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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Our approach

Information-theoretic task in d-dimensional space:
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Our approach
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Alice has to send 
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Our approach
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,

Our approach
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direction x into some state 

ω(x) and sends it.

Information-theoretic task in d-dimensional space:
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].
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to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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Hardy’s seminal work [7], and are inspired by recent work
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way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third
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result. Throughout the paper, only the main ideas and
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random
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Assumption: there are some events that happen probabilistically.

“yes“

“no“

• Physical systems can be in some state ω. From this, probabilities
of outcomes of all possible measurements can be computed:

ω M

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

Prob(event M | input state ω) =: M(ω).

• Statistical mixtures are described by convex combinations:
  prepare ω with prob. p and state φ with prob. (1-p), result:

pω+(1− p)ϕ
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• State space Ω = set of all possible states ω.
  Convex, compact, finite-dimensional.
  Otherwise arbitrary.

Extremal points are pure states, others mixed.
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• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,
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i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

2. Convex state spaces



2. Convex state spaces

!" #" $"

%" &" '" ("

Some examples:

• Classical n-level system: 
Ω = {ω = (p1, . . . , pn) | pi ≥ 0,

�
i pi = 1} .

n pure states: ω1 = (1, 0, . . . , 0), . . . ,ωn = (0, . . . , 0, 1).

a), b), c): classical 2-, 3-, 4-level systems.
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Some examples:

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

• d): quantum 2-level system (qubit)

• e), f), g): neither classical nor quantum.

2. Convex state spaces



2. Convex state spaces

“yes“

“no“

ω

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

M

2. Convex state spaces



2. Convex state spaces

“yes“

“no“

ω T

Reversible transformations T map states to states, are linear and invertible.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

M

2. Convex state spaces



2. Convex state spaces

“yes“

“no“

ω T

Reversible transformations T map states to states, are linear and invertible.

• They form a group
• In quantum theory, these are the unitaries:

G.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

ρ �→ UρU †.

M

2. Convex state spaces



2. Convex state spaces

“yes“

“no“

ω T

Reversible transformations T map states to states, are linear and invertible.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

ρ �→ UρU †.
• Must be symmetries of state space:

M

• They form a group
• In quantum theory, these are the unitaries:

G.

2. Convex state spaces



2. Convex state spaces

“yes“

“no“

ω T

Reversible transformations T map states to states, are linear and invertible.

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

ρ �→ UρU †.
• Must be symmetries of state space:

T

ω Tω

M

• They form a group
• In quantum theory, these are the unitaries:

G.

2. Convex state spaces



2. Convex state spaces

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

QT CPT

boxworld

Jordan
algebras

Contains vast landscape of all possible
"probabilistic theories".

2. Convex state spaces



2. Convex state spaces

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

QT CPT

boxworld

Jordan
algebras

Contains vast landscape of all possible
"probabilistic theories".

Many physical properties different from QT: superstrong non-locality etc.

2. Convex state spaces



Overview

1. Overview

2. Convex state spaces

3. The postulates

4. Deriving d=3 and quantum theory

5. What does all this tell us?



3. The postulates

Three-dimensionality of space and the quantum bit (arXiv:1206.0630).                                  M. Müller*, Ll. Masanes

2

FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they
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preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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cal reasons, we assume that the outcome probabilities

M(i)
y (ω) are continuous in the direction y.
Any d-dimensional rotation R ∈ SO(d) transforms a

direction measurement My into MRy. Imagine that we
input a direction bit in state ω into the rotated device;
the outcome probabilities of a possible subsequent mea-

surement would be M(i)
Ry(ω). Now suppose that instead

of measuring, we first rotate the joint physical system
(consisting of the device and the direction bit) back via
R−1. Since there is no “absolute” notion of spatial orien-
tation, this cannot alter the outcome probabilities. But
since MRy is transformed back to My, the direction bit
state must have changed as well, from ω to another state
ω�, such that My(ω�) = MRy(ω). The state transforma-
tion ω �→ ω� can be physically undone (by rotating the
joint system again via R), hence it must be an element
of the group of reversible transformations on Ωd. We call
it GR−1 , such that we can switch from the “Heisenberg”
to the “Schrödinger” picture via

MRy(ω) = My(GR−1ω). (1)

Clearly GR ◦ GS = GRS ; in other words, the map R �→
GR is a group representation of SO(d) on the direction
bit state space.

Now suppose we have a situation where two agents
(Alice and Bob) reside in distant laboratories as depicted
in Fig. 1. Imagine that Alice holds an actual physical
vector x ∈ Rd, and she would like to send this geometric
information to Bob. Since Alice and Bob have never
met, they have never agreed on a common coordinate
system. Thus, it is useless for Bob if Alice sends him a
classical description of x, because he does not know to
what coordinate system the description is referring.

However, if Bob holds a measurement device as in
Fig. 4, Alice can send him a direction bit in some state
ω. As usual in information theory (taking into account
the statistical definition of states), we analyze the prop-
erties of a single state ω by considering many identical
copies of that state. So suppose Alice sends many in-
dependent copies of ω to Bob. On every copy, Bob can
measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
Our postulate now says that this is the only freedom

that Alice has to encode her state – a fixed amount of
white noise is the only information that she can addi-
tionally send to Bob. If this was not true – i.e. if there
were two “equally noiseless” states ω �= ω� which both en-
code the same direction x ∈ Rd – then Alice could send

3. The postulates
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the
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These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].
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to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
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The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.
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measure in a different direction, and he may find that
some outcome probabilities are varying over the differ-
ent directions y ∈ Rd, |y| = 1. This breaks rotational
symmetry, and so may be used by Alice to send physical
direction information to Bob.

However, Alice cannot send information about the
length of the vector x to Bob, unless there are additional
measurement devices in Bob’s possession that couple to
spatial translations, in the same way as the device in
Fig. 4 couples to spatial rotations. Thus, restricting to
the situation in Fig. 1, we state that Alice’s task is to
send a direction vector x ∈ Rd, |x| = 1, to Bob, by en-
coding it into some state. Of course, this is only possible
if the direction bit state space Ωd is “rich enough”, which
is the content of our first postulate.

Postulate 1 (Achievability). There is a protocol
which allows Alice to encode any spatial direction x ∈ Rd,
|x| = 1, into a state ω(x), such that Bob is able to retrieve
x in the limit of many copies.

In more detail, we assume that after obtaining n copies
of ω(x), Bob makes a guess x(n) of x (based on his pre-
vious measurement outcomes) such that x(n) → x for
n → ∞ with probability one. For obvious physical rea-
sons, we assume that Alice’s encoding x �→ ω(x) is con-
tinuous. Moreover, Bob measures each direction bit in-
dividually and only once (we may imagine that direction
bits get destroyed upon measurement [65]).
In principle, direction bits might carry further addi-

tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch would not embody in any way
the idea of a “unit of direction information” – in addi-
tion to direction information, it contains much additional
information, like its weight, color etc. In particular, the
clock hand position itself contains an infinite amount of
classical information that could be read out in principle.
Our second postulate formalizes the idea that direction

bits should be “as economic as possible” in encoding di-
rection information: if they allow Bob to infer a physical
direction, then they should not allow him to infer any-
thing else. In this sense, the direction bit state space Ωd

should be “minimal”.

Postulate 2 (Minimality). No protocol which satis-
fies Postulate 1 allows Alice to encode any further infor-
mation, except for adding a fixed amount of white noise.

By “adding a fixed amount of white noise” to some
state ω, we mean creating the convex combination

ω� := (1− λ)ω + λµ, (2)

where 0 ≤ λ < 1, and µ is any state such that M(i)
y (µ) is

constant in y for all i. This is what “white noise” refers
to: it is noise that is uniform in all spatial directions.
If Alice and Bob have agreed on some protocol such

that ω encodes a direction x which Bob can decode, then
Alice may always send the noisy version ω� as a replace-
ment. It breaks rotational invariance exactly in the same
way as ω; the only drawback is that Bob needs more
measurements to estimate x to good accuracy, due to
the decreased signal.
Our postulate now says that this is the only freedom

that Alice has to encode her state – a fixed amount of
white noise is the only information that she can addi-
tionally send to Bob. If this was not true – i.e. if there
were two “equally noiseless” states ω �= ω� which both en-
code the same direction x ∈ Rd – then Alice could send
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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However, Alice cannot send information about the
length of the vector x to Bob, if we assume that Bob
can only rotate his device (as in Fig. 4) and not more.
Thus, restricting to the situation in Fig. 1, we state that
Alice’s task is to send a direction vector x ∈ Rd, |x| = 1,
to Bob, by encoding it into some state.

Postulate 1 (Encoding). There is a protocol (as in
Fig. 1) which allows Alice to encode all spatial directions
x ∈ Rd, |x| = 1, into states ω(x) ∈ Ωd, such that Bob is
able to retrieve x in the limit of many copies.

Denote the coordinates of some vector x ∈ Rd in Bob’s
local coordinate system by xB . Then we stipulate that af-

ter obtaining n copies of ω(x), Bob makes a guess x(n)
B of

xB (based on his previous measurement outcomes) such

that x(n)
B → xB for n → ∞ with probability one. For ob-

vious physical reasons, we assume that Alice’s encoding
x �→ ω(x) is continuous [70]. Moreover, Bob measures
each direction bit individually and only once (we may
imagine that direction bits get destroyed upon measure-
ment [71]).

In principle, direction bits might carry further addi-
tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch is hardly “economical” for this
task: it carries a large amount of additional information,
like the details of its head shape etc. Our second postu-
late says that direction bits should be “minimal” in their
ability to carry direction information.

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.

To spell out the mathematical details, we need to de-
fine what it means that one state is noisier in its direc-
tional information than the other. If we have two states
ϕ,ω with directional probabilities related by a rotation,

i.e. M(i)
z (ϕ) = M(i)

Rz(ω) for some rotation R ∈ SO(d)
and all i, we argue that both states are equally noisy in
this respect – they both contain the same “amount of
asymmetry”, just pointing in different directions.

We could additionally say that ϕ and ω are equally
noisy if H(ϕ) = H(ω) for some entropy measure H; how-
ever, there is no unique entropy definition for arbitrary
state spaces [40–42], and entropy measures acquire mean-
ing only relative to certain operationally defined tasks
which is a complication we want to avoid. Therefore, we
define ϕ to be at least as noisy in its directional infor-
mation as ω if its directional probabilities are statistical
mixtures of those of ω and other states that are equally
noisy as ω; that is, if there are statistical weights λj > 0,

�
j λj = 1, and rotations Rj ∈ SO(d) such that for all

outcomes i,

M(i)
z (ϕ) =

�

j

λjM(i)
Rjz

(ω) for all z. (1)

Clearly, ϕ is noisier than ω in its directional information
if it is at least as noisy, and at the same time not equally
noisy as ω. In Definition 8 and following in Appendix A,
we show that this notion is a natural generalization of
the majorization relation [36] from classical probability
theory and quantum theory. It also has a natural in-
terpretation in terms of resource theories [13, 37]: for

any given ω, the probability functions z �→ M(i)
z (ω) –

or rather their directional asymmetry – constitute a re-
source for Bob. One resource is less useful – that is, more
noisy – than the other if it can be obtained from the other
by “free” operations; in this case, by tossing a coin and
performing a random rotation.

Suppose we had a protocol that satisfied Postulate 1,
and two states ϕ �= ω that would work as a possible
encoding of some direction x, in the sense that Bob would
in both cases decode direction x in the limit of obtaining
infinitely many copies. Then, by choosing to send either
ϕ or ω, Alice could send an additional classical bit to
Bob. Postulate 2 says that this is only possible at the
expense of adding noise – that is, one of the two states
must be noisier in its directional information than the
other.

Our goal is to determine the shape of the convex state
space of a direction bit, using only Postulates 1 and 2
and the physical background assumptions (Postulates 3
and 4 will be considered later). To this end, suppose Alice
encodes some direction x according to some protocol into
a state ω(x) and sends many copies of it to Bob. If the
protocol satisfies Postulates 1 and 2, Bob will be able to
decode x.

Now suppose that Bob secretly performed a rotation
R ∈ SO(d) on his laboratory before the protocol started.
Since the protocol must work regardless of the relative
orientation of Alice and Bob, Bob will still succeed to
obtain an accurate estimate of x as before.

As we have seen, applying R to a measurement device
can be replaced by applying GR−1 to the direction bit
state. Therefore, the following implementation will also
allow Bob to guess x:

• Apply GR−1 to every incoming direction bit; mea-
sure as in the protocol above.

• After obtaining n copies, determine the guess x(n)

given by the protocol above.

• To compensate for the missing lab rotation, output
the guess Rx(n).

Suppose that R is in the stabilizer subgroup of x, i.e.
Rx = x. Then the lines above prove that the original
protocol also works if Alice sends the state GR−1(ω(x))
to Bob instead of ω(x). But these states are equally noisy
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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However, Alice cannot send information about the
length of the vector x to Bob, if we assume that Bob
can only rotate his device (as in Fig. 4) and not more.
Thus, restricting to the situation in Fig. 1, we state that
Alice’s task is to send a direction vector x ∈ Rd, |x| = 1,
to Bob, by encoding it into some state.

Postulate 1 (Encoding). There is a protocol (as in
Fig. 1) which allows Alice to encode all spatial directions
x ∈ Rd, |x| = 1, into states ω(x) ∈ Ωd, such that Bob is
able to retrieve x in the limit of many copies.

Denote the coordinates of some vector x ∈ Rd in Bob’s
local coordinate system by xB . Then we stipulate that af-

ter obtaining n copies of ω(x), Bob makes a guess x(n)
B of

xB (based on his previous measurement outcomes) such

that x(n)
B → xB for n → ∞ with probability one. For ob-

vious physical reasons, we assume that Alice’s encoding
x �→ ω(x) is continuous [70]. Moreover, Bob measures
each direction bit individually and only once (we may
imagine that direction bits get destroyed upon measure-
ment [71]).

In principle, direction bits might carry further addi-
tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch is hardly “economical” for this
task: it carries a large amount of additional information,
like the details of its head shape etc. Our second postu-
late says that direction bits should be “minimal” in their
ability to carry direction information.

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.

To spell out the mathematical details, we need to de-
fine what it means that one state is noisier in its direc-
tional information than the other. If we have two states
ϕ,ω with directional probabilities related by a rotation,

i.e. M(i)
z (ϕ) = M(i)

Rz(ω) for some rotation R ∈ SO(d)
and all i, we argue that both states are equally noisy in
this respect – they both contain the same “amount of
asymmetry”, just pointing in different directions.

We could additionally say that ϕ and ω are equally
noisy if H(ϕ) = H(ω) for some entropy measure H; how-
ever, there is no unique entropy definition for arbitrary
state spaces [40–42], and entropy measures acquire mean-
ing only relative to certain operationally defined tasks
which is a complication we want to avoid. Therefore, we
define ϕ to be at least as noisy in its directional infor-
mation as ω if its directional probabilities are statistical
mixtures of those of ω and other states that are equally
noisy as ω; that is, if there are statistical weights λj > 0,

�
j λj = 1, and rotations Rj ∈ SO(d) such that for all

outcomes i,

M(i)
z (ϕ) =

�

j

λjM(i)
Rjz

(ω) for all z. (1)

Clearly, ϕ is noisier than ω in its directional information
if it is at least as noisy, and at the same time not equally
noisy as ω. In Definition 8 and following in Appendix A,
we show that this notion is a natural generalization of
the majorization relation [36] from classical probability
theory and quantum theory. It also has a natural in-
terpretation in terms of resource theories [13, 37]: for

any given ω, the probability functions z �→ M(i)
z (ω) –

or rather their directional asymmetry – constitute a re-
source for Bob. One resource is less useful – that is, more
noisy – than the other if it can be obtained from the other
by “free” operations; in this case, by tossing a coin and
performing a random rotation.

Suppose we had a protocol that satisfied Postulate 1,
and two states ϕ �= ω that would work as a possible
encoding of some direction x, in the sense that Bob would
in both cases decode direction x in the limit of obtaining
infinitely many copies. Then, by choosing to send either
ϕ or ω, Alice could send an additional classical bit to
Bob. Postulate 2 says that this is only possible at the
expense of adding noise – that is, one of the two states
must be noisier in its directional information than the
other.

Our goal is to determine the shape of the convex state
space of a direction bit, using only Postulates 1 and 2
and the physical background assumptions (Postulates 3
and 4 will be considered later). To this end, suppose Alice
encodes some direction x according to some protocol into
a state ω(x) and sends many copies of it to Bob. If the
protocol satisfies Postulates 1 and 2, Bob will be able to
decode x.

Now suppose that Bob secretly performed a rotation
R ∈ SO(d) on his laboratory before the protocol started.
Since the protocol must work regardless of the relative
orientation of Alice and Bob, Bob will still succeed to
obtain an accurate estimate of x as before.

As we have seen, applying R to a measurement device
can be replaced by applying GR−1 to the direction bit
state. Therefore, the following implementation will also
allow Bob to guess x:

• Apply GR−1 to every incoming direction bit; mea-
sure as in the protocol above.

• After obtaining n copies, determine the guess x(n)

given by the protocol above.

• To compensate for the missing lab rotation, output
the guess Rx(n).

Suppose that R is in the stabilizer subgroup of x, i.e.
Rx = x. Then the lines above prove that the original
protocol also works if Alice sends the state GR−1(ω(x))
to Bob instead of ω(x). But these states are equally noisy
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that
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i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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However, Alice cannot send information about the
length of the vector x to Bob, if we assume that Bob
can only rotate his device (as in Fig. 4) and not more.
Thus, restricting to the situation in Fig. 1, we state that
Alice’s task is to send a direction vector x ∈ Rd, |x| = 1,
to Bob, by encoding it into some state.

Postulate 1 (Encoding). There is a protocol (as in
Fig. 1) which allows Alice to encode all spatial directions
x ∈ Rd, |x| = 1, into states ω(x) ∈ Ωd, such that Bob is
able to retrieve x in the limit of many copies.

Denote the coordinates of some vector x ∈ Rd in Bob’s
local coordinate system by xB . Then we stipulate that af-

ter obtaining n copies of ω(x), Bob makes a guess x(n)
B of

xB (based on his previous measurement outcomes) such

that x(n)
B → xB for n → ∞ with probability one. For ob-

vious physical reasons, we assume that Alice’s encoding
x �→ ω(x) is continuous [70]. Moreover, Bob measures
each direction bit individually and only once (we may
imagine that direction bits get destroyed upon measure-
ment [71]).

In principle, direction bits might carry further addi-
tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch is hardly “economical” for this
task: it carries a large amount of additional information,
like the details of its head shape etc. Our second postu-
late says that direction bits should be “minimal” in their
ability to carry direction information.

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.

To spell out the mathematical details, we need to de-
fine what it means that one state is noisier in its direc-
tional information than the other. If we have two states
ϕ,ω with directional probabilities related by a rotation,

i.e. M(i)
z (ϕ) = M(i)

Rz(ω) for some rotation R ∈ SO(d)
and all i, we argue that both states are equally noisy in
this respect – they both contain the same “amount of
asymmetry”, just pointing in different directions.

We could additionally say that ϕ and ω are equally
noisy if H(ϕ) = H(ω) for some entropy measure H; how-
ever, there is no unique entropy definition for arbitrary
state spaces [40–42], and entropy measures acquire mean-
ing only relative to certain operationally defined tasks
which is a complication we want to avoid. Therefore, we
define ϕ to be at least as noisy in its directional infor-
mation as ω if its directional probabilities are statistical
mixtures of those of ω and other states that are equally
noisy as ω; that is, if there are statistical weights λj > 0,

�
j λj = 1, and rotations Rj ∈ SO(d) such that for all

outcomes i,

M(i)
z (ϕ) =

�

j

λjM(i)
Rjz

(ω) for all z. (1)

Clearly, ϕ is noisier than ω in its directional information
if it is at least as noisy, and at the same time not equally
noisy as ω. In Definition 8 and following in Appendix A,
we show that this notion is a natural generalization of
the majorization relation [36] from classical probability
theory and quantum theory. It also has a natural in-
terpretation in terms of resource theories [13, 37]: for

any given ω, the probability functions z �→ M(i)
z (ω) –

or rather their directional asymmetry – constitute a re-
source for Bob. One resource is less useful – that is, more
noisy – than the other if it can be obtained from the other
by “free” operations; in this case, by tossing a coin and
performing a random rotation.

Suppose we had a protocol that satisfied Postulate 1,
and two states ϕ �= ω that would work as a possible
encoding of some direction x, in the sense that Bob would
in both cases decode direction x in the limit of obtaining
infinitely many copies. Then, by choosing to send either
ϕ or ω, Alice could send an additional classical bit to
Bob. Postulate 2 says that this is only possible at the
expense of adding noise – that is, one of the two states
must be noisier in its directional information than the
other.

Our goal is to determine the shape of the convex state
space of a direction bit, using only Postulates 1 and 2
and the physical background assumptions (Postulates 3
and 4 will be considered later). To this end, suppose Alice
encodes some direction x according to some protocol into
a state ω(x) and sends many copies of it to Bob. If the
protocol satisfies Postulates 1 and 2, Bob will be able to
decode x.

Now suppose that Bob secretly performed a rotation
R ∈ SO(d) on his laboratory before the protocol started.
Since the protocol must work regardless of the relative
orientation of Alice and Bob, Bob will still succeed to
obtain an accurate estimate of x as before.

As we have seen, applying R to a measurement device
can be replaced by applying GR−1 to the direction bit
state. Therefore, the following implementation will also
allow Bob to guess x:

• Apply GR−1 to every incoming direction bit; mea-
sure as in the protocol above.

• After obtaining n copies, determine the guess x(n)

given by the protocol above.

• To compensate for the missing lab rotation, output
the guess Rx(n).

Suppose that R is in the stabilizer subgroup of x, i.e.
Rx = x. Then the lines above prove that the original
protocol also works if Alice sends the state GR−1(ω(x))
to Bob instead of ω(x). But these states are equally noisy

probability of i-th
outcome: M(i)

y (ω)

Suppose ω and φ encode same direction x
→ by choosing to send ω or φ, 
     Alice can encode an additional bit
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FIG. 1: The situation considered in this paper. Bob holds a macroscopic measurement device that he can rotate in d-dimensional
space; its orientation in space is thus described by a unit vector (“direction”) y ∈ Rd. Alice’s goal is to send a spatial direction
x ∈ Rd, |x| = 1, to Bob, by encoding it into a suitable state ω(x). After obtaining the state, Bob measures it with his device,
obtaining one of several possible measurement outcomes with some probability (indicated by a flashing lightbulb in the picture).
After obtaining many identical copies of ω(x), and measuring it in many different directions y ∈ Rd, Bob is supposed to estimate
Alice’s direction x, such that his guess becomes arbitrarily close to Alice’s actual choice in the limit of infinitely many copies.
We assume that Alice and Bob have agreed on an arbitrary protocol beforehand, but they do not share a common coordinate
system, such that Alice cannot simply send a classical description of x.

The approach in this paper may be interpreted as the

application of novel mathematical tools to the old ques-

tion of the relation between geometry and probability.

These tools have their origin in the recent wave of ax-

iomatizations of quantum theory [7–11], starting with

Hardy’s seminal work [7], and are inspired by recent work

on quantum reference frames [12–17].

The first part of this paper consists of an introduction

to one of these tools, which is the framework of convex

state spaces, generalizing quantum theory in a natural

way. Then, the first two postulates will be defined in

more detail, and will be used to derive the state space of

a single system. Finally, joint state spaces and the third

postulate will be discussed in detail, yielding our main

result. Throughout the paper, only the main ideas and

proof sketches are given; the full proofs are deferred to

the appendix.

II. SETTING THE STAGE: CONVEX STATE
SPACES

The framework of convex state spaces – also called gen-

eral probabilistic theories – has proven useful in the con-

text of quantum information theory [7, 18–23], but dates

back much further [24–28]. We now give a brief introduc-

tion; other useful introductory sources include [29–32], in

particular Chapters 1 and 2 in the paper by Mielnik [33].

FIG. 2: Schematic of the physical setup underlying the frame-
work of convex state spaces.

Consider the simple physical setup in Figure 2. We

have a preparation device, which, whenever it is operated,
generates an instance of a physical system (for example,

a particle). We assume that we can operate the prepara-

tion device as often as we want (say, by pressing a button

on the device, or by waiting until a periodic physical pro-

cess has completed another cycle). In the end, the sys-

tem can be measured, by applying one of several possible

measurement devices with a finite number of outcomes.

The intuition is that the device prepares the system in

a certain fixed state ω; operating the preparation device

several times produces many independent copies of ω. To
define exactly what we mean by that, consider any fixed

measurement device M. If M is applied to the prepa-

ration device’s output, we assume that we get one of k
different measurement outcomes probabilistically, where

k ∈ N is an arbitrary natural number (in Fig. 2, we have

k = 2, represented by the two dots). The probability to

obtain the i-th outcome (where 1 ≤ i ≤ k) is denoted

M(i)
(ω), such that

�
i M(i)

(ω) = 1.

If we operate the preparation device repeatedly, the

measurement outcome statistics will be exactly as pre-

dicted by probability theory – for example, in the long

run, the fraction of runs that yield the i-th outcome will

be close to M(i)
(ω) with high probability due to the law

of large numbers. In general, there are many different
possible measurement devices M,N , . . ., each described

by its own collection of outcomes M(i),N (j)
, and with

its own outcome statistics, uniquely determined by the

state ω.
Now suppose that we have two devices, both preparing

the same type of physical system (say, the same type of

particle – in general, something that we can feed into

the same kinds of measurement devices). Suppose they

prepare two different states, called ϕ and ω. Then we can

use them to build a new device that performs a random

preparation: it prepares state ω with probability p, and
state ϕ with probability 1 − p. The resulting state will

be denoted pω + (1− p)ϕ. This is a convex combination
of ω and ϕ. If we apply measurement M to that state,
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However, Alice cannot send information about the
length of the vector x to Bob, if we assume that Bob
can only rotate his device (as in Fig. 4) and not more.
Thus, restricting to the situation in Fig. 1, we state that
Alice’s task is to send a direction vector x ∈ Rd, |x| = 1,
to Bob, by encoding it into some state.

Postulate 1 (Encoding). There is a protocol (as in
Fig. 1) which allows Alice to encode all spatial directions
x ∈ Rd, |x| = 1, into states ω(x) ∈ Ωd, such that Bob is
able to retrieve x in the limit of many copies.

Denote the coordinates of some vector x ∈ Rd in Bob’s
local coordinate system by xB . Then we stipulate that af-

ter obtaining n copies of ω(x), Bob makes a guess x(n)
B of

xB (based on his previous measurement outcomes) such

that x(n)
B → xB for n → ∞ with probability one. For ob-

vious physical reasons, we assume that Alice’s encoding
x �→ ω(x) is continuous [70]. Moreover, Bob measures
each direction bit individually and only once (we may
imagine that direction bits get destroyed upon measure-
ment [71]).

In principle, direction bits might carry further addi-
tional information that can be read out in measurements.
As a naive example, the physical system that Alice trans-
mits could be a simple wristwatch, with the watch hand
pointing in the direction that Alice is intending to send.
However, a wristwatch is hardly “economical” for this
task: it carries a large amount of additional information,
like the details of its head shape etc. Our second postu-
late says that direction bits should be “minimal” in their
ability to carry direction information.

Postulate 2 (Minimality). No protocol allows Alice
to encode any further information into the state without
adding noise to the directional information.

To spell out the mathematical details, we need to de-
fine what it means that one state is noisier in its direc-
tional information than the other. If we have two states
ϕ,ω with directional probabilities related by a rotation,

i.e. M(i)
z (ϕ) = M(i)

Rz(ω) for some rotation R ∈ SO(d)
and all i, we argue that both states are equally noisy in
this respect – they both contain the same “amount of
asymmetry”, just pointing in different directions.

We could additionally say that ϕ and ω are equally
noisy if H(ϕ) = H(ω) for some entropy measure H; how-
ever, there is no unique entropy definition for arbitrary
state spaces [40–42], and entropy measures acquire mean-
ing only relative to certain operationally defined tasks
which is a complication we want to avoid. Therefore, we
define ϕ to be at least as noisy in its directional infor-
mation as ω if its directional probabilities are statistical
mixtures of those of ω and other states that are equally
noisy as ω; that is, if there are statistical weights λj > 0,

�
j λj = 1, and rotations Rj ∈ SO(d) such that for all

outcomes i,

M(i)
z (ϕ) =

�

j

λjM(i)
Rjz

(ω) for all z. (1)

Clearly, ϕ is noisier than ω in its directional information
if it is at least as noisy, and at the same time not equally
noisy as ω. In Definition 8 and following in Appendix A,
we show that this notion is a natural generalization of
the majorization relation [36] from classical probability
theory and quantum theory. It also has a natural in-
terpretation in terms of resource theories [13, 37]: for

any given ω, the probability functions z �→ M(i)
z (ω) –

or rather their directional asymmetry – constitute a re-
source for Bob. One resource is less useful – that is, more
noisy – than the other if it can be obtained from the other
by “free” operations; in this case, by tossing a coin and
performing a random rotation.

Suppose we had a protocol that satisfied Postulate 1,
and two states ϕ �= ω that would work as a possible
encoding of some direction x, in the sense that Bob would
in both cases decode direction x in the limit of obtaining
infinitely many copies. Then, by choosing to send either
ϕ or ω, Alice could send an additional classical bit to
Bob. Postulate 2 says that this is only possible at the
expense of adding noise – that is, one of the two states
must be noisier in its directional information than the
other.

Our goal is to determine the shape of the convex state
space of a direction bit, using only Postulates 1 and 2
and the physical background assumptions (Postulates 3
and 4 will be considered later). To this end, suppose Alice
encodes some direction x according to some protocol into
a state ω(x) and sends many copies of it to Bob. If the
protocol satisfies Postulates 1 and 2, Bob will be able to
decode x.

Now suppose that Bob secretly performed a rotation
R ∈ SO(d) on his laboratory before the protocol started.
Since the protocol must work regardless of the relative
orientation of Alice and Bob, Bob will still succeed to
obtain an accurate estimate of x as before.

As we have seen, applying R to a measurement device
can be replaced by applying GR−1 to the direction bit
state. Therefore, the following implementation will also
allow Bob to guess x:

• Apply GR−1 to every incoming direction bit; mea-
sure as in the protocol above.

• After obtaining n copies, determine the guess x(n)

given by the protocol above.

• To compensate for the missing lab rotation, output
the guess Rx(n).

Suppose that R is in the stabilizer subgroup of x, i.e.
Rx = x. Then the lines above prove that the original
protocol also works if Alice sends the state GR−1(ω(x))
to Bob instead of ω(x). But these states are equally noisy

Suppose ω and φ encode same direction x
→ by choosing to send ω or φ, 
     Alice can encode an additional bit

probability of i-th
outcome: M(i)

y (ω)

→ one directional profile more noisy
     than the other y

M(i)
y (ω) M(i)

y (ϕ)
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The state space (into which Alice

encodes) is a d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.

In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.

In Appendix B, we consider a more general situation

where this assumption is dropped, and the orientation of

devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
. We show that formu-

lating analogues of our two postulates for those “frame

bits” does not admit any solution. The main reason for

this turns out to be topological: while SO(d) (carrying

the orientations X) is not simply connected for d ≥ 2,

the unit sphere SD−1
(carrying possible pure states ωX)

is simply connected for D ≥ 3.

IV. SPATIAL GEOMETRY FROM

PROBABILITY MEASUREMENTS

Before continuing our derivation, we take a slight de-

tour by asking for the relationship between the geometry

of physical space and state space.

As indicated in Fig. 4, our setting assumes that macro-

scopic objects can be physically rotated. This rotation

induces Euclidean structure in physical space: the angle
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invariant Haar measure, there is constant c ∈ (0, 1) such
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noise parameter.
Now suppose ω is any state which is a codeword for
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state, and it is easy to see that it is also a codeword
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sult above implies that ω = ω�
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have proven that every state ω can be written in the form
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G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation
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and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction
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such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
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. This

proves that D = d.

Theorem 1. The state space (into which Alice
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This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations
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surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have
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a = 1, this describes a quantum spin measurement in
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In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.
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devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
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of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).

!" #" $"
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

?
d = 1 d = 2 d = 3 d = 4 . . .
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With some effort, one can prove from Postulates 1+2:
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The state space (into which Alice

encodes) is a d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.

In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.

In Appendix B, we consider a more general situation

where this assumption is dropped, and the orientation of

devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
. We show that formu-

lating analogues of our two postulates for those “frame

bits” does not admit any solution. The main reason for

this turns out to be topological: while SO(d) (carrying

the orientations X) is not simply connected for d ≥ 2,

the unit sphere SD−1
(carrying possible pure states ωX)

is simply connected for D ≥ 3.

IV. SPATIAL GEOMETRY FROM

PROBABILITY MEASUREMENTS

Before continuing our derivation, we take a slight de-

tour by asking for the relationship between the geometry

of physical space and state space.

As indicated in Fig. 4, our setting assumes that macro-

scopic objects can be physically rotated. This rotation

induces Euclidean structure in physical space: the angle

3

of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

?
d = 1 d = 2 d = 3 d = 4 . . .

classical bit quantum bit
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The state space (into which Alice

encodes) is a d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.

In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.

In Appendix B, we consider a more general situation

where this assumption is dropped, and the orientation of

devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
. We show that formu-

lating analogues of our two postulates for those “frame

bits” does not admit any solution. The main reason for

this turns out to be topological: while SO(d) (carrying

the orientations X) is not simply connected for d ≥ 2,

the unit sphere SD−1
(carrying possible pure states ωX)

is simply connected for D ≥ 3.

IV. SPATIAL GEOMETRY FROM

PROBABILITY MEASUREMENTS

Before continuing our derivation, we take a slight de-

tour by asking for the relationship between the geometry

of physical space and state space.

As indicated in Fig. 4, our setting assumes that macro-

scopic objects can be physically rotated. This rotation

induces Euclidean structure in physical space: the angle

3

of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

?
d = 1 d = 2 d = 3 d = 4 . . .

classical bit quantum bit
all balls are

2-level systems.
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3. The postulates

With some effort, one can prove from Postulates 1+2:

3

of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The “direction bit” state space is a

d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.

In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.

In Appendix B, we consider a more general situation

where this assumption is dropped, and the orientation of

devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
. We show that formu-

lating analogues of our two postulates for those “frame

bits” does not admit any solution. The main reason for

this turns out to be topological: while SO(d) (carrying

the orientations X) is not simply connected for d ≥ 2,

the unit sphere SD−1
(carrying possible pure states ωX)

is simply connected for D ≥ 3.

IV. SPATIAL GEOMETRY FROM

PROBABILITY MEASUREMENTS

Before continuing our derivation, we take a slight de-

tour by asking for the relationship between the geometry

of physical space and state space.

As indicated in Fig. 4, our setting assumes that macro-

scopic objects can be physically rotated. This rotation

induces Euclidean structure in physical space: the angle
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3. The postulates

With some effort, one can prove from Postulates 1+2:

3

of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The “direction bit” state space is a

d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.

In this derivation, we have assumed that the orien-

tation of a measurement device in space is given by a

direction vector. This implicitly assumes some internal

rotational symmetry of the device, as depicted in Fig. 4.

In Appendix B, we consider a more general situation

where this assumption is dropped, and the orientation of

devices is described by an orthonormal frame X ∈ SO(d)

instead of a unit vector x ∈ Rd
. We show that formu-

lating analogues of our two postulates for those “frame

bits” does not admit any solution. The main reason for

this turns out to be topological: while SO(d) (carrying

the orientations X) is not simply connected for d ≥ 2,

the unit sphere SD−1
(carrying possible pure states ωX)

is simply connected for D ≥ 3.

IV. SPATIAL GEOMETRY FROM

PROBABILITY MEASUREMENTS

Before continuing our derivation, we take a slight de-

tour by asking for the relationship between the geometry

of physical space and state space.

As indicated in Fig. 4, our setting assumes that macro-

scopic objects can be physically rotated. This rotation

induces Euclidean structure in physical space: the angle

NOT quantum!
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3. The postulates

With some effort, one can prove from Postulates 1+2:

3

of effects {M(i)}ki=1 that sum to unity if applied to any

state. The set of all possible states of the correspond-

ing physical system will be denoted ΩA, the state space.

It is a bounded subset of A. We have just seen that

ω ∈ ΩA and ϕ ∈ ΩA imply that pω + (1 − p)ϕ ∈ ΩA

for all 0 ≤ p ≤ 1; this means that ΩA is convex. We

will only consider finite-dimensional state spaces in this

paper. Since outcome probabilities can only ever be de-

termined to finite precision, we may (and will) assume

that ΩA is topologically closed.

As a simple example, consider a physical system which

resembles a classical bit, or coin. We can perform a mea-

surement by looking whether the coin shows heads or

tails; think of a two-outcome device which yields the first

outcome if the coin shows heads, and the second other-

wise. The possible states are then characterized by the

probability p ∈ [0, 1] of obtaining heads. The state space

becomes a line segment, with all states being probabilis-

tic mixtures of two pure states that yield either heads or

tails deterministically, see Fig. 3a).
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FIG. 3: Examples of convex state spaces: a) is a classical
bit, b) and c) are classical 3- and 4-level systems, d) is a
quantum bit, e), f) and g) are neither classical nor quantum,
even though e) can naturally be embedded in a qubit. Note
that quantum n-level systems for n ≥ 3 are not balls [35].

The state spaces of a classical three- and four-level sys-

tem are also shown in Fig. 3, b) and c): they are an

equilateral triangle, resp. a tetrahedron. In general, the

state space of a classical n-level system is the set of all

probability distributions (p1, . . . , pn), which is an (n−1)-

dimensional simplex.

Quantum state spaces look quite different. Quantum

bits, the states of spin-1/2 particles, can be described

by 2 × 2 complex density matrices ρ. These can al-

ways be written in the form ρ = (1 + �r · �σ)/2, where

�r is an ordinary real vector in R3
with |�r| ≤ 1, and

σ = (σx,σy,σz) denotes the Pauli matrices [36]. We can

consider �r = (rx, ry, rz) as the state of the qubit. Thus,

the state space is a three-dimensional unit ball as shown

in Fig. 3d). A spin measurement in the z-direction may

be described by the two effects M(1)
(�r) = (1 + rz)/2

and M(2)
(�r) = (1 − rz)/2, for example, where the two

outcomes correspond to “spin up” and “spin down”, re-

spectively.

However, the state space of a quantum n-level system is

only a ball for n = 2; for n ≥ 3, quantum state spaces are

not balls, but intricate compact convex sets of dimension

n
2 − 1 [35, 38].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

From the effects, we can construct expectation values

of observables, simply called observables in the following.

These are arbitrary affine maps h : A → R; in quantum

theory, they are maps of the form ρ �→ tr(ρH), where

H = H
†
is any self-adjoint matrix. An observable can

be measured (on many copies of a state) by writing it as

a linear combination of effects, h =
�

i hiMi, hi ∈ R,
and measuring the effects Mi (in general, they may be

outcomes of different measurement devices).

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†
). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space

ΩA onto itself – they are symmetries of the state space.

The set of reversible transformations on A is a closed

subgroup GA of all symmetries of ΩA.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. For simplicity, we assume that there is a fixed

flat background space, such that there is a unique way

to transport vectors from one laboratory A to another

distant laboratory B (however, we think that our results

may apply to more general situations). We will also as-

sume that all physical operations considered in the fol-

lowing, such as measurements, are performed locally in a

way such that all parties (particles, measurement devices

etc.) are relative to each other at rest [69]. Thus, we do

not have to consider conceivable relativistic effects.
In general, there may be many different kinds of phys-

ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of
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invariant Haar measure, there is constant c ∈ (0, 1) such

that My(µ) = c for all y. We call c the direction bit’s

noise parameter.
Now suppose ω is any state which is a codeword for

some direction x. Then λ := Lx(ω)/a is in the in-

terval (0, 1]. Thus, ω�
:= λωx + (1 − λ)µ is a valid

state, and it is easy to see that it is also a codeword

for x. But Lx(ω�
) = Lx(ω), and so the intermediate re-

sult above implies that ω = ω�
. Since every state can

be approximated arbitrarily well by some codeword, we

have proven that every state ω can be written in the form
ω = λωx+(1−λ)µ for some direction x, where 0 ≤ λ ≤ 1.

We are free to reparametrize the state space Ωd via

some affine map φ : RD → RD
, where D is the di-

mension of Ωd: replacing states via ω �→ ω̂ := φ(ω),
effects via M �→ M̂ := M ◦φ−1

and transformations via

G �→ Ĝ := φ ◦ G ◦ φ−1
does not change any probabili-

ties or physical predictions. Basic group representation

theory [43] tells us that we can choose φ such that the

transformed group Ĝ acts linearly and contains only or-

thogonal matrices, and the transformed states ω̂x (for

different x) – being connected by reversible transforma-

tions – have all the same Euclidean norm 1. Moreover,

the maximally mixed state µ̂, being invariant with re-

spect to all transformations, becomes the zero vector.

Since all states ω̂ are convex mixtures of some ω̂x and

µ̂, we obtain the situation depicted in Fig. 5: the trans-

formed state space Ω̂d is compact convex subset of the

D-dimensional unit ball, with all ω̂x on the surface and

µ̂ = 0 in the center.

FIG. 5: After a reparametrization, we obtain that the direc-
tion bit state space Ω̂d is a compact convex subset of a unit
ball. Since the maximally mixed state µ̂ is in the interior,
there is some ε > 0 such that the state space contains a full
ε-ball around the origin µ̂ = 0. But we have proven that all
states ω̂ are convex combinations of µ̂ and some state ω̂x with
|ω̂x| = 1, thus ω̂x must thus lie on the line starting at µ̂ = 0
and crossing ω̂. Consequently, all points on the sphere must
be contained in the state space – we obtain the full unit ball.
By dimension counting, it is d-dimensional.

It is easy to see that the maximally mixed state µ̂ is in

the interior of Ω̂d, since it is a mixture of all pure states.

Hence there is some ball of radius ε > 0 around µ̂ = 0

which is fully contained in Ω̂d. Thus, if v ∈ RD
is any unit

vector, then εv/2 must be a valid state in Ω̂d. As we have

proven above, there is some 0 ≤ λ ≤ 1 and some direction

x ∈ Rd
such that εv/2 = λω̂x + (1 − λ)µ̂. This is only

possible if ε = 2λ and v = ω̂x – in other words, v ∈ Ω̂d.

This proves that Ω̂d is the full D-dimensional unit ball.

By construction, the map x �→ ω̂x is a homeomorphism

from the unit sphere in Rd
to the unit sphere in RD

. This

proves that D = d.

Theorem 1. The “direction bit” state space is a

d-dimensional unit ball.

This shows that a direction bit cannot be described

by a classical probability distribution: it must carry a

non-classical state space, exhibiting uncertainty relations

among d independent, mutually complementary mea-

surements. Probabilistic systems of this type, i.e. ball

state spaces, have been studied before [44–46]. In quan-

tum physics as we know it, there is only one kind of

system with a ball state space: it is the qubit, a quan-

tum 2-level state space. It is three-dimensional, which

coincides with the spatial dimension, confirming the re-

sult we just proved. By classifying the affine maps from

the ball to [0, 1], it is easy to check that we must have

Mx(ω) = c+ (a/2)�ω̂x, ω̂�. (3)

In the familiar three-dimensional case, if c = 1/2 and

a = 1, this describes a quantum spin measurement in

direction x; if c �= 1/2 or a < 1, it is a noisy spin mea-

surement.
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As indicated in Fig. 4, our setting assumes that macro-
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NOT quantum!

Quantum 3-level state space looks more like this:

6

FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set ∆2 in it.

we consider the space curve

�x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), − sin(t)

�T
. (16)

Note that the curve is closed, �x(t) = �x(t + 2π), and be-

longs to the unit sphere, ||�x(t)|| = 1. Moreover

||�x(t)− �x(t+ 1
32π)|| =

√
3 (17)

for every value of t. Hence every point �x(t) belongs to

an equilateral triangle with vertices at

�x(t), �x(t+ 1
32π), and �x(t+ 2

32π) .

They span a plane including the z-axis for all times t.
During the time ∆t =

2π
3 this plane makes a full turn

about the z-axis, while the triangle rotates by the angle

2π/3 within the plane—so the triangle has returned to a

congruent position. The curve �x(t) is shown in Fig. 8 a)

together with exemplary positions of the rotating trian-

gle, and Fig. 8 b) shows its convex hull C. This convex

hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve �x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is

our best model so far of the set of quantum pure states,

although the likeness is not perfect.

It is interesting to think a bit more about the boundary

of C. There are three flat faces, two triangular ones and

one rectangular. The remaining part of the boundary

consists of ruled surfaces: they are curved, but contain

one dimensional faces (straight lines). The boundary of

the set shown in Fig. 7 has similar properties. The ruled

surfaces of C have an analogue in the boundary of the

set of quantum states Q3, we have already noted that a

generic point in the boundary of Q3 belongs to a copy of

Q2 (the Bloch ball), arising as the intersection of Q3 with

a hyperplane. The flat pieces of C have no analogues in

the boundary of Q3, apart from Bloch balls (rank two)

and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states

has self-intersections. Although it is created by rotating

a triangle, the triangles are not cross-sections of C. It

is not true that every point on the boundary belongs

to a face that touches the largest inscribed sphere, as

it happens for the set of quantum states [17]. Indeed its

boundary is not quite what we want it to be, in particular

Bengtsson, Weis, Zyczkowski, "Geometry of the set of mixed quantum states: An apophatic approach", arXiv:1112.2347
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3. The postulates

To single out d=3: consider pairs of direction bits.

A B
d =? d =?

AB

Basic assumptions on composite state space AB:

• Contains “product states“ ωAωB .

ωA ωB

• Allows for “product measurements“ MAMB :

MAMB(ωAωB) = MA(ωA) · MB(ωB).
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certainty renders the outcome of measurement N com-

pletely undetermined.

On the other hand, the square state space does

not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-

tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

R ∈ SO(d) is the same as

GR−1ω
ω
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FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The
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x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

R ∈ SO(d) is the same as

GR−1ω
ω

representation of SO(d)
on state space
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

representation of SO(d)
on state space
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tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

R ∈ SO(d) is the same as

GR−1ω
ω
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

ωAωB �→ (GRω
A)(GRω

B)

representation of SO(d)
on state space
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certainty renders the outcome of measurement N com-

pletely undetermined.

On the other hand, the square state space does

not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-

tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

R ∈ SO(d) is the same as
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
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y XωA
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B
y = 0

M
A
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2ωA
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y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

ωAωB �→ (GRω
A)(GRω

B)

representation of SO(d)
on state space
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certainty renders the outcome of measurement N com-

pletely undetermined.

On the other hand, the square state space does

not have any complementarity or uncertainty of this

kind: the analogous measurements in the parametriza-

tion given above are M(1)(ω) = ωx and N (1)(ω) = ωy,

and there are states like ω = (1, 1) for which both mea-

surements yield the first outcome with certainty. In prin-

ciple, as shown in the last part of Fig. 3g), state spaces

may be arbitrary convex sets of arbitrary finite dimen-

sion, differing in many information-theoretic properties

like uncertainty relations [21].

Given any state space ΩA, all effects, i.e. affine maps

M : A → R withM(ω) ∈ [0, 1] describe outcomes of con-

ceivable measurement devices. We can work out the set

of these maps from a description of ΩA. In general, some

of these measurements might be physically impossible to

implement; in order to describe a physical system, we

have to specify which ones are possible and which ones

are not.

Similarly, we can describe reversible transformations
of a physical system: these are physical processes that

take a state to another state, and may be inverted by

another physical process (in quantum theory, these are

the unitaries, mapping ρ to UρU†). Since they must

respect probabilistic mixtures, they must also be affine

maps. Due to reversibility, they map the state space ΩA

onto itself – they are symmetries of the state space.

Not all symmetries must correspond to possible phys-

ical processes. For example, for the unit ball (the quan-

tum bit), rotations and reflections are symmetries. While

rotations of the Bloch ball correspond to allowed unitary

maps on density matrices, reflections correspond to anti-

unitaries which are physically not allowed. The set of

allowed reversible transformations on a system A is a

group GA. We assume that GA is topologically closed (it

may be a finite group). In quantum theory, GA is the

group of unitaries; for classical n-level systems, it is the

group of permutations of outcomes.

III. SINGLE SYSTEMS: POSTULATES 1 AND 2

We consider a particular situation where measure-

ments take place in d-dimensional space, with one time

dimension. Our analysis will apply to flat (d + 1)-

dimensional Minkowski space, Euclidean space, and more

general situations like curved space: we only consider

measurements that are done locally and at rest, so that

only the non-relativistic d-dimensional Euclidean geom-

etry of the local space in the laboratory rest frame will

be relevant [64].

In general, there may be many different kinds of phys-
ical systems described by convex state spaces. We now

assume that there exists a particular type of physical sys-

tem which, in a sense to be made precise, behaves like a

“unit of direction information”. We will call these sys-

tems “direction bits” (later on, we show that they are

naturally related to two-outcome measurements, there-

fore “bits”). We will not specify by what type of physical

object they are carried – a direction bit could, for ex-

ample, correspond to the internal degrees of freedom of

a particle, or it could be something completely different.
We will only assume that a direction bit may come in dif-

ferent states (matching the framework described above),

with a state space denoted Ωd.

FIG. 4: We assume that direction bits can be measured by
some macroscopic measurement device, which yields one of
several outcomes i ∈ {1, . . . , k} probabilistically. The device
can be rotated in space; due to symmetry, its modus operandi
depends only on a direction vector x ∈ Rd, |x| = 1. The

probabilityM(i)
x (ω) to obtain the i-th outcome if the direction

bit was in state ω depends continuously on the direction x.

We assume that direction bits can be measured by a

certain type of measurement device with a finite number

of outcomes. As shown in Fig. 4, we imagine that the

device is implemented as a macroscopic, massive object

which can be rotated arbitrarily, i.e. can be subjected

to any SO(d) rotation. Due to some symmetry of the

device, its orientation in space (locally in the lab) may

be described by a unit vector y ∈ Rd, |y| = 1. We can

imagine that a vector is attached to the device, pointing

in some direction. In a somewhat more physical inter-

pretation, this means that the working of the device de-

pends on a vector y describing some physical quantity. A

standard example in three dimensions is given by a Stern-

Gerlach device, where y is the direction of inhomogeneity

of a magnetic field.

The case d = 1 is special, because SO(1) = {1} is a

trivial group, and thus no one-dimensional rotation can

map the unit vector +1 ∈ R1 to the unit vector −1 ∈
R1. In order to allow Bob to collimate his device in all

directions also in d = 1, we will thus silently replace

SO(1) by O(1) = {1,−1} in all of the following.

The measurement which is performed by the device

may depend on its direction y in space and is thus de-

noted My. In the following, by a “direction”, we shall

always mean a unit vector in Rd. For obvious physi-

R ∈ SO(d) is the same as
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus
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y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

ωAωB �→ (GRω
A)(GRω

B)

hence ωAB �→ (GRGR)ω
AB .
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

Equivalent: "The product states span AB".

"Local tomography"
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Result 2: From Postulates 1, 2, and 3, it follows
that the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.

3

Equivalent: "The product states span AB".

"Local tomography"

A B
d =? d =?

AB
Still many possibilities
in all dimensions d.
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This shows that Postulate 3 also has geometric signifi-
cance: suppose we decide to carry out a local coordinate
transformation; in our case, this is a rotation R ∈ SO(d).
This transformation acts on states of direction bits via
ωA �→ GRωA. The third postulate now tells us that this
uniquely determines the coordinate transformation map
on (correlated) pairs of systems: they are transformed
via ωAB �→ (GRGR)ωAB , which is the only possible lin-
ear map that transforms ωAωB into (GRωA)(GRωB).

Every pair of state spaces ΩA and ΩB can be combined
into a joint state space ΩAB in accordance with Pos-
tulate 3: the “smallest” possible choice (denoted Ωmin

AB )
is to define it as the convex hull of all product states
ωAωB . On the other hand, the “largest” possible choice
(denoted Ωmax

AB ) is to allow all vectors ωAB such that all
local measurements yield valid probabilities, even after
postselection [47, 48]. Every compact convex set ΩAB

which satisfies

Ωmin
AB ⊆ ΩAB ⊆ Ωmax

AB

is then a possible choice of the global state space, as
long as local reversible transformations map ΩAB into
itself. In quantum theory, Ωmin

AB turns out to be the set
of unentangled states, while the actual global quantum
state space ΩAB lies strictly in between Ωmin

AB and Ωmax
AB .

Composites of convex state spaces have been exten-
sively studied in the quantum information literature.
Some of this interest is due to the fact that many of
these state spaces contain states with non-local corre-
lations that are stronger than those allowed by quan-
tum theory. For example, if ΩA = ΩB is the square
state space as in Fig. 3f), then the composite Ωmax

AB is
the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [19, 49–51]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB in accordance with
Postulate 3, including Ωmin

AB and Ωmax
AB . Our fourth and

final postulate now states that this global state space
allows for continuous reversible interaction.

Postulate 4 (Interaction). On AB, there is
a continuous one-parameter group of transformations
{TAB

t }t∈R which is not a product of local transforma-
tions, TAB

t �= TA
t TB

t .

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then
the state at time t will be ωAB(t) := TAB

t (ωAωB). If
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state

forever: ωAB(t) = (TA
t ωA)(TB

t ωB). In this case, the two
direction bits could never become correlated; there would
be no interaction. Postulate 4 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.
The global transformations TAB

t and the local trans-
formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (5), it is a
matrix Lie group acting on R(d+1)(d+1)−1. The corre-
sponding Lie algebra is called hAB . Let X be some ele-
ment of hAB , and consider the circuit in Fig. 6. It depicts
the outcome probability of a product measurement on an
evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 23 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 6. Since this is the maximal possible
value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a long list of constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 6: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [52], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 4 cannot be satisfied.

Theorem 2. From Postulates 1–4 it follows that
the spatial dimension must be d = 3.
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This shows that Postulate 3 also has geometric signifi-
cance: suppose we decide to carry out a local coordinate
transformation; in our case, this is a rotation R ∈ SO(d).
This transformation acts on states of direction bits via
ωA �→ GRωA. The third postulate now tells us that this
uniquely determines the coordinate transformation map
on (correlated) pairs of systems: they are transformed
via ωAB �→ (GRGR)ωAB , which is the only possible lin-
ear map that transforms ωAωB into (GRωA)(GRωB).

Every pair of state spaces ΩA and ΩB can be combined
into a joint state space ΩAB in accordance with Pos-
tulate 3: the “smallest” possible choice (denoted Ωmin

AB )
is to define it as the convex hull of all product states
ωAωB . On the other hand, the “largest” possible choice
(denoted Ωmax

AB ) is to allow all vectors ωAB such that all
local measurements yield valid probabilities, even after
postselection [47, 48]. Every compact convex set ΩAB

which satisfies

Ωmin
AB ⊆ ΩAB ⊆ Ωmax

AB

is then a possible choice of the global state space, as
long as local reversible transformations map ΩAB into
itself. In quantum theory, Ωmin

AB turns out to be the set
of unentangled states, while the actual global quantum
state space ΩAB lies strictly in between Ωmin

AB and Ωmax
AB .

Composites of convex state spaces have been exten-
sively studied in the quantum information literature.
Some of this interest is due to the fact that many of
these state spaces contain states with non-local corre-
lations that are stronger than those allowed by quan-
tum theory. For example, if ΩA = ΩB is the square
state space as in Fig. 3f), then the composite Ωmax

AB is
the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [19, 49–51]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB in accordance with
Postulate 3, including Ωmin

AB and Ωmax
AB . Our fourth and

final postulate now states that this global state space
allows for continuous reversible interaction.

Postulate 4 (Interaction). On AB, there is
a continuous one-parameter group of transformations
{TAB

t }t∈R which is not a product of local transforma-
tions, TAB

t �= TA
t TB

t .

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then
the state at time t will be ωAB(t) := TAB

t (ωAωB). If
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state

forever: ωAB(t) = (TA
t ωA)(TB

t ωB). In this case, the two
direction bits could never become correlated; there would
be no interaction. Postulate 4 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.
The global transformations TAB

t and the local trans-
formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (5), it is a
matrix Lie group acting on R(d+1)(d+1)−1. The corre-
sponding Lie algebra is called hAB . Let X be some ele-
ment of hAB , and consider the circuit in Fig. 6. It depicts
the outcome probability of a product measurement on an
evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 23 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 6. Since this is the maximal possible
value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
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y XωA
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B
y = 0

M
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B
y X

2ωA
x ω
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y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a long list of constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 6: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [52], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 4 cannot be satisfied.

Theorem 2. From Postulates 1–4 it follows that
the spatial dimension must be d = 3.
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Prepare pure state on A with
"Bloch vector"   xxxxxxx ∈ Rd . . .
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local state still points in direction x.
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• If d=3, states ω can be parametrized as 4x4 Hermitian matrices, and
   X satisfies all constraints iff it generates conjugation by unitaries,

X = XA +XB
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• If d=3, states ω can be parametrized as 4x4 Hermitian matrices, and
   X satisfies all constraints iff it generates conjugation by unitaries,
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ρ �→ UρU †.
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the no-signalling polytope for two binary measurements
on two parties, containing PR box states which violate
the Bell-CHSH inequality stronger than any quantum
state [20, 44–46]. This example also illustrates that the
convex state spaces formalism describes a vast landscape
of theories with physical properties that can be very dif-
ferent from those of quantum theory.

In the case of two direction bits A and B, where the
local state spaces are d-balls, there are also many possible
choices of the global state space ΩAB , including Ωmin

AB and
Ωmax

AB . Our third postulate now states that this global
state space allows for continuous reversible interaction.

Postulate 3 (Interaction). On the joint state space
of two direction bits A and B, there is a one-parameter
group of transformations {TAB

t }t∈R which is not a prod-
uct of local transformations, TAB

t �= TA
t TB

t .

Blabla

Postulate 4 (Global coordinate transformation).
For any rotation R ∈ SO(d), there is a unique linear map
on AB which acts as R on both subsystems individually.

The group TAB
t describes continuous reversible time

evolution in a closed system of two direction bits: if we
start at time t = 0 with a product state ωAωB , then the
state at time t will be ωAB(t) := TAB

t (ωAωB). Now if
TAB
t was a product transformation TA

t TB
t for all times

t, then the global state would remain a product state
forever: ωAB(t) = (TA

t ωA)(TB
t ωB). In this case, the two

direction bits could never become correlated; there would
be no interaction. Postulate 3 excludes this: it states that
there is at least one time t ∈ R such that TAB

t is not of
this product form.

The global transformations TAB
t and the local trans-

formations GAGB with GA, GB ∈ SO(d) generate a Lie
subgroup of GAB ; we call it HAB . Due to (6), it is a ma-
trix Lie group acting on Rd(d+2) (we can get from affine to
linear maps by subtracting the global maximally mixed
state µAB = µAµB , similarly as in the case of single
direction bits). The corresponding Lie algebra is called
hAB . Let X be some element of hAB , and consider the
circuit in Fig. 7. It depicts the outcome probability of a
product measurement on an evolved product state,

f(t) := M
A
xM

B
y

�
e
tXωA

x ω
B
y

�
∈ [0, 1].

As we show in Lemma 16 in Appendix A, we may as-
sume without loss of generality that the direction bit
state space has noise parameter c = 1/2 and visibility
parameter a = 1. This is the “noiseless case”, where
spin measurements give probabilities Mx(ω−x) = 0 and
Mx(ωx) = 1, implying in particular that f(0) = 1 for
the circuit in Fig. 7. Since this is the maximal possible

value, we must have f �(0) = 0 and also f ��(0) ≤ 0. Thus

M
A
xM

B
y XωA

x ω
B
y = 0

M
A
xM

B
y X

2ωA
x ω

B
y ≤ 0

for all x, y ∈ Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a list of several constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
ωA
x ω

B
y , apply the transformation exp(tX), and perform a

product measurement MA
xMB

y . Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [47], if
d �= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d �= 3, HAB contains only product transformations,
and Postulate 3 cannot be satisfied.

Theorem 2: From Postulates 1–4, it follows that
the spatial dimension must be d = 3.

The main reason why d = 3 is a special case becomes
visible by inspection of the proof in [47]: it turns out
that the stabilizer subgroup SO(d − 1) plays an impor-
tant role in evaluating the constraints, in particular the
outer product of this group with itself. This has different
properties depending on whether the standard represen-
tation of SO(d − 1) is complex-irreducible. For d = 3,
the stabilizer subgroup SO(d− 1) has a special property
which forces it to be reducible, in contrast to d ≥ 4: it
is Abelian. That is, the fact that rotations commute in
two dimensions, but not in higher dimensions is the main
reason why d = 3 survives. The cases d = 1 and d = 2
are special as well, but are ruled out in the proof, too.
It remains to show that we actually get quantum the-

ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dimΩAB =
d(d + 2) = 15, which agrees with the number of real
parameters in a 4× 4 density matrix. Thus, we can em-
bed ΩAB in the real space of Hermitian 4 × 4-matrices
of unit trace. Now we have global Lie algebra elements
X ∈ hAB that are not just sums of local generators, i.e.
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4. Deriving d=3 and QT

12

X �= XA + XB . However, as shown in [48], these el-
ements are still highly restricted: they generate unitary
conjugations, i.e. transformations of the form ρ �→ UρU†.

By Postulate 3, at least one of these generated uni-
taries must be entangling. Moreover, all local unitary
transformations are possible (in the ball representation,
these are the rotations in SO(3)). It is a well-known fact
from quantum computation [49] that a set of unitaries of
this kind generates the set of all unitaries – that is, every
map of the form ρ �→ UρU† must be contained in the
global transformation group GAB .

The orbit of this group on pure product states gen-
erates all pure quantum states, and one can show [48]
that there can be no other additional states. Thus, we
have recovered the state space of quantum theory on two
qubits. Due to positivity, all effects must be quantum
effects; in the noisy case (i.e. c �= 1/2 or a < 1), not all
quantum effects may actually be implementable – that
is, we might have a restricted set of measurements. We
have thus proven:

Theorem 3: From Postulates 1–4, it follows that
the state space of two direction bits is two-qubit
quantum state space (i.e. the set of 4 × 4 density
matrices), and time evolution is given by a one-
parameter group of unitaries, ρ �→ U(t)ρU(t)†.

As a simple consequence, there exists some 4×4 Hermi-
tian matrix H such that U(t) = exp(−iHt), i.e. a Hamil-
tonian which generates time evolution according to the
Schrödinger equation.

In our physical world, direction bits are given by the
internal degrees of freedom of a spin-1/2 particle; two
direction bits, as analyzed above, correspond to a pair of
distinguishable spin-1/2 particles, such as an electron-
positron pair. Clearly, there are other physical state
spaces that couple to rotations – for example, particles
with spin 1 or 3/2. However, the corresponding state
spaces do not satisfy Postulate 2; their states may be
used to encode further information in addition to their
spin direction.

VII. CONCLUSIONS

In this paper, we have derived two facts about
physics from information-theoretic postulates: the three-
dimensionality of space [50], and the fact that proba-
bilities of measurement outcomes for some systems are
described by quantum theory. In order to do this, we as-
sumed that there exist systems which, in a certain sense,
behave as “units of direction information”.

We have also shown that these systems allow to infer
aspects of Euclidean geometry of physical space (angles
between orientations of devices) from probability mea-
surements alone. This suggests the point of view that the
metric structure of spacetime is not a concept that is in-
dependent of quantum theory, but is somehow emergent
from or intertwined with its state space structure (cf.
also [1–4, 51–54]). Furthermore, these findings suggest
exploring possible generalizations: the approach to con-
struct state spaces from physical symmetry properties,
together with minimality assumptions, might yield inter-
esting examples that have so far remained unexplored.
Our result is not in disagreement with theories like

string theory which predict the existence of extra dimen-
sions or other modifications of spacetime at very small
distances. Our postulates assume that the physical setup
is on a scale where it makes sense to talk about macro-
scopic measurement devices and their rotations. In light
of this point of view, one might speculate whether quan-
tum theory is only an approximation, sharing its domain
of validity with the usual smooth picture of spacetime
that is expected to break down at the Planck scale. The
idea that quantum state space might become modified at
very small distances has also been discussed in [55].
Basically, our three information-theoretic postulates

have reproduced the physics of (two) quantum spin-1/2
particles, or rather of their internal degrees of freedom.
It is an interesting open problem whether generalizations
of this approach (such as the one discussed in Fig. 6 and
Appendix B) could reproduce quantum state spaces for
spin s ≥ 1, or even interesting unknown non-quantum
state spaces.
It is clear that the results of this paper, in particular

the derivation of spatial dimension d = 3, might just be
mathematical coincidence, without any further physical
reason underlying it. Still, we think that our results show
that it can be very fruitful to consider generalizations of
quantum theory in the context of fundamental physics,
yielding hints and ideas that may be invisible when re-
stricting to quantum theory from the start.
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