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A surprising coincidence

State space of quantum 2-level system is a 3D Euclidean ball:
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Space is also 3-dimensional! Is there some deeper reason for this?

Probability <= (Spacetime) geometry
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Information-theoretic task in d-dimensional space:
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Our approach

Information-theoretic task in d-dimensional space:

z € RY y € RY

Goal:

Alice has to send
spatial direction x
to Bob.

Alice Bob



Our approach

Information-theoretic task in d-dimensional space:

%meRd y € RY

No common coordinate system:
cannot tell coordinates on the phone.

Bob




Our approach

Information-theoretic task in d-dimensional space:

z € RY y € RY
P

Alice encodes
direction x into some state
w(z) and sends it.

Bob




Our approach

Information-theoretic task in d-dimensional space:

y € R¢
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Bob performs a
measurement on the state...




Our approach

Information-theoretic task in d-dimensional space:

%meRd y € RY

... ahd obtains one of
several outcomes with some
probability.

Bob




Our approach

Information-theoretic task in d-dimensional space:

r € R? yeR? |yl =1
(o)
_____ S e
o = 1 -

Bob may rotate his device
into different directions y.

Bob




Our approach

Information-theoretic task in d-dimensional space:

z € RY yeR: |yl =1

Bob

Example within quantum theory:

e spin-1/2 particle with "spin up” in
x-direction,

¢ Stern-Gerlach measurement device.



Our approach

Information-theoretic task in d-dimensional space:

%%Rd yeRy |yl =1
[ =1

Here we do not assume
quantum theory.

Bob
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I F * Bob can determine x in the limit of many copies, but
* Alice cannot encode any additional information, and
 the information carriers can interact continuously and
reversibly in time,

Bob



Our approach

Information-theoretic task in d-dimensional space:

%%Rd yer! |yl =1
x| =1

I F * Bob can determine x in the limit of many copies, but
* Alice cannot encode any additional information, and
 the information carriers can interact continuously and
reversibly in time,

TH E N * necessarily d=3 and

e quantum theory holds for information carriers
(we get unitary time evolution, entanglement, QT state space).

Bob
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5.What does all this tell us?
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.
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preparation measurement
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.

M
W “yes
——

(X4

(X ¢

nNo
preparation measurement

* Physical systems can be in some state W. From this, probabilities
of outcomes of all possible measurements can be computed:

Prob(outcome ”yes” in this measurement | input state w) =: M(w).
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.

M
W “yes*
—)—> o

nNo
preparation measurement

* Physical systems can be in some state W. From this, probabilities
of outcomes of all possible measurements can be computed:

Prob(event M | input state w) =: M(w).

e Statistical mixtures are described by convex combinations:
prepare W with prob. p and state @ with prob. (/-p), result:

pw+(1 —p)y

2. Convex state spaces
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.

M
W “yes
——

(X4

(X ¢

no

preparation measurement

e Consequence: events M are affine-linear maps:

M(pw + (1 —=p)p) = pM(w) + (1 — p)M(p).

= |
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.

M
W “yes*
—)— o

no

preparation measurement

e Consequence: events M are affine-linear maps:

M(pw + (1 = p)p) = pM(w) + (1 — p)M(p).

* State space () = set of all possible states W.
Convex, compact, finite-dimensional.
Otherwise arbitrary.
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2. Convex state spaces

Assumption: there are some events that happen probabilistically.

M
W “yes*
—)— o

no

preparation measurement

e Consequence: events M are affine-linear maps:

M(pw + (1 = p)p) = pM(w) + (1 — p)M(p).

* State space () = set of all possible states W.
Convex, compact, finite-dimensional.
Otherwise arbitrary.

Extremal points are pure states, others mixed.

2. Convex state spaces
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2. Convex state spaces

Some examples:
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2. Convex state spaces

Some examples:

e Classical n-level system:
Q= {w=(p1,....pn) | P >0, Y,pi=1}.
n pure states: w; = (1,0,...,0),...,w, =(0,...,0,1).
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2. Convex state spaces

Some examples:

e Classical n-level system:
Q={w=P1,--spn) |pi20, 2 ;pi=1}.
n pure states: w; = (1,0,...,0),...,w, =(0,...,0,1).
a), b), ¢): classical 2-, 3-, 4-level systems.
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2. Convex state spaces

a) b) c) I

* d): quantum 2-level system (qubit)

Some examples:
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2. Convex state spaces

A &

B examples -

* d): quantum 2-level system (qubit)

* ¢),f), g): neither classical nor quantum.
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2. Convex state spaces

M
W “yes
€ —
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preparation measurement
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2. Convex state spaces

w T “yeS“
ﬁ
_‘ .................. >  —
g (X ¢
nNo
preparation transformation measurement

Reversible transformations T map states to states, are linear and invertible.
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2. Convex state spaces

w T “yeS“
ﬁ
_‘ .................. >  —
g (X ¢
nNo
preparation transformation measurement

Reversible transformations T map states to states, are linear and invertible.

* They form a group G.
* In quantum theory, these are the unitaries:

p— UpUT.
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2. Convex state spaces

w T “yeS“
ﬁ
_‘ .................. >  —
g (X ¢
nNo
preparation transformation measurement

Reversible transformations T map states to states, are linear and invertible.

* They form a group G.
* In quantum theory, these are the unitaries:

p— UpUT.

 Must be symmetries of state space:

| .
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2. Convex state spaces

w T “yesﬂ
ﬁ
_‘ .................. >  —
g (X ¢
nNo
preparation transformation measurement

Reversible transformations T map states to states, are linear and invertible.

* They form a group .
* In quantum theory, these are the unitaries:

p— UpUT.

* Must be symmetries of state space:

T

W T'w -

2. Convex state spaces l,__j-l
M. Miiller*, LI. Masanes

Three-dimensionality of space and the quantum bit (arXiv:1206.0630). -l



2. Convex state spaces

Contains vast landscape of all possible
"probabilistic theories".

boxwgrld

QT CPT
°

o Jordan
algebras
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2. Convex state spaces

Contains vast landscape of all possible
"probabilistic theories".

boxwgrld

QT CPT
°

o Jordan
algebras

Many physical properties different from QT: superstrong non-locality etc.
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5.What does all this tell us?



3. The postulates

z € R? y € R4

Alice Bob

| .

3.The postulates I__SI
M. Muller*, LI. Masanes

Three-dimensionality of space and the quantum bit (arXiv:1206.0630). 1



3. The postulates

z € R? y € RY

llll'
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-

Alice Bob

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction xz € R?,
lz| = 1, into a state w(x), such that Bob is able to retrieve
x in the limit of many copies.
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3. The postulates

z € R? y € RY

Alice Bob

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction xz € R?,
lz| = 1, into a state w(x), such that Bob is able to retrieve
x in the limit of many copies.

In d=2, Alice could simply send a wristwatch to Bob:

Alice
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Alice Bob

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction xz € R?,
lz| = 1, into a state w(x), such that Bob is able to retrieve
x in the limit of many copies.

In d=2, Alice could simply send a wristwatch to Bob:

Would contain
huge amount

of information!
@By Want minimality.

3.The postulates

Three-dimensionality of space and the quantum bit (arXiv:1206.0630). M. Miiller”, LI. Masanes 1 1
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3. The postulates

z € R? y € RY
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Alice Bob

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.
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3. The postulates

z € R? y € RY
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Alice Bob

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.

Suppose « and ¢ encode same direction z
— by choosing to send w or ¢,
Alice can encode an additional bit
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3. The postulates

z € R? y € RY
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Alice

Postulate 2 (Minimality). No protocol allows Alice

to encode any further information into the state without probability O{-';th
adding noise to the directional information. outcome: M," (w)

Suppose « and ¢ encode same direction z
— by choosing to send w or ¢,
Alice can encode an additional bit
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3. The postulates

z € R? y € RY

llll'

......
-y

Alice

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without probability 0{ ’) -th
adding noise to the directional information. outcome: M ’ ( )

Suppose w and ¢ encode same direction x
— by choosing to send w or ¢,

Alice can encode an additional bit
— one directional profile more noisy

than the other

3.The postulates 5.
7
Three-dimensionality of space and the quantum bit (arXiv:1206.0630). M. Miiller*, LI. Masanes 1




3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The state space (into which Alice
encodes) is a d-dimensional unit ball.
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The state space (into which Alice
encodes) is a d-dimensional unit ball.
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The state space (into which Alice
encodes) is a d-dimensional unit ball.
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The state space (into which Alice
encodes) is a d-dimensional unit ball.

o’ \
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all balls are

classical bit 2-level systems.
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The “direction bit” state space is a
d-dimensional unit ball.

| .
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The “direction bit” state space is a
d-dimensional unit ball.

d=1 d:2'\ d=3 d=4

NOT quantum!

| .
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3. The postulates

With some effort, one can prove from Postulates |+2:

Theorem 1. The “direction bit” state space is a
d-dimensional unit ball.

d=1 dzz\ d =3

NOT quantum!

Quantum 3-level state space looks more like this:

Bengtsson, Weis, Zyczkowski, "Geometry of the set of mixed quantum states: An apophatic approach”, arXiv:1112.2347

3.The postulates l__SI
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3. The postulates

To single out d=3: consider pairs of direction bits.

| .
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3. The postulates

To single out d=3: consider pairs of direction bits.

d ="

Basic assumptions on composite state space AB:

e Contains “product states” A ,B

e Allows for “product measurements* AMAMPB -

MAMB (wAwB) = MA(w?) - MB(WP).

= |
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Three-dimensionality of space and the quantum bit (arXiv:1206.0630).
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is the same as
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representation of SO(d)
on state space
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3. The postulates

is the same as

representation of SO(d)
on state space

Postulate 3 (Global coordinate transformation). W W
For any rotation R € SO(d), there is a unique linear map ’
on AB which acts as R on both subsystems individually.
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3. The postulates

is the same as

representation of SO(d)
on state space

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

wiwP = (Grw™)(Grw?)

| .
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3. The postulates

is the same as

representation of SO(d)
on state space

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

wiw? = (Grw?)(Grw?®)

3.The postulates
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3. The postulates

is the same as

representation of SO(d)

on state space

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually:.

wiw? = (Grw?)(Grw?®)

hence 4B s (GRGR)WE.

3.The postulates

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).



3. The postulates

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

| .
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3. The postulates

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

Equivalent: "The product states span AB".

"Local tomography”

| .
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3. The postulates

Postulate 3 (Global coordinate transformation).
For any rotation R € SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

Equivalent: "The product states span AB".

"Local tomography”

Still many possibilities
in all dimensions d.

| .
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3. The postulates

Two direction bits should be able to interact
via some continuous reversible time evolution:
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3. The postulates

Two direction bits should be able to interact
via some continuous reversible time evolution:

Postulate 4 (Interaction). On AB, there is
a continuous one-parameter group of transformations

{TAB},cr which is not a product of local transforma-
tions, TAB #£ TATH.
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3. The postulates

Two direction bits should be able to interact
via some continuous reversible time evolution:

Postulate 4 (Interaction). On AB, there is
a continuous one-parameter group of transformations

{TAB},cr which is not a product of local transforma-
tions, TAB #£ TATH.

AB
wA C_UB TtAB SwhT
P ST, — O 5

time evolution

Otherwise no interaction, never!
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

d ="

LIl. Masanes, MM, R. Augusiak, and D. Perez-Garcia, arXiv:1 | | 1.4060
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

d ="

LIl. Masanes, MM, R. Augusiak, and D. Perez-Garcia, arXiv:1 | | 1.4060

e (Unknown) Lie group G4¥ generated by {TAP}icr and local rotations

e Lie algebra element X & gAB
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

d ="

LIl. Masanes, MM, R. Augusiak, and D. Perez-Garcia, arXiv:1 | | 1.4060

e (Unknown) Lie group G4¥ generated by {TAP}icr and local rotations

e Lie algebra element X & gAB
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

Prepare pure state on A with
"Bloch vector" z € R%. ..

arcia, arXiv: | 1 11.4060

9 TtAB}teR and local rotations

e Lie algebra element X € g4~ . . .
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

arcia, arXiv: | 1 11.4060
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

.. then perform
a global transformation

LI. Masanes, MM, R.Augh generated by X... 760

e (Unknown) Lie group G4P generated by {1/ \\l:cr and local rotations

e Lie algebra element X € g4~ . - .

4. Derlvmg d=3 and QT

i'(’l-‘
Three-dimensionality of space and the quantum bit (arXiv:1206.0630). M. Miiller*, LI. Masanes 1



4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

..and finally measure if the
local state still points in direction .

LI. Masanes, MM, R. Augusiak, and D.F ermerrerye . 4060

e (Unknown) Lie group GAP generated b {TtAB}teR and\\cal rotations
group 8 Y

e Lie algebra element X € g4~ . . .
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4. Deriving d=3 and QT

Only 3D-balls can
"talk to each other":

d="7 d ="

LIl. Masanes, MM, R. Augusiak, and D. Perez-Garcia, arXiv:1 | | 1.4060

e (Unknown) Lie group G4¥ generated by {TAP}icr and local rotations

e Lie algebra element X & gAB

Probability for t=0 is
p(t=0)=1.
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Probability for t=0 is

p(t=0)=1.
\Iocal maximum!

= p'(0) =0, p”(0) <0.
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4. Deriving d=3 and QT

Probability for t=0 is

p(t=0)=1.
\Iocal maximum!

= p'(0) =0, p”(0) <0.

' . A B A B

= Constraints on X: M _/\/ly X W, w, = 0,
A B~y2 A B

,/\/lx./\/lyX Wy W, < 0
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Probability for t=0 is

p(t=0)=1.
\Iocal maximum!

= p'(0) =0, p”(0) <0.

' . A B A B

= Constraints on X: M _/\/ly X W, w, = 0,
A B~y2 A B

,/\/lx./\/lyX Wy W, < 0

With some effort, one proves:
o If d+3, X satisfies all constraints only if X = X4 o+ X (non-interacting).

= |

4. Deriving d=3 and QT l__SI
M. Miiller*, LI. Masanes ) ¢

Three-dimensionality of space and the quantum bit (arXiv:1206.0630). T



4. Deriving d=3 and QT

Probability for t=0 is

p(t=0)=1.
\Iocal maximum!

— p/(0) =0, p"(0)<0.

' . A B A B

= Constraints on X: M _/\/ly X W, w, = 0,
A B~y2 A B

,/\/lx./\/lyX Wy W, < 0

With some effort, one proves:
o If d+3, X satisfies all constraints only if X = X4 o+ X (non-interacting).

e If d=3, states w can be parametrized as 4x4 Hermitian matrices, and
X satisfies all constraints iff it generates conjugation by unitaries,

p— UpUT.
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4. Deriving d=3 and QT

Theorem 2: From Postulates 14, it follows that
the spatial dimension must be d = 3.
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4. Deriving d=3 and QT

Theorem 2: From Postulates 14, it follows that
the spatial dimension must be d = 3.

d =7

Theorem 3: From Postulates 14, it follows that
the state space of two direction bits is two-qubit
quantum state space (i.e. the set of 4 x 4 density
matrices), and time evolution is given by a one-
parameter group of unitaries, p — U (t)pU (¢)7.

4. Deriving d=3 and QT |-
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Overview

|. Overview
2. Convex state spaces
3.The postulates

4. Deriving d=3 and quantum theory

-3 5 VWhat does all this tell us?



Conclusions

* We proved: natural interplay between space + probability is only
possible if space is 3-dimensional, and quantum theory holds.
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* We proved: natural interplay between space + probability is only
possible if space is 3-dimensional, and quantum theory holds.

* What could this tell us? Some speculation:

smooth 3D quantum
spacetime theory

approximation,
coarse-
graining,

unknown (discrete!
d+3?) Planck scale
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Conclusions

* We proved: natural interplay between space + probability is only
possible if space is 3-dimensional, and quantum theory holds.

* What could this tell us? Some speculation:

smooth 3D quantum
spacetime theory approximation,
with similar range

of validity?

approximation,
coarse-
graining,

unknown (discrete!
d+3?) Planck scale
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5. Conclusions

ruling out d+3:
LI. Masanes, MM, D. Pérez-Garcia, R. Augusiak, arXiv:| | | |.4060

d=3 implies quantum theory:
G. de la Torre, LI. Masanes, T. Short, MM, Phys. Rev. Lett. 109, 090403 (2012)
arXiv:1110.5482

this talk:
MM, LI. Masanes, arXiv:1206.0630

Thank you!

Thanks to: Lucien Hardy, Lee Smolin, Cozmin Ududec, Rob Spekkens, Tobias Fritz, ...

| .

5. Conclusions l‘__s-l

Three-dimensionality of space and the quantum bit (arXiv:1206.0630). M. Miiller”, LI. Masanes -l



