\omega_x) = 1$, $\mathcal{M}_y(\omega_x) < 1$ if $y \neq x$.

3. Postulates A+B

spatial dimension

Proof sketch:

- Postulate A \Rightarrow for every $x \in \mathbb{R}^d$, |x| = 1, there is
 - a state ω_x such that $\mathcal{M}_x(\omega_x) = 1$, $\mathcal{M}_y(\omega_x) < 1$ if $y \neq x$.
- Maximally mixed state $\mu := \int_{SO(d)} \omega_{Rx} \, dR \Rightarrow G_R \mu = \mu.$
- Bloch vector: $\vec{\omega} := \omega \mu$. If y = Rx then $\vec{\omega}_y = G_R \vec{\omega}_x$.

 3. Postulates A+B

 An information-theoretic approach to space dimensionality and quantum theory.

spatial dimension

Proof sketch:

- Postulate A ⇒ for every x ∈ ℝ^d, |x| = 1, there is
 a state ω_x such that M_x(ω_x) = 1, M_y(ω_x) < 1 if y ≠ x.
- Maximally mixed state $\mu := \int_{SO(d)} \omega_{Rx} \, dR \Rightarrow G_R \mu = \mu.$
- Bloch vector: $\vec{\omega} := \omega \mu$. If y = Rx then $\vec{\omega}_y = G_R \vec{\omega}_x$.
- Group rep. theory: inner product such that $|\vec{\omega}_y| = 1$ for all y.
- Postulate B \Rightarrow every state can be written $\omega = \lambda \omega_x + (1 \lambda)\mu$.
- \Rightarrow D-dim. ball. Dimension counting \Rightarrow D=d.

3. Postulates A+B

spatial dimension

• This is a non-classical state space with *d* independent mutually complementary measurements.

spatial dimension

- This is a non-classical state space with *d* independent mutually complementary measurements.
- $R \mapsto G_R$ is a group automorphism, thus of the form $G_R = ORO^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_x = Ox$.

3. Postulates A+B

An information-theoretic approach to space dimensionality and quantum theory.

spatial dimension

- This is a non-classical state space with *d* independent mutually complementary measurements.
- $R \mapsto G_R$ is a group automorphism, thus of the form $G_R = ORO^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_x = Ox$.

Wants to measure $\angle(x,y)$, has no geometric tools at all,

spatial dimension

- This is a non-classical state space with *d* independent mutually complementary measurements.
- $R \mapsto G_R$ is a group automorphism, thus of the form $G_R = ORO^{-1}$ \Rightarrow there is orthogonal matrix O such that $\vec{\omega}_x = Ox$.

Wants to measure $\angle(x, y)$, has no geometric tools at all, but *lots* of other preparation / measurement devices lying around.

An information-theoretic approach to space dimensionality and quantum theory. M. Müller*, LI. Masanes

Wants to measure $\angle(x, y)$, has no geometric tools at all, but *lots* of other preparation / measurement devices lying around.

PERIMETER INSTITUTE

An information-theoretic approach to space dimensionality and quantum theory.

<u>Protocol</u>: • Select *d* preparations $\omega_1, \ldots, \omega_d$ with lin. independent Bloch vectors $\vec{\omega}_1, \ldots, \vec{\omega}_d$ (otherwise protocol will fail).

Wants to measure $\angle(x, y)$, has no geometric tools at all, but *lots* of other preparation / measurement devices lying around.

An information-theoretic approach to space dimensionality and quantum theory.

Protocol: • Select *d* preparations $\omega_1, \ldots, \omega_d$ with lin. independent Bloch vectors $\vec{\omega}_1, \ldots, \vec{\omega}_d$ (otherwise protocol will fail).

- By trial+error, find $\mathcal{M}_1, \ldots, \mathcal{M}_d$ with $\mathcal{M}_i(\omega_i) \approx 1$.
- Using $\mathcal{M}_i(\omega_j) \approx c + (1-c) \langle \vec{\omega}_i, \vec{\omega}_j \rangle$, determine the matrix $X_{ij} := \langle \vec{\omega}_i, \vec{\omega}_j \rangle$. Compute solution to $S^T S = X$.

Wants to measure $\angle(x, y)$, has no geometric tools at all, but *lots* of other preparation / measurement devices lying around.

- **Protocol:** Select *d* preparations $\omega_1, \ldots, \omega_d$ with lin. independent Bloch vectors $\vec{\omega}_1, \ldots, \vec{\omega}_d$ (otherwise protocol will fail).
 - By trial+error, find $\mathcal{M}_1, \ldots, \mathcal{M}_d$ with $\mathcal{M}_i(\omega_i) \approx 1$.
 - Using $\mathcal{M}_i(\omega_j) \approx c + (1-c) \langle \vec{\omega}_i, \vec{\omega}_j \rangle$, determine the matrix $X_{ij} := \langle \vec{\omega}_i, \vec{\omega}_j \rangle$. Compute solution to $S^T S = X$.
 - Columns of S give rep. of $\vec{\omega}_1, \ldots, \vec{\omega}_d$ in some ONB.
 - From $\mathcal{M}_x(\omega_i)$ and $\mathcal{M}_y(\omega_i)$ obtain rep. of $\vec{\omega}_x$ and $\vec{\omega}_y$ in ONB.Then $\angle(x, y) = \angle(\vec{\omega}_x, \vec{\omega}_y)$.

So far: due to symmetry, measurements characterized by vector $x \in \mathbb{R}^d, \ |x| = 1.$

An information-theoretic approach to space dimensionality and quantum theory.

3. Postulates A+B

Mag and the figure

So far: due to symmetry, measurements

characterized by vector $x \in \mathbb{R}^d$, |x| = 1.

For $d \ge 3$:what if device does not have this symmetry? Orientation characterized by matrix $X \in SO(d)$.

3. Postulates A+B

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Theorem: The analogs of Postulates A+B (for "orientation" instead of "direction") do not have any solution.

3. Postulates A+B

For d > 3 :what if device does not have this symmetry? Orientation characterized by matrix $X \in SO(d)$.

So far: due to symmetry, measurements

characterized by vector $x \in \mathbb{R}^d$, |x| = 1.

For $d \ge 3$:what if device does not have this symmetry? Orientation characterized by matrix $X \in SO(d)$.

Theorem: The analogs of Postulates A+B (for "orientation" instead of "direction") do not have any solution.

<u>Proof</u>: State space would again be a unit ball. Pure states: $\{\omega_X\}_{X \in SO(d)}$ But SO(d) is not simply connected, and the sphere is.

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

4. Postulate C

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

Postulate C (interaction): On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\{T_t^{AB}\}_{t\in\mathbb{R}}$ which is not a product of local transformations, $T_t^{AB} \neq T_t^A T_t^B$.

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

4. Postulate C

4. Postulate C

Our final postulate says that two direction bits can interact via some continuous reversible time evolution:

Postulate C (interaction): On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\{T_t^{AB}\}_{t\in\mathbb{R}}$ which is not a product of local transformations, $T_t^{AB} \neq T_t^A T_t^B$.

Some standard assumptions on composite state space AB:

• Contains "product states" $\omega^A \omega^B$.

An information-theoretic approach to space dimensionality and quantum theory.

4. Postulate C
4. Postulate C

Postulate C (interaction): On the joint state space of two direction bits A and B, there is a continuous one-parameter group of transformations $\{T_t^{AB}\}_{t\in\mathbb{R}}$ which is not a product of local transformations, $T_t^{AB} \neq T_t^A T_t^B$.

Some standard assumptions on composite state space AB:

- Contains "product states" $\omega^A \omega^B$.
- Allows for "product measurements" $\mathcal{M}^A \mathcal{M}^B$:

$$\mathcal{M}^{A}\mathcal{M}^{B}(\omega^{A}\omega^{B}) = \mathcal{M}^{A}(\omega^{A}) \cdot \mathcal{M}^{B}(\omega^{B}).$$

An information-theoretic approach to space dimensionality and quantum theory.

 ω^A

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

- We know what happens locally: $\omega^A \mapsto G_R \omega^A$.
- Thus, it's clear for product states: $\omega^A \omega^B \mapsto (G_R \omega^A) (G_R \omega^B)$.

An information-theoretic approach to space dimensionality and quantum theory.

- We know what happens locally: $\omega^A \mapsto G_R \omega^A$.
- Thus, it's clear for product states: $\omega^A \omega^B \mapsto (G_R \omega^A) (G_R \omega^B)$.

Assumption: The product states span the composite state space.

An information-theoretic approach to space dimensionality and quantum theory.

- We know what happens locally: $\omega^A \mapsto G_R \omega^A$.
- Thus, it's clear for product states: $\omega^A \omega^B \mapsto (G_R \omega^A) (G_R \omega^B)$.

Assumption: The product states span the composite state space.

- True for classical prob. theory, quantum theory, almost all other convex theories studied so far.
- Equivalent to "tomographic locality": global states are uniquely determined by probabilities of local measurements and their correlations.

4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.

- We know what happens locally: $\omega^A \mapsto G_R \omega^A$.
- Thus, it's clear for product states: $\omega^A \omega^B \mapsto (G_R \omega^A) (G_R \omega^B)$.

Assumption: The product states span the composite state space.

- True for classical prob. theory, quantum theory, almost all other convex theories studied so far.
- Equivalent to "tomographic locality": global states are uniquely determined by probabilities of local measurements and their correlations.

4. Postulate C

• Allows to represent product states via tensor product:

 $\omega^A \omega^B = \omega^A \otimes \omega^B. \qquad \qquad \omega^{AB} \mapsto G_R \otimes G_R(\omega^{AB}).$

An information-theoretic approach to space dimensionality and quantum theory.

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

• Consider global Lie group \mathcal{G}^{AB} generated by $\{T^{AB}_t\}_{t\in\mathbb{R}}$ and $G^A\otimes G^B$.

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

- Consider global Lie group \mathcal{G}^{AB} generated by $\{T^{AB}_t\}_{t\in\mathbb{R}}$ and $G^A\otimes G^B$.
- Global Lie algebra element $X \in \mathfrak{g}^{AB}$, then

 $\mathcal{M}_x \otimes \mathcal{M}_y \left(e^{tX} (\omega_x \otimes \omega_y) \right) \in [0, 1].$

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

- Consider global Lie group \mathcal{G}^{AB} generated by $\{T^{AB}_t\}_{t\in\mathbb{R}}$ and $G^A\otimes G^B$.
- Global Lie algebra element $X \in \mathfrak{g}^{AB}$, then

 $\mathcal{M}_x \otimes \mathcal{M}_y \left(e^{tX} (\omega_x \otimes \omega_y) \right) \in [0, 1].$

- But this equals 1 for t = 0, thus
 - $\mathcal{M}_x \otimes \mathcal{M}_y \, X \, \omega_x \otimes \omega_y = 0,$
 - $\mathcal{M}_x \otimes \mathcal{M}_y X^2 \omega_x \otimes \omega_y \leq 0.$

4. Postulate CAn information-theoretic approach to space dimensionality and quantum theory.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

- We get several constraints on $X \in \mathfrak{g}^{AB}$:
 - $\mathcal{M}_x \otimes \mathcal{M}_y X \omega_x \otimes \omega_y = 0,$
 - $\mathcal{M}_x \otimes \mathcal{M}_y X^2 \omega_x \otimes \omega_y \leq 0, \qquad \dots$

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

• We get several constraints on $X \in \mathfrak{g}^{AB}$: $\mathcal{M}_x \otimes \mathcal{M}_y X \omega_x \otimes \omega_y = 0,$ $\mathcal{M}_x \otimes \mathcal{M}_y X^2 \omega_x \otimes \omega_y \leq 0, \ldots$

If d ≠ 3, the only X satisfying them all are of the form X = X^A + X^B with local rotation generators X^A, X^B.
 These generate non-interacting dynamics.

4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: 1111.4060)

• We get several constraints on $X \in \mathfrak{g}^{AB}$: $\mathcal{M}_x \otimes \mathcal{M}_y X \omega_x \otimes \omega_y = 0,$ $\mathcal{M}_x \otimes \mathcal{M}_y X^2 \omega_x \otimes \omega_y \leq 0, \ldots$

If d ≠ 3, the only X satisfying them all are of the form X = X^A + X^B with local rotation generators X^A, X^B.
 These generate non-interacting dynamics.

4. Postulate C

• For $d \ge 3$, evaluating constraints involves integrals like $X \mapsto \int_{SO(d-1)} G^A \otimes \mathbf{1}^B X (G^A)^{-1} \otimes \mathbf{1}^B dG^A.$

This behaves very differently if SO(d-1) is Abelian, i.e. iff d=3.

An information-theoretic approach to space dimensionality and quantum theory.

	4. Postulate C			
An information-theoretic approach to space dimensionality and quantum theory.		M. Müller*, Ll. Masanes	PERIMETER IN FOR THEORETICA	ISTIT

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

• We have d=3. Embed the 3-ball in the unit trace matrices of $\mathbb{C}_{s,a}^{2\times 2}$

$$(r_1, r_2, r_3) \mapsto \begin{pmatrix} \frac{1}{2} + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & \frac{1}{2} - r_3 \end{pmatrix}$$

• Thus, global states will be unit trace matrices in $\mathbb{C}_{s,a}^{2\times 2} \otimes \mathbb{C}_{s,a}^{2\times 2} = \mathbb{C}_{s,a}^{4\times 4}$

4. Postulate C

An information-theoretic approach to space dimensionality and quantum theory.

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

• We have d=3. Embed the 3-ball in the unit trace matrices of $\mathbb{C}_{s.a.}^{2\times 2}$

$$(r_1, r_2, r_3) \mapsto \begin{pmatrix} \frac{1}{2} + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & \frac{1}{2} - r_3 \end{pmatrix}$$

- Thus, global states will be unit trace matrices in $\mathbb{C}^{2\times 2}_{s,a} \otimes \mathbb{C}^{2\times 2}_{s,a} = \mathbb{C}^{4\times 4}_{s,a}$
- Now some $X \neq X^A + X^B$ satisfy constraints. But they all generate maps of the form $e^{tX}(\rho) = U\rho U^{\dagger}$ with $U \in SU(4)$.

An information-theoretic approach to space dimensionality and quantum theory.

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

• We have at least one entangling unitary (Postulate C) and all local unitaries (rotations). This generates all unitaries!

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv: 1110.5482)

- We have at least one entangling unitary (Postulate C) and all local unitaries (rotations). This generates all unitaries!
- But these generate all 4-level quantum states.
- If there were additional states, these would generate negative probabilities.

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

Attempt to clarify the relationship between spatial geometry and the qubit (based on old ideas & new techniques):

Attempt to clarify the relationship between spatial geometry and the qubit (based on old ideas & new techniques):

- Start with d spatial dimensions, not assuming quantum theory.
- Three "information-theoretic" postulates on the relation between spatial geometry (rotations) and probability
- Proof that these determine d=3 and quantum theory on 2 bits.

5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.

What does that mean? We don't know...

An information-theoretic approach to space dimensionality and quantum theory. M. Müller*, Ll. Masanes

What does that mean? We don't know...

• The "neat" behaviour of a Stern-Gerlach device is only possible in *d*=3 dimensions.

An information-theoretic approach to space dimensionality and quantum theory.

What does that mean? We don't know...

• The "neat" behaviour of a Stern-Gerlach device is only possible in d=3 dimensions.

• It is interesting to consider generalizations of quantum theory in the context of fundamental physics.

An information-theoretic approach to space dimensionality and quantum theory.

What does that mean? We don't know...

• The "neat" behaviour of a Stern-Gerlach device is only possible in d=3 dimensions.

- It is interesting to consider generalizations of quantum theory in the context of fundamental physics.
- Possible (relativistic) generalizations of the result?

5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.

What does that mean? We don't know...

• The "neat" behaviour of a Stern-Gerlach device is only possible in d=3 dimensions.

- It is interesting to consider generalizations of quantum theory in the context of fundamental physics.
- Possible (relativistic) generalizations of the result?
- Speculation: do space(-time) and quantum theory have a common information-theoretic origin?

5. Conclusions

An information-theoretic approach to space dimensionality and quantum theory.

Thank you to Lucien Hardy, Lee Smolin; my co-authors; Danny Terno, FJ Schmitt, Hilary Carteret, Mauro d'Ariano, Raymond Lal, Tobias Fritz, ...

An information-theoretic approach to space dimensionality and quantum theory.

M. Müller*, Ll. Masanes

5. Conclusions

Thank you to Lucien Hardy, Lee Smolin; my co-authors; Danny Terno, FJ Schmitt, Hilary Carteret, Mauro d'Ariano, Raymond Lal, Tobias Fritz, ...

- introduction to convex probabilistic theories: J. Barrett, arXiv:quant-ph/0508211
- ruling out $d \neq 3$:

Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060

- d=3 implies quantum theory:
 G. de la Torra, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482
- results of this talk: MM, LI. Masanes, arXiv:hopefully.soon

An information-theoretic approach to space dimensionality and quantum theory.

