Undecidability in quantum measurements

Markus Müller

Perimeter Institute for Theoretical Physics,Waterloo (Canada)

Joint work with Jens Eisert
\& Christian Gogolin
(FU Berlin)
arXiv: I I I I. 3965

Outline

I. Motivation / undecidability in general

2. The "measurement occurrence problem"
3. Undecidability of the quantum problem

4. Decidability of the classical problem
5. Outlook

I. Motivation / undecidability in general

Quantum computers are believed to be more powerful than classical computers (Shor's algorithm, ...).

I. Motivation / undecidability in general

Quantum computers are believed to be more powerful than classical computers (Shor's algorithm, ...).

- Original idea (Feynman '8I): it is inherently more difficult to simulate quantum systems than classical systems.

I. Motivation / undecidability in general

Quantum computers are believed to be more powerful than classical computers (Shor's algorithm, ...).

- Original idea (Feynman '8I): it is inherently more difficult to simulate quantum systems than classical systems.
- Quantum complexity theory. Example:The 2-local Hamiltonian problem. Given $a<b$, and

$$
H=\sum_{j=1}^{r} H_{j}
$$

where all H_{j} act on at most 2 qubits, $r,\left\|H_{j}\right\| \leq \operatorname{poly}(n)$, decide if the smallest eigenvalue is $<a$ or $>b$. This problem is QMA-complete.

I. Motivation / undecidability in general

This talk: Quantum problem which is not only hard, but undecidable, while the classical analog is decidable.

I. Motivation / undecidability in general

This talk: Quantum problem which is not only hard, but undecidable, while the classical analog is decidable.

No algorithm will solve the problem... ever!

Origin: the Halting Problem.

I. Motivation / undecidability in general

Fix a universal Turing machine which takes natural numbers $x \in \mathbb{N}$ as input.

Halting problem: Given input $x \in \mathbb{N}$, will the TM eventually halt on that input, or will it run forever?

I. Motivation / undecidability in general

Fix a universal Turing machine which takes natural numbers $x \in \mathbb{N}$ as input.

Halting problem: Given input $x \in \mathbb{N}$, will the
 TM eventually halt on that input, or will it run forever?

Alan Turing 1936:The halting problem is undecidable. That is, there is no single algorithm which, for every input x, decides in finite time whether the TM halts on input x or not.

I. Motivation / undecidability in general

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)=\left(a_{i j}\right)
$$

Matrix mortality problem: Given some finite set of integer matrices $\left\{M_{1}, \ldots, M_{k}\right\}$, is there any finite matrix product $M_{i_{1}} M_{i_{2}} \ldots M_{i_{n}}$ which equals the zero matrix?

I. Motivation / undecidability in general

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)=\left(a_{i j}\right)
$$

Matrix mortality problem: Given some finite set of integer matrices $\left\{M_{1}, \ldots, M_{k}\right\}$, is there any finite matrix product $M_{i_{1}} M_{i_{2}} \ldots M_{i_{n}}$ which equals the zero matrix?

Paterson 1970; Halava, Harju 2001:The matrix mortality problem is undecidable, even for eight 3×3 integer matrices.

I. Motivation / undecidability in general

Inspiration: Michael M.Wolf,Toby S. Cubitt, David Perez-Garcia, Are problems in Quantum Information Theory (un)decidable?, arXiv:I I II. 5425

I. Motivation / undecidability in general

Inspiration: Michael M.Wolf,Toby S. Cubitt, David Perez-Garcia, Are problems in Quantum Information Theory (un)decidable?, arXiv:I I I I. 5425

Earlier works in similar spirit:

- V. Blondel, E. Jeandel, P. Koiran, and N. Portier, Decidable and undecidable problems about quantum automata, SIAM J Comp. 34, I464-I473 (2005).
- H. Derksen, E. Jeandel, and P. Koiran, Quantum automata and algebraic groups, J. Symb. Comp. 39, 357-37I (2005)
- M. Hirvensalo, Various aspects of finite quantum automata, Developments of Language Theory, vol. 5257, Lecture Notes in Computer Science, Springer (2008).

2.The "measurement occurrence problem"

The Setting

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

2.The "measurement occurrence problem"

The Quantum Setting

$\underset{\sim}{c}$

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \rho \geq 0, \operatorname{Tr} \rho=1$.
- Device: specified by K"Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{C}^{d \times d}$.

Normalization: $\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=\mathbf{1}$.

2.The "measurement occurrence problem"

The Quantum Setting

\cdots,

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \quad \rho \geq 0, \quad \operatorname{Tr} \rho=1$.
- Device: specified by K "Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{C}^{d \times d}$. Normalization: $\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=1$.
- Output: with prob. $r_{j}:=\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$, we get outcome j and output $\rho^{\prime}=A_{j} \rho A_{j}^{\dagger} / r_{j}$.
-Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)$

2.The "measurement occurrence problem"

The Quantum Setting

\cdots

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \quad \rho \geq 0, \quad \operatorname{Tr} \rho=1$.
- Device: specified by K "Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{C}^{d \times d}$. Normalization: $\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=1$.
- Output: with prob. $r_{j}:=\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$, we get outcome j and output $\rho^{\prime}=A_{j} \rho A_{j}^{\dagger} / r_{j}$.
-Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)$

2.The "measurement occurrence problem"

The Quantum Setting

Measurement occurrence problem: Is there a sequence $\left(j_{1}, \ldots, j_{n}\right)$. which never occurs (has prob. zero) even if ρ has full rank?

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \quad \rho \geq 0, \quad \operatorname{Tr} \rho=1$.
- Device: specified by K "Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{C}^{d \times d}$. Normalization: $\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=1$.
- Output: with prob. $r_{j}:=\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$, we get outcome j and output $\rho^{\prime}=A_{j} \rho A_{j}^{\dagger} / r_{j}$.
- Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)$

2.The "measurement occurrence problem"

The Quantum Setting

Measurement occurrence problem: Is there a sequence $\left(j_{1}, \ldots, j_{n}\right)$. which never occurs (has prob. zero) even if ρ has full rank?

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \quad \rho \geq 0, \quad \operatorname{Tr} \rho=1$.
- Device: specified by K "Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{Q}^{d \times d}$. Normalization: $\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=1$.
- Output: with prob. $r_{j}:=\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$, we get outcome j and output $\rho^{\prime}=A_{j} \rho A_{j}^{\dagger} / r_{j}$.
- Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)$

2.The "measurement occurrence problem"

The Quantum Setting

| | |
| :--- | :--- | :--- |

Measurement occurrence problem: Is there a sequence $\left(j_{1}, \ldots, j_{n}\right)$. which never occurs (has prob. zero) even if ρ has full rank?

- Input: quantum state $\rho \in \mathbb{C}^{d \times d}, \rho \geq 0, \operatorname{Tr} \rho=1$.
- Device: specified by K "Kraus operators" $\left\{A_{j}\right\}_{j=1}^{K} \subset \mathbb{Q}^{d \times d}$.

Normalization:

$$
\sum_{j=1}^{K} A_{j}^{\dagger} A_{j}=\mathbb{1}
$$

- Output: with prob. $r_{j}:=\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$, we get outcome j and output $\rho^{\prime}=A_{j} \rho A_{j}^{\dagger} / r_{j}$.
- Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)$

2.The "measurement occurrence problem"

The Quantum Setting

Quantum Measurement occurrence problem (QMOP): Given a description of a quantum measurement device in terms of K Kraus operators $A_{1}, \ldots, A_{K} \in \mathbb{Q}^{d \times d}$, decide whether there is any finite sequence j_{1}, \ldots, j_{n} which can never be observed, even if the input state has full rank.

2.The "measurement occurrence problem"

The Quantum Setting

Quantum Measurement occurrence problem (QMOP): Given a description of a quantum measurement device in terms of K Kraus operators $A_{1}, \ldots, A_{K} \in \mathbb{Q}^{d \times d}$, decide whether there is any finite sequence j_{1}, \ldots, j_{n} which can never be observed, regardless of the input state.

2.The "measurement occurrence problem"

The Setting

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

2.The "measurement occurrence problem"

The Classical Setting

\cdots,

- Input: probability distr. $p \in \mathbb{R}^{d}, p_{i} \geq 0, \sum_{i} p_{1}=1$.
- Device: K substochastic matrices $Q_{1}, \ldots, Q_{K} \in \mathbb{Q}^{d \times d}$, all entries non-negative. Normalization: $\sum_{j} Q_{j}=: Q$ is a stochastic matrix (the effective channel if outcome"forgotten").

2.The "measurement occurrence problem"

The Classical Setting

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

- Input: probability distr. $p \in \mathbb{R}^{d}, p_{i} \geq 0, \sum_{i} p_{1}=1$.
- Device: K substochastic matrices $Q_{1}, \ldots, Q_{K} \in \mathbb{Q}^{d \times d}$, all entries non-negative. Normalization: $\sum_{j} Q_{j}=: Q$ is a stochastic matrix (the effective channel if outcome"forgotten").
- Output: with prob. $r_{j}:=\sum_{i}\left(Q_{j} p\right)_{i}$, we get outcome j and output $p^{\prime}=Q_{j} p / r_{j}$.
-Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}$

2.The "measurement occurrence problem"

The Classical Setting

| | |
| :--- | :--- | :--- |

Many copies of the same measurement device. Output is repeatedly fed into device as input \rightarrow sequence of outcomes $\left(j_{1}, \ldots, j_{n}\right)$.

- Input: probability distr. $p \in \mathbb{R}^{d}, p_{i} \geq 0, \sum_{i} p_{1}=1$.
- Device: K substochastic matrices $Q_{1}, \ldots, Q_{K} \in \mathbb{Q}^{d \times d}$, all entries non-negative. Normalization: $\sum_{j} Q_{j}=: Q$ is a stochastic matrix (the effective channel if outcome"forgotten").
- Output: with prob. $r_{j}:=\sum_{i}\left(Q_{j} p\right)_{i}$, we get outcome j and output $p^{\prime}=Q_{j} p / r_{j}$.
-Sequence: $\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}$.

2.The "measurement occurrence problem"

The Classical Setting

Classical measurement occurrence problem (CMOP): Given a description of a measurement device in terms of K substochastic matrices $Q_{1}, \ldots, Q_{K} \in \mathbb{Q}^{d \times d}$, decide whether there is any finite sequence j_{1}, \ldots, j_{n} which can never be observed, regardless of the input state.

3. Undecidability of the quantum problem (QMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)
$$

3. Undecidability of the quantum problem (QMOP)

$\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)=0$
$\Leftrightarrow A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger} A_{j_{n}} \ldots A_{j_{1}}=0$
$\Leftrightarrow A_{j_{n}} \ldots A_{j_{1}}=0$.

3. Undecidability of the quantum problem (QMOP)

$$
\begin{aligned}
& \operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)=0 \\
\Leftrightarrow & A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger} A_{j_{n}} \ldots A_{j_{1}}=0
\end{aligned}
$$

$$
\Leftrightarrow A_{j_{n}} \ldots A_{j_{1}}=0
$$

Instance of the matrix mortality problem!
Undecidability of MMP \Rightarrow undecidability of QMOP ?

3. Undecidability of the quantum problem (QMOP)

$$
\begin{aligned}
& \operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{Tr}\left(A_{j_{n}} \ldots A_{j_{1}} \rho A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger}\right)=0 \\
\Leftrightarrow & A_{j_{1}}^{\dagger} \ldots A_{j_{n}}^{\dagger} A_{j_{n}} \ldots A_{j_{1}}=0 \\
\Leftrightarrow & A_{j_{n}} \ldots A_{j_{1}}=0 . \quad \text { Instance of the matrix mortality problem! }
\end{aligned}
$$

Undecidability of MMP \Rightarrow undecidability of QMOP ?
Not quite! Normalization $\sum_{j} A_{j}^{\dagger} A_{j}=\mathbf{1}$ gives additional information.

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

- MMP undecidable already for eight integer 3×3 matrices.
- Take $\left\{M_{1}, \ldots, M_{8}\right\} \subset \mathbb{Z}^{3 \times 3}$, then $T:=\sum_{j=1}^{8} M_{j}^{\dagger} M_{j} \neq \mathbf{1}$.

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

- MMP undecidable already for eight integer 3×3 matrices.
- Take $\left\{M_{1}, \ldots, M_{8}\right\} \subset \mathbb{Z}^{3 \times 3}$, then $T:=\sum_{j=1}^{8} M_{j}^{\dagger} M_{j} \neq \mathbf{1}$.
- First, add some more matrices:

$$
\begin{gathered}
P_{1}=\left(\begin{array}{ccc}
-1 & & \\
& 1 & \\
& & 1
\end{array}\right), P_{2}=\left(\begin{array}{ccc}
1 & & \\
& -1 & \\
& & 1
\end{array}\right), P_{3}=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & -1
\end{array}\right), \\
\quad M_{8+j}=M_{j} P_{1}, \quad M_{16+j}=M_{j} P_{2}, \quad M_{24+j}=M_{j} P_{3} . \\
\Rightarrow \sum_{j=1}^{32} M_{j}^{\dagger} M_{j}=\left(\begin{array}{ccc}
4 T_{11} & 0 & 0 \\
0 & 4 T_{22} & 0 \\
0 & 0 & 4 T_{33}
\end{array}\right) .
\end{gathered}
$$

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:
$\Rightarrow \sum_{j=1}^{32} M_{j}^{\dagger} M_{j}=\left(\begin{array}{ccc}4 T_{11} & 0 & 0 \\ 0 & 4 T_{22} & 0 \\ 0 & 0 & 4 T_{33}\end{array}\right)$.

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

$$
\begin{aligned}
& \Rightarrow \sum_{j=1}^{32} M_{j}^{\dagger} M_{j}=\left(\begin{array}{ccc}
4 T_{11} & 0 & 0 \\
0 & 4 T_{22} & 0 \\
0 & 0 & 4 T_{33}
\end{array}\right) . \\
&\left(\begin{array}{ccc}
4 T_{11} & 0 & 0 \\
0 & 4 T_{22} & 0 \\
0 & 0 & 4 T_{33}
\end{array}\right)+\underbrace{\left(\begin{array}{lll}
? & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{33}^{\dagger} M_{33}}+\underbrace{\left(\begin{array}{lll}
? & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{34}^{\dagger} M_{34}} \\
& \quad+\underbrace{\left(\begin{array}{lll}
? & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{35}^{\dagger} M_{35}}+\underbrace{\left(\begin{array}{lll}
? & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{36}^{\dagger} M_{36}}=\left(\begin{array}{ccc}
c^{2} & \\
& c^{2} & \\
& & c^{2}
\end{array}\right)
\end{aligned}
$$

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

$$
\begin{aligned}
& \Rightarrow \sum_{j=1}^{32} M_{j}^{\dagger} M_{j}=\left(\begin{array}{ccc}
4 T_{11} & 0 & 0 \\
0 & 4 T_{22} & 0 \\
0 & 0 & 4 T_{33}
\end{array}\right) . \\
&\binom{\left.\begin{array}{|ccc}
4 T_{11} & 0 & 0 \\
0 & 4 T_{22} & 0 \\
0 & 0 & 4 T_{33}
\end{array}\right)+\underbrace{\left(\begin{array}{lll}
\square & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{33}^{\dagger} M_{33}}+\underbrace{\left(\begin{array}{lll}
\square & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{34}^{\dagger} M_{34}}}{\quad+\underbrace{\left(\begin{array}{lll}
\square & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{35}^{+} M_{35}}+\underbrace{\left(\begin{array}{lll}
\square & 0 & 0 \\
0 & ? & 0 \\
0 & 0 & ?
\end{array}\right)}_{M_{36}^{\dagger} M_{36}}=\left(\begin{array}{ll}
c^{2} & \\
& c^{2} \\
& \\
&
\end{array} c^{2}\right.}
\end{aligned}
$$

Lagrange: $\quad c^{2}-4 T_{i i}$ can be written as sum of four integer squares!

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

$$
\Rightarrow \sum_{j=1}^{\mathbf{3 6}} M_{j}^{\dagger} M_{j}=c^{2} \mathbf{1}
$$

3. Undecidability of the quantum problem (QMOP)

Encoding MMP-instances into QMOP:

$$
\Rightarrow \sum_{j=1}^{\mathbf{3 6}} M_{j}^{\dagger} M_{j}=c^{2} \mathbf{1}
$$

Now build block matrices:
$\underbrace{A_{j}}_{j=1, \ldots, 8}:=\frac{4}{5 c}\left[\begin{array}{c|c}M_{j} & \\ M_{8+j} & \\ M_{16+j} & 0_{15 \times 12} \\ M_{24+j} & \\ M_{32+j} & \end{array}\right], \quad A_{9}:=\frac{3}{5} \mathbf{1}_{3} \oplus \mathbf{1}_{12} . \Rightarrow \sum_{j=1}^{9} A_{j}^{\dagger} A_{j}=\mathbf{1}$.

3. Undecidability of the quantum problem (QMOP)

 Encoding MMP-instances into QMOP:$$
\begin{aligned}
& \Rightarrow \sum_{j=1}^{\mathbf{3 6}} M_{j}^{\dagger} M_{j}=c^{2} \mathbf{1} . \quad \text { Now build block matrices: } \\
& \underbrace{A_{j}}_{=1, \ldots, 8}:=\frac{4}{5 c}\left[\begin{array}{c}
M_{j} \\
M_{8+j} \\
M_{16+j} \\
M_{24+j} \\
M_{32+j}
\end{array} 0^{2}\right] \text { All that's interesting happens here. } 0_{15 \times 12} . \quad A_{9}:=\frac{3}{5} \mathbf{1}_{3} \oplus \mathbf{1}_{12} . \Rightarrow \sum_{j=1}^{9} A_{j}^{\dagger} A_{j}=\mathbf{1} .
\end{aligned}
$$

$$
\begin{array}{|c|}
\hline \text { MMP for } \\
\left\{M_{1}, \ldots, M_{8}\right\} \subset \mathbb{Z}^{3 \times 3}
\end{array} \subseteq \begin{array}{cc}
\text { QMOP for } \\
\left\{A_{1}, \ldots, A_{9}\right\} \subset \mathbb{Q}^{15 \times 15} \\
\hline
\end{array}
$$

3. Undecidability of the quantum problem (QMOP)

 Encoding MMP-instances into QMOP:$$
\begin{aligned}
& \Rightarrow \sum_{j=1}^{\mathbf{3 6}} M_{j}^{\dagger} M_{j}=c^{2} \mathbf{1} \text {. } \\
& \text { Now build block matrices: } \\
& \text { All that's interesting happens here. } \\
& A_{9}:=\frac{3}{5} \mathbf{1}_{\mathbf{3}} \oplus \mathbf{1}_{12} . \Rightarrow \sum_{j=1}^{9} A_{j}^{\dagger} A_{j}=\mathbf{1} \text {. } \\
& \text { MMP for } \\
& \left\{M_{1}, \ldots, M_{8}\right\} \subset \mathbb{Z}^{3 \times 3} \\
& \text { QMOP for } \\
& \left\{A_{1}, \ldots, A_{9}\right\} \subset \mathbb{Q}^{15 \times 15} \text {. }
\end{aligned}
$$

-undecidable-

3. Undecidability of the quantum problem (QMOP)

 Encoding MMP-instances into QMOP:$$
\begin{aligned}
& \Rightarrow \sum_{j=1}^{36} M_{j}^{\dagger} M_{j}=c^{2} \mathbf{1} . \\
& \text { Now build block matrices: } \\
& \text { All that's interesting happens here. } \\
& A_{9}:=\frac{3}{5} \mathbf{1}_{3} \oplus \mathbf{1}_{12} . \Rightarrow \sum_{j=1}^{9} A_{j}^{\dagger} A_{j}=\mathbf{1} .
\end{aligned}
$$

4. Decidability of the classical problem (CMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}
$$

4. Decidability of the classical problem (CMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}=0
$$

$$
\Leftrightarrow Q_{j_{n}} \ldots Q_{j_{1}}=0 .
$$

4. Decidability of the classical problem (CMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}=0
$$

$$
\Leftrightarrow Q_{j_{n}} \ldots Q_{j_{1}}=0 .
$$

Recall: all entries are non-negative.
Claim: $M M P \geq 0$ is decidable!

4. Decidability of the classical problem (CMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}=0
$$

$\Leftrightarrow Q_{j_{n} \ldots Q_{j_{1}}}=0$.
Recall: all entries are non-negative.
Claim: $M M P \geq 0$ is decidable!

$M M P \geq 0$ for
$\left\{M_{1}, \ldots, M_{K}\right\} \subset \mathbb{Q}^{d \times d}$.
-decidable-

4. Decidability of the classical problem (CMOP)

$$
\operatorname{Prob}\left(j_{1}, \ldots, j_{n}\right)=\sum_{i}\left(Q_{j_{n}} \ldots Q_{j_{1}} p\right)_{i}=0
$$

$$
\Leftrightarrow Q_{j_{n}} \ldots Q_{j_{1}}=0 \text {. }
$$

Recall: all entries are non-negative.
Claim: MMP $_{\geq 0}$ is decidable!

4. Decidability of the classical problem (CMOP) MMP ≥ 0 is decidable:

4. Decidability of the classical problem (CMOP)

 $M M P_{\geq 0}$ is decidable:$$
\begin{aligned}
M_{j_{2}} M_{j_{1}}= & \left(\begin{array}{ll}
\frac{3}{7} & 0 \\
0 & \frac{8}{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{5} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\frac{16}{15} & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

4. Decidability of the classical problem (CMOP)

 $M M P_{\geq 0}$ is decidable:$$
\begin{aligned}
M_{j_{2}} M_{j_{1}}= & \left(\begin{array}{ll}
\frac{3}{7} & 0 \\
0 & \frac{8}{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{5} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\frac{16}{15} & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$M_{j_{n}} \ldots M_{j_{1}}=0 \Leftrightarrow M_{j_{n}}^{\prime} * \ldots * M_{j_{1}}^{\prime}=0$
where $\quad\left(M^{\prime}\right)_{k l}:=\left\{\begin{array}{ll}1 & \text { if } M_{k l}>0 \\ 0 & \text { if } M_{k l}=0\end{array} \quad\right.$ and $\quad M * N:=(M N)^{\prime}$.

4. Decidability of the classical problem (CMOP)

 $M M P_{\geq 0}$ is decidable:$$
\begin{aligned}
M_{j_{2}} M_{j_{1}}= & \left(\begin{array}{ll}
\frac{3}{7} & 0 \\
0 & \frac{8}{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{5} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\frac{16}{15} & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
M_{j_{n}} \ldots M_{j_{1}}=0 \Leftrightarrow M_{j_{n}}^{\prime} * \ldots * M_{j_{1}}^{\prime}=0
$$

where $\quad\left(M^{\prime}\right)_{k l}:=\left\{\begin{array}{ll}1 & \text { if } M_{k l}>0 \\ 0 & \text { if } M_{k l}=0\end{array} \quad\right.$ and $\quad M * N:=(M N)^{\prime}$.
There is j_{1}, \ldots, j_{n} with $M_{j_{n}} \ldots M_{j_{1}}=0 \quad \Leftrightarrow$ finite semigroup generated by $\left\{M_{j_{1}}^{\prime}, \ldots, M_{j_{n}}^{\prime}\right\}$ via * contains the zero matrix.

4. Decidability of the classical problem (CMOP)

 $M M P_{\geq 0}$ is decidable:$$
\begin{aligned}
M_{j_{2}} M_{j_{1}}= & \left(\begin{array}{cc}
\frac{3}{7} & 0 \\
0 & \frac{8}{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{5} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\frac{16}{15} & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
M_{j_{n}} \ldots M_{j_{1}}=0 \Leftrightarrow M_{j_{n}}^{\prime} * \ldots * M_{j_{1}}^{\prime}=0
$$

where $\quad\left(M^{\prime}\right)_{k l}:=\left\{\begin{array}{ll}1 & \text { if } M_{k l}>0 \\ 0 & \text { if } M_{k l}=0\end{array} \quad\right.$ and $\quad M * N:=(M N)^{\prime}$.
There is j_{1}, \ldots, j_{n} with $M_{j_{n}} \ldots M_{j_{1}}=0$
finite semigroup generated by $\left\{M_{j_{1}}^{\prime}, \ldots, M_{d}^{\prime}\right\}$ dima contains the zero matrix.

Summary: quantum cs. classical MOP

Quantum MOP
$\stackrel{\downarrow}{\text { MMP }}$

Destructive interference

 undecidableClassical MOP

Only constructive interference decidable

5. Outlook

Are further natural quantum problems undecidable? Are natural quantities in quantum information theory noncomputable?

5. Outlook

Are further natural quantum problems undecidable? Are natural quantities in quantum information theory noncomputable?

Paradigm of a non-computable number: Chaitin's Omega. Let U be a prefix-free universal Turing machine. Set

$$
\Omega:=\sum_{p: U \text { halts on input } p} 2^{-\ell(p)} \leq 1
$$

5. Outlook

Are further natural quantum problems undecidable? Are natural quantities in quantum information theory noncomputable?

Paradigm of a non-computable number: Chaitin's Omega. Let U be a prefix-free universal Turing machine. Set

$$
\Omega:=\sum_{p: U \text { halts on input } p} 2^{-\ell(p)} \leq 1
$$

- There is an algorithm which, on input n, computes an approximation Ω_{n} such that $\Omega_{n} \leq \Omega_{n+1}$ and $\lim \Omega_{n}=\Omega$.
- But:There is no algorithm which, on input n, conp $\overrightarrow{m p}^{\infty}$ utes an approximation Ω_{n}^{\prime} such that $\left|\Omega-\Omega_{n}^{\prime}\right|<1 / n$. Ω is not computable.

5. Outlook

Are further natural quantum problems undecidable? Are natural quantities in quantum information theory noncomputable?

5. Outlook

Are further natural quantum problems undecidable?
Are natural quantities in quantum information theory noncomputable?

HSW: classical capacity of a quantum channel \mathcal{N}

$$
C(\mathcal{N})=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\mathcal{N}^{\otimes n}\right)
$$

where $\chi(\mathcal{M})=\max _{p_{i}, \varphi_{i}}\left[S\left(\mathcal{M}\left(\sum_{i} p_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right)\right)-\sum_{i} p_{i} S\left(\mathcal{M}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right)\right)\right]$

5. Outlook

Are further natural quantum problems undecidable?
Are natural quantities in quantum information theory noncomputable?

HSW: classical capacity of a quantum channel \mathcal{N}

$$
C(\mathcal{N})=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\mathcal{N}^{\otimes n}\right)
$$

where $\chi(\mathcal{M})=\max _{p_{i}, \varphi_{i}}\left[S\left(\mathcal{M}\left(\sum_{i} p_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right)\right)-\sum_{i} p_{i} S\left(\mathcal{M}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right)\right)\right]$
The quest for a single-letter formula:

- <2008: maybe $C(\mathcal{N})=\chi(\mathcal{N})$?
- Hastings 2008: no!

5. Outlook

Are further natural quantum problems undecidable?
Are natural quantities in quantum information theory noncomputable?

HSW: classical capacity of a quantum channel \mathcal{N}

$$
C(\mathcal{N})=\lim _{n \rightarrow \infty} \underbrace{\frac{1}{n} \chi\left(\mathcal{N}^{\otimes n}\right)}_{=: c_{n}}
$$

5. Outlook

Are further natural quantum problems undecidable?
Are natural quantities in quantum information theory noncomputable?

HSW: classical capacity of a quantum channel \mathcal{N}

$$
C(\mathcal{N})=\lim _{n \rightarrow \infty} \underbrace{\frac{1}{n} \chi\left(\mathcal{N}^{\otimes n}\right)}_{=: c_{n}}
$$

c_{n} is a computable, increasing sequence with $\lim _{n \rightarrow \infty} c_{n}=C(\mathcal{N})$.

5. Outlook

Are further natural quantum problems undecidable?
Are natural quantities in quantum information theory noncomputable?

HSW: classical capacity of a quantum channel \mathcal{N}

$$
C(\mathcal{N})=\lim _{n \rightarrow \infty} \underbrace{\frac{1}{n} \chi\left(\mathcal{N}^{\otimes n}\right)}_{=: c_{n}}
$$

c_{n} is a computable, increasing sequence with $\lim _{n \rightarrow \infty} c_{n}=C(\mathcal{N})$.
But: maybe $C(\mathcal{N})$ is not computable in general?
This would prove - once and for all - that there cannot be any single-letter formula.

Conclusions

- Undecidability in quantum measurements:

Quantum MOP

Destructive interference undecidable

Classical MOP

Only constructive interference decidable

- Speculation: are quantum channel capacities noncomputable?

Thank you!

mmueller@perimeterinstitute.ca
arXiv:IIII. 3965

