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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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IF • Alice and Bob can accomplish this task
• with “minimal overhead“ and
• with interacting information carriers
• that allow for global coordinate transformations
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THEN • automatically d=3 and
• quantum theory holds for information carriers 
(entanglement, unitary time evolution, complementarity, ...)

IF • Alice and Bob can accomplish this task
• with “minimal overhead“ and
• with interacting information carriers
• that allow for global coordinate transformations

Our result: task for Alice and Bob in d spatial dimensions:
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State space of quantum 2-level system is a 3D Euclidean ball:

© Nielsen, Chuang

Bloch ball
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Carl-Friedrich von Weizsäcker: theory of “ur alternatives“ (1955+)

• “ur“ = (pure) qubit = quantum 2-level system
• everything is composed of (delocalized) urs
• symmetry group of ur

becomes global symmetry group of universe.
U(2) = SU(2)⊗ U(1) ∼ S3 × S1.

space (?!) time (replaced by     )R1
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Overview

Carl-Friedrich von Weizsäcker: theory of “ur alternatives“ (1955+)

• “ur“ = (pure) qubit = quantum 2-level system
• everything is composed of (delocalized) urs
• symmetry group of ur

becomes global symmetry group of universe.
U(2) = SU(2)⊗ U(1) ∼ S3 × S1.

space (?!) time (replaced by     )R1

Vague. What does this mean?
How is decomposition into delocalized urs chosen?
Why bits, not trits?
Mathematically not rigorous, conceptually unclear.
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• Physical systems can be in some state ω. From this, all outcome
probabilities of all subsequent events can be computed:

Prob(outcome ”yes” | meas. M on state ω) =: M(ω).

ω M

• Statistical mixtures are described by convex combinations:
  prepare ω with prob. p and state φ with prob. (1-p), result:

pω+(1− p)ϕ
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ω M

M
M(pω + (1− p)ϕ) = pM(ω) + (1− p)M(ϕ).

• State space Ω = set of all possible states ω.
  Convex, compact, finite-dimensional.
  Otherwise arbitrary.

Extremal points are called pure, others mixed.
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Some examples:

• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).
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• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).

a), b), c): classical 2-, 3-, 4-level systems.

• d): quantum 2-level system (qubit)
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complementarity/
uncertainty
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• They form a compact (maybe finite) group
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• T acts on states ↔ T* acts on measurements: 
M(T (ω)) ≡ T ∗(M)(ω).

ρ �→ UρU †.
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3. The task

Goal: Alice wants to send a spatial direction                             to Bob.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the
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tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

Background: • Alice and Bob live in d-dimensional space.
• There is a well-defined way to transport a vector
  from Alice to Bob.
• Alice and Bob don‘t share a common coordinate
  system: can‘t just tell coordinates on the phone!



3. The task

3. The task

Main tool: Bob holds a measurement device that is affected by rotations.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

4

certainty renders the outcome of measurement N com-

pletely undetermined.

On the other hand, the square state space does

not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-

tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-
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rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-
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allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.
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We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

Prob. to obtain i-th
outcome, if measured
in direction x
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In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-
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FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

Prob. to obtain i-th
outcome, if measured
in direction x

“Heisenberg picture“: Rotation R takes          toM(i)
x M(i)

Rx.
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standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

Prob. to obtain i-th
outcome, if measured
in direction x

“Heisenberg picture“: Rotation R takes          toM(i)
x M(i)

Rx.

“Schrödinger picture“: Rotation R takes     to              (reversible transf.!)GR−1ωω

Rep. of SO(d)
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certainty renders the outcome of measurement N com-
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not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-
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ciple, as shown in the last part of Fig. 3g), state spaces
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sion, differing in many information-theoretic properties

like uncertainty relations [21].
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have to specify which ones are possible and which ones

are not.
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III. SINGLE SYSTEMS: POSTULATES 1 AND 2
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naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-
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which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

Prob. to obtain i-th
outcome, if measured
in direction x

“Heisenberg picture“: Rotation R takes          toM(i)
x M(i)

Rx.

“Schrödinger picture“: Rotation R takes     to              (reversible transf.!)GR−1ωω

Rep. of SO(d)

M(i)
x (ω) �= M(i)

Rx(ω)



3. The task

Goal: Alice wants to send a spatial direction                             to Bob.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

3. The task
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

General setup: • Alice encodes x into some state ω(x).
• She transmits many copies of the state to Bob.
• Bob measures in different directions, getting statistics...
• ... estimating x in the limit of ∞ many copies.

3. The task
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

General setup: • Alice encodes x into some state ω(x).
• She transmits many copies of the state to Bob.
• Bob measures in different directions, getting statistics...
• ... estimating x in the limit of ∞ many copies.

3. The task
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

General setup: • Alice encodes x into some state ω(x).
• She transmits many copies of the state to Bob.
• Bob measures in different directions, getting statistics...
• ... estimating x in the limit of ∞ many copies.

3. The task

d = 3, y �→ M(2)
y (ω)
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted
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measurement outcome statistics will be exactly as pre-
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run, the fraction of runs that yield the i-th outcome will
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(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

x ∈ Rd, |x| = 1,

General setup: • Alice encodes x into some state ω(x).
• She transmits many copies of the state to Bob.
• Bob measures in different directions, getting statistics...
• ... estimating x in the limit of ∞ many copies.

3. The task

d = 3, y �→ M(2)
y (ω)

xestimate
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• for what state spaces 

can this task be accomplished
in a “nice“ way?

with minimal
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satisfying basic
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

3. The task
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry(ω). Now suppose that instead

of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
Our postulate now says that this is the only freedom

that Alice has to encode her state – a fixed amount of
white noise is the only information that she can addi-
tionally send to Bob. If this was not true – i.e. if there
were two “equally noiseless” states ω �= ω� which both en-
code the same direction x ∈ Rd – then Alice could send
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-
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a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed
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Any d-dimensional rotation R ∈ SO(d) transforms a
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the outcome probabilities of a possible subsequent mea-
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(consisting of the device and the direction bit) back via
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Trivial solution (d=2): Alice
sends (stopped) wristwatch.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main
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(ω) with high probability due to the law
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state ω.
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the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry

(ω). Now suppose that instead
of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding some amount of uniform noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with
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state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will
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Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
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(ω). Now suppose that instead
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state must have changed as well, from ω to another state
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tional information that can be read out in measurements.
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mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
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rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-
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tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
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it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding some amount of uniform noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

3. The task

ω,ω� encode same vector x ∈ Rd ⇒
ω� = (1− λ)ω + λµ or vice versa

“uniform noise“ state: M(i)
x (µ) = M(i)

y (µ) ∀x, y.
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry

(ω). Now suppose that instead
of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding some amount of uniform noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.



3. The task

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry

(ω). Now suppose that instead
of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding some amount of uniform noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].
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a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

3. The task

IF a state space allows any protocol satisfying
Postulates 1 and 2,

THEN the following standard protocol works, too
(for some i):
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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3. The task

IF a state space allows any protocol satisfying
Postulates 1 and 2,

THEN the following standard protocol works, too
(for some i):

• Alice encodes x in some clever state ω, and
• Bob guesses the y where                                                is maximal.Ly(ω) := M(i)

y (ω)−M(i)
−y(ω)
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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looks like spin-1/2-
expectation value!
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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3. The task

• Alice encodes x in some clever state ω, and
• Bob guesses the y where                                                is maximal.Ly(ω) := M(i)

y (ω)−M(i)
−y(ω)

If ω and ω‘ have same maximizer y and same
⇒ both encode same state x=y and are equally noisy

Postulate 2    ⇒    ω= ω‘.

Ly(ω) = Ly(ω
�)
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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work of convex state spaces.
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have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device
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measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry

(ω). Now suppose that instead
of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.

Ly(ω) = Ly(ω
�)

Consequence:
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state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=
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R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.

Consequence:
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input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-
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state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
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joint system again via R), hence it must be an element
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it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
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in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
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the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination
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where 0 ≤ λ < 1, and µ is any state such that M(i)
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constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
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measurements to estimate x to good accuracy, due to
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property that Lx(ωx) ≥ Lx(ω�
(x)) for all other code-

words ω�
(x). The codewords for different directions are

related by rotations: if y = Rx for R ∈ SO(d), then

ωy = GRωx. Furthermore, there is a constant 0 < a ≤ 1

such that Ly(ωy) = a for all y; we call a the direction

bit’s visibility parameter.
Given ωx, we can define a particular type of “white

noise” state which we call the maximally mixed state µ:

µ :=

�

R∈SO(d)
GRωx dR =

�

R∈SO(d)
ωRx dR.

Since all ωy are related by rotations, µ is independent of

the initial choice of x. Since this is an integral over the

invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the interval

(0, 1). Thus, ω�
:= λωx + (1 − λ)µ is a valid state, and

it is easy to see that it is also a codeword for x. But

Lx(ω�
) = Lx(ω), and so Postulate 2 implies that ω = ω�

.

Since every state can be approximated arbitrarily well by

some codeword, we have proven that every state ω can be
written in the form ω = λωx+(1−λ)µ for some direction
x, where 0 ≤ λ ≤ 1.

Thus, by convex combinations and topological closure,

we can construct µ and all further states ω from the states

of the form ωx, with x some direction. It follows that all

pure states can be found among the ωx. Since all states

of this form are connected by transformations GR, and

reversible transformations map pure states to pure states,

they must all be pure. We have thus identified that the

ωx are the pure states of the direction bit state space Ωd.

We can reparametrize the state space Ωd by a map

φ : RD → RD
, if D is the dimension of Ωd, as long as φ is

affine, i.e. preserves probabilistic mixtures. We now de-

fine a reparametrization, by first setting M(ω) := ω− µ,

and G̃R := M ◦GR◦M−1
for R ∈ SO(d). Both M and all

G̃R are affine maps; moreover, G̃R(0) = 0, hence G̃R is a

linear map, or aD×D-matrix. Define the positive matrix

X > 0 by X :=
�
R∈SO(d) G̃

T

R
G̃R dR, then G̃T

S
XG̃S = X

for all S ∈ SO(d). Now we set φ(ω) := α
√
X(ω − µ),

where α > 0 is a constant that we will determine later.

Let �·, ·� denote the standard inner product on RD
, and

let x and y be directions, and R ∈ SO(d) a rotation with

y = Rx. Abbreviate ω̂ := φ(ω). Then

�ω̂y, ω̂y� = α2�
√
X(ωy − µ),

√
X(ωy − µ)�

= α2�ωy − µ,X(ωy − µ)�
= α2�G̃R(ωx − µ), XG̃R(ωx − µ)�
= �ω̂x, ω̂x�.

Hence, by choosing α > 0 appropriately, we achieve that

the Euclidean norm satisfies |ω̂x| = 1 for all directions x.

Thus, by reparametrizing ω �→ ω̂, we have found a rep-

resentation of the direction bit state space Ω̂d such that

all states ω̂x lie on the unit sphere, µ̂ = 0 is the center,

and every state is a mixture of µ̂ and some ω̂x – that is,

Ω̂d is a compact convex subset of the D-dimensional unit

ball, as indicated in Fig. 5.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Result 1: The state space of a direction bit is a

d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from
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cal reasons, we assume that the outcome probabilities

M(i)
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Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry

(ω). Now suppose that instead
of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

Every state ω can be written in the form

ω = λωx + (1− λ)µ,

where ωx is a pure state encoding some direction x, and
µ is the maximally mixed state µ=

�
R∈SO(d) GRωx dR.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
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(x)) for all other code-

words ω�
(x). The codewords for different directions are

related by rotations: if y = Rx for R ∈ SO(d), then

ωy = GRωx. Furthermore, there is a constant 0 < a ≤ 1

such that Ly(ωy) = a for all y; we call a the direction

bit’s visibility parameter.
Given ωx, we can define a particular type of “white

noise” state which we call the maximally mixed state µ:

µ :=

�

R∈SO(d)
GRωx dR =

�

R∈SO(d)
ωRx dR.

Since all ωy are related by rotations, µ is independent of

the initial choice of x. Since this is an integral over the

invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the interval

(0, 1). Thus, ω�
:= λωx + (1 − λ)µ is a valid state, and

it is easy to see that it is also a codeword for x. But

Lx(ω�
) = Lx(ω), and so Postulate 2 implies that ω = ω�

.

Since every state can be approximated arbitrarily well by

some codeword, we have proven that every state ω can be
written in the form ω = λωx+(1−λ)µ for some direction
x, where 0 ≤ λ ≤ 1.

Thus, by convex combinations and topological closure,

we can construct µ and all further states ω from the states

of the form ωx, with x some direction. It follows that all

pure states can be found among the ωx. Since all states

of this form are connected by transformations GR, and

reversible transformations map pure states to pure states,

they must all be pure. We have thus identified that the

ωx are the pure states of the direction bit state space Ωd.

We can reparametrize the state space Ωd by a map

φ : RD → RD
, if D is the dimension of Ωd, as long as φ is

affine, i.e. preserves probabilistic mixtures. We now de-

fine a reparametrization, by first setting M(ω) := ω− µ,

and G̃R := M ◦GR◦M−1
for R ∈ SO(d). Both M and all

G̃R are affine maps; moreover, G̃R(0) = 0, hence G̃R is a

linear map, or aD×D-matrix. Define the positive matrix

X > 0 by X :=
�
R∈SO(d) G̃

T

R
G̃R dR, then G̃T

S
XG̃S = X

for all S ∈ SO(d). Now we set φ(ω) := α
√
X(ω − µ),

where α > 0 is a constant that we will determine later.

Let �·, ·� denote the standard inner product on RD
, and

let x and y be directions, and R ∈ SO(d) a rotation with

y = Rx. Abbreviate ω̂ := φ(ω). Then

�ω̂y, ω̂y� = α2�
√
X(ωy − µ),

√
X(ωy − µ)�

= α2�ωy − µ,X(ωy − µ)�
= α2�G̃R(ωx − µ), XG̃R(ωx − µ)�
= �ω̂x, ω̂x�.

Hence, by choosing α > 0 appropriately, we achieve that

the Euclidean norm satisfies |ω̂x| = 1 for all directions x.

Thus, by reparametrizing ω �→ ω̂, we have found a rep-

resentation of the direction bit state space Ω̂d such that

all states ω̂x lie on the unit sphere, µ̂ = 0 is the center,

and every state is a mixture of µ̂ and some ω̂x – that is,

Ω̂d is a compact convex subset of the D-dimensional unit

ball, as indicated in Fig. 5.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Result 1: The state space of a direction bit is a

d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

Only possible if state space
is the full ball.
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tion bit state space Ω̂d is a compact convex subset of a unit
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there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction
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such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1: The state space of a direction bit is

a d-dimensional unit ball, and it holds d �= 2.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-
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state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of
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Let �·, ·� denote the standard inner product on RD
, and
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resentation of the direction bit state space Ω̂d such that

all states ω̂x lie on the unit sphere, µ̂ = 0 is the center,

and every state is a mixture of µ̂ and some ω̂x – that is,

Ω̂d is a compact convex subset of the D-dimensional unit

ball, as indicated in Fig. 5.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1: The state space of a direction bit is

a d-dimensional unit ball, and it holds d �= 2.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

complementarity etc.!

bit (not trit)
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ωx are the pure states of the direction bit state space Ωd.

We can reparametrize the state space Ωd by a map

φ : RD → RD
, if D is the dimension of Ωd, as long as φ is

affine, i.e. preserves probabilistic mixtures. We now de-

fine a reparametrization, by first setting M(ω) := ω− µ,

and G̃R := M ◦GR◦M−1
for R ∈ SO(d). Both M and all

G̃R are affine maps; moreover, G̃R(0) = 0, hence G̃R is a

linear map, or aD×D-matrix. Define the positive matrix

X > 0 by X :=
�
R∈SO(d) G̃

T

R
G̃R dR, then G̃T

S
XG̃S = X

for all S ∈ SO(d). Now we set φ(ω) := α
√
X(ω − µ),

where α > 0 is a constant that we will determine later.

Let �·, ·� denote the standard inner product on RD
, and

let x and y be directions, and R ∈ SO(d) a rotation with

y = Rx. Abbreviate ω̂ := φ(ω). Then

�ω̂y, ω̂y� = α2�
√
X(ωy − µ),

√
X(ωy − µ)�

= α2�ωy − µ,X(ωy − µ)�
= α2�G̃R(ωx − µ), XG̃R(ωx − µ)�
= �ω̂x, ω̂x�.

Hence, by choosing α > 0 appropriately, we achieve that

the Euclidean norm satisfies |ω̂x| = 1 for all directions x.

Thus, by reparametrizing ω �→ ω̂, we have found a rep-

resentation of the direction bit state space Ω̂d such that

all states ω̂x lie on the unit sphere, µ̂ = 0 is the center,

and every state is a mixture of µ̂ and some ω̂x – that is,

Ω̂d is a compact convex subset of the D-dimensional unit

ball, as indicated in Fig. 5.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1: The state space of a direction bit is

a d-dimensional unit ball, and it holds d �= 2.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

[ Not all analogs of spin measurements may be
possible -- noisy ball. ]
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and every state is a mixture of µ̂ and some ω̂x – that is,
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there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1: The state space of a direction bit is

a d-dimensional unit ball, and it holds d �= 2.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [39–41]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

[ Not all analogs of spin measurements may be
possible -- noisy ball. ]

In our world: d=3, state space=qubit, Bob holds Stern-Gerlach device.

Why d=3? → need two more postulates.
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characterized by vector x ∈ Rd, |x| = 1.
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certainty renders the outcome of measurement N com-

pletely undetermined.

On the other hand, the square state space does

not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-

tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

3. The task



For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :
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not have any complementarity or uncertainty of this
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tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.
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dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.
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several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

3. The task



For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :

Theorem: The analogs of Postulates 1+2 (for “orientation“ 
instead of “direction“) do not have any solution.
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which can be rotated arbitrarily, i.e. can be subjected
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SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall
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3. The task



So far: due to symmetry, measurements
characterized by vector x ∈ Rd, |x| = 1.

For            what if device does not have this symmetry?
Orientation characterized by matrix X ∈ SO(d).

d ≥ 3 :

Proof: State space would again be a unit ball. Pure states:
But SO(d) is not simply connected, and the sphere is.

{ωX}X∈SO(d)
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unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

3. The task
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Two direction bits should be able to interact
via some continuous reversible time evolution:

Postulate 3 (interaction):
On the joint state space of two direction bits A 
and B, there is a continuous one-parameter 
group of transformations                 which is not
a product of local transformations,

{TAB
t }t∈R

TAB
t �= TA

t TB
t .
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4. Postulates 3+4

Postulate 4 (global coordinate transf.):
Given any rotation R, there is a unique linear map on AB 
which acts as R on both subsystems individually.

• We know what happens locally: ωA �→ GRωA.

• Thus, it‘s clear for product states: ωAωB �→ (GRωA)(GRωB).

• ⇒ Postulate 4 is equivalent to: product states span all of AB.

“Local tomography“

ωAωB = ωA ⊗ ωB . ωAB �→ GR ⊗GR(ωAB).
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Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

• Consider global Lie group          generated by                   andGAB {TAB
t }t∈R GA ⊗GB .
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• Consider global Lie group          generated by                   andGAB {TAB
t }t∈R GA ⊗GB .

• Global Lie algebra element                  thenX ∈ gAB ,

Mx ⊗My

�
etX(ωx ⊗ ωy)

�
∈ [0, 1].
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Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

• Consider global Lie group          generated by                   andGAB {TAB
t }t∈R GA ⊗GB .

• Global Lie algebra element                  thenX ∈ gAB ,

Mx ⊗My

�
etX(ωx ⊗ ωy)

�
∈ [0, 1].

• But this equals    for            thus

Mx ⊗My X ωx ⊗ ωy = 0,

Mx ⊗My X
2 ωx ⊗ ωy ≤ 0.

1 t = 0,

�0.6 �0.4 �0.2 0.0 0.2

0.2

0.4

0.6

0.8

1.0

t
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Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)
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Theorem: From Postulates 1-4 it follows that d=3.

• We get several constraints on X ∈ gAB :

• If              the only X satisfying them all are of the form
   with local rotation generators

X = XA +XBd �= 3,
XA, XB .

These generate non-interacting dynamics.

Proof idea (Ll. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv:1111.4060)

Mx ⊗MyXωx ⊗ ωy = 0,

Mx ⊗MyX
2ωx ⊗ ωy ≤ 0, . . .

• For             evaluating constraints involves integrals liked ≥ 3,

X �→
�

SO(d−1)
GA ⊗ 1BX(GA)−1 ⊗ 1B dGA.

This behaves very differently if SO(d-1) is Abelian, i.e. iff d=3.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes



4. Postulates 3+4

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes



4. Postulates 3+4

ρ �→ U(t)ρU(t)†.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

Theorem: From Postulates 1-4, it follows that the state 
space of two direction bits is 2-qubit quantum state space 
(i.e. the set of 4x4 density matrices), and time evolution is 
given by a one-parameter group of unitaries,



4. Postulates 3+4

ρ �→ U(t)ρU(t)†.

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482)

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

Theorem: From Postulates 1-4, it follows that the state 
space of two direction bits is 2-qubit quantum state space 
(i.e. the set of 4x4 density matrices), and time evolution is 
given by a one-parameter group of unitaries,



4. Postulates 3+4
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Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482)

• We have d=3. Embed the 3-ball in the unit trace matrices of C2×2
s.a.

(r1, r2, r3) �→
�

1
2 + r3 r1 − ir2
r1 + ir2

1
2 − r3

�
.

• Thus, global states will be unit trace matrices in C2×2
s.a. ⊗ C2×2

s.a. = C4×4
s.a.
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• We have d=3. Embed the 3-ball in the unit trace matrices of C2×2
s.a.

(r1, r2, r3) �→
�

1
2 + r3 r1 − ir2
r1 + ir2

1
2 − r3

�
.

• Thus, global states will be unit trace matrices in C2×2
s.a. ⊗ C2×2

s.a. = C4×4
s.a.

• Now some                           satisfy constraints. But they all generateX �= XA +XB

maps of the form                              with U ∈ SU(4).etX(ρ) = UρU †
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4. Postulates 3+4

Theorem: From Postulates 1-4, it follows that the state 
space of two direction bits is 2-qubit quantum state space 
(i.e. the set of 4x4 density matrices), and time evolution is 
given by a one-parameter group of unitaries,

ρ �→ U(t)ρU(t)†.

Proof idea (G. de la Torre, Ll. Masanes, A. J. Short, MM, arXiv:1110.5482)

• We have at least one entangling unitary (Postulate 3) and all local
   unitaries (rotations). This generates all unitaries!

• But these generate all 4-level quantum states. 

• If there were additional states, these would generate
   negative probabilities.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Attempt to clarify relationship between geometry and the qubit
(still clumsy - first step only):
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Attempt to clarify relationship between geometry and the qubit
(still clumsy - first step only):

• Four “information-theoretic“ postulates on the relation
  between spatial geometry (rotations) and probability

• Start with d spatial dimensions, not assuming quantum theory.

• Proof that these determine d=3 and quantum theory on 2 bits.
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d=3 implies quantum theory:
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