Three-dimensionality of space and the quantum bit: an information-theoretic approach

Markus P. Müller
Perimeter Institute for Theoretical Physics,Waterloo (Canada)

joint work with Lluís Masanes
ICFO-Institut de Ciències Fotòniques, Barcelona

A surprising coincidence

State space of quantum 2-level system is a 3D Euclidean ball:

A surprising coincidence

State space of quantum 2-level system is a 3D Euclidean ball:

A surprising coincidence

State space of quantum 2-level system is a 3D Euclidean ball:

Space is also 3-dimensional! Is there some deeper reason for this?

A surprising coincidence

State space of quantum 2-level system is a 3D Euclidean ball:

Space is also 3-dimensional! Is there some deeper reason for this?

Probability
 (Spacetime) geometry

Our approach

Our approach

Information-theoretic task in d-dimensional space:

Our approach

Information-theoretic task in d-dimensional space:

|F - Bob can determine x in the limit of many copies, but - Alice cannot encode any additional information, and - the information carriers can interact continuously and reversibly in time,

Our approach

Information-theoretic task in d-dimensional space:

|F - Bob can determine x in the limit of many copies, but - Alice cannot encode any additional information, and

- the information carriers can interact continuously and reversibly in time,
- necessarily $d=3$ and
- quantum theory holds for information carriers (we get unitary time evolution, entanglement, QT state space).

Overview

I. Overview

2. Convex state spaces
3.The postulates
3. Deriving $d=3$ and quantum theory
5.What does all this tell us?

Overview

I. Overview
$\longrightarrow 2$. Convex state spaces
3.The postulates
4. Deriving $d=3$ and quantum theory
5.What does all this tell us?

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Physical systems can be in some state ω. From this, probabilities of outcomes of all possible measurements can be computed:
Prob(outcome "yes" in this measurement \mid input state $\omega)=: \mathcal{M}(\omega)$.

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Physical systems can be in some state ω. From this, probabilities of outcomes of all possible measurements can be computed:
$\operatorname{Prob}($ event $\mathcal{M} \mid$ input state $\omega)=: \mathcal{M}(\omega)$.

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Physical systems can be in some state ω. From this, probabilities of outcomes of all possible measurements can be computed:

$$
\operatorname{Prob}(\text { event } \mathcal{M} \mid \text { input state } \omega)=: \mathcal{M}(\omega)
$$

- Statistical mixtures are described by convex combinations: prepare ω with prob. p and state φ with prob. (I-p), result:

$$
p \omega+(1-p) \varphi
$$

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Consequence: events \mathcal{M} are affine-linear maps:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Consequence: events \mathcal{M} are affine-linear maps:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

- State space $\Omega=$ set of all possible states ω. Convex, compact, finite-dimensional. Otherwise arbitrary.

2. Convex state spaces

Assumption: there are some events that happen probabilistically.

- Consequence: events \mathcal{M} are affine-linear maps:

$$
\mathcal{M}(p \omega+(1-p) \varphi)=p \mathcal{M}(\omega)+(1-p) \mathcal{M}(\varphi)
$$

- State space $\Omega=$ set of all possible states ω. Convex, compact, finite-dimensional. Otherwise arbitrary.
Extremal points are pure states, others mixed.

2. Convex state spaces

Some examples:

f)

2. Convex state spaces

Some examples:

- Classical n-level system:

$$
\Omega=\left\{\omega=\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right\}
$$

n pure states: $\omega_{1}=(1,0, \ldots, 0), \ldots, \omega_{n}=(0, \ldots, 0,1)$.

2. Convex state spaces

Some examples:

d)

f)

g)

- Classical n-level system:

$$
\Omega=\left\{\omega=\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \geq 0, \quad \sum_{i} p_{i}=1\right\}
$$

n pure states: $\omega_{1}=(1,0, \ldots, 0), \ldots, \omega_{n}=(0, \ldots, 0,1)$.
a), b), c): classical 2-, 3-, 4-level systems.

2. Convex state spaces

Some examples:

f)

- d): quantum 2-level system (qubit)

2. Convex state spaces

Some examples:

- d): quantum 2-level system (qubit)
- e), f), g): neither classical nor quantum.

2. Convex state spaces

2. Convex state spaces

Reversible transformations T map states to states, are linear and invertible.

2. Convex state spaces

Reversible transformations T map states to states, are linear and invertible.

- They form a group \mathcal{G}.
- In quantum theory, these are the unitaries:

$$
\rho \mapsto U \rho U^{\dagger}
$$

2. Convex state spaces

Reversible transformations T map states to states, are linear and invertible.

- They form a group \mathcal{G}.
- In quantum theory, these are the unitaries:

$$
\rho \mapsto U \rho U^{\dagger}
$$

- Must be symmetries of state space:

2. Convex state spaces

Reversible transformations T map states to states, are linear and invertible.

- They form a group \mathcal{G}.
- In quantum theory, these are the unitaries:

$$
\rho \mapsto U \rho U^{\dagger}
$$

- Must be symmetries of state space:

2. Convex state spaces

Contains vast landscape of all possible "probabilistic theories".

2. Convex state spaces

Contains vast landscape of all possible "probabilistic theories".

Many physical properties different from QT: superstrong non-locality etc.

Overview

I. Overview
2. Convex state spaces
\longrightarrow 3.The postulates
4. Deriving $d=3$ and quantum theory
5.What does all this tell us?

3.The postulates

3.The postulates

Alice

Postulate 1 (Achievability). There is a protocol which allows Alice to encode any spatial direction $x \in \mathbb{R}^{d}$, $|x|=1$, into a state $\omega(x)$, such that Bob is able to retrieve x in the limit of many copies.

3.The postulates

Postulate 1 (Achievability). There is a protocol which allows Alice to encode any spatial direction $x \in \mathbb{R}^{d}$, $|x|=1$, into a state $\omega(x)$, such that Bob is able to retrieve x in the limit of many copies.

In $\mathrm{d}=2$, Alice could simply send a wristwatch to Bob:

Alice

3.The postulates

Postulate 1 (Achievability). There is a protocol which allows Alice to encode any spatial direction $x \in \mathbb{R}^{d}$, $|x|=1$, into a state $\omega(x)$, such that Bob is able to retrieve x in the limit of many copies.

In $\mathrm{d}=2$, Alice could simply send a wristwatch to Bob:

Alice

Would contain huge amount of information! Want minimality.

3.The postulates

Postulate 2 (Minimality). No protocol allows Alice to encode any further information into the state without adding noise to the directional information.

3.The postulates

Postulate 2 (Minimality). No protocol allows Alice to encode any further information into the state without adding noise to the directional information.

Suppose ω and φ encode same direction x
\rightarrow by choosing to send ω or φ,
Alice can encode an additional bit

3.The postulates

Alice

Postulate 2 (Minimality). No protocol allows Alice to encode any further information into the state without adding noise to the directional information.
probability of i-th outcome: $\mathcal{M}_{y}^{(i)}(\omega)$

Suppose ω and φ encode same direction x
\rightarrow by choosing to send ω or φ,
Alice can encode an additional bit

3.The postulates

Postulate 2 (Minimality). No protocol allows Alice to encode any further information into the state without adding noise to the directional information.

probability of i-th outcome: $\mathcal{M}_{y}^{(i)}(\omega)$

Suppose ω and φ encode same direction x \rightarrow by choosing to send ω or φ, Alice can encode an additional bit
\rightarrow one directional profile more noisy than the other

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The state space (into which Alice encodes) is a d-dimensional unit ball.

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The state space (into which Alice encodes) is a d-dimensional unit ball.

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The state space (into which Alice encodes) is a d-dimensional unit ball.

quantum bit

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The state space (into which Alice encodes) is a d-dimensional unit ball.

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The "direction bit" state space is a d-dimensional unit ball.

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The "direction bit" state space is a d-dimensional unit ball.

3.The postulates

With some effort, one can prove from Postulates I+2:

Theorem 1. The "direction bit" state space is a d-dimensional unit ball.

Quantum 3-level state space looks more like this:
Bengtsson, Weis, Zyczkowski, "Geometry of the set of mixed quantum states:An apophatic approach", arXiv: I I I 2.2347

3.The postulates

To single out $d=3$: consider pairs of direction bits.

3.The postulates

To single out $d=3$: consider pairs of direction bits.

Basic assumptions on composite state space $A B$:

- Contains "product states" $\omega^{A} \omega^{B}$.

$$
\mathcal{M}^{A} \mathcal{M}^{B}\left(\omega^{A} \omega^{B}\right)=\mathcal{M}^{A}\left(\omega^{A}\right) \cdot \mathcal{M}^{B}\left(\omega^{B}\right)
$$

3.The postulates

3.The postulates

is the same as

3.The postulates

is the same as

3.The postulates

is the same as

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

3.The postulates

is the same as

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

$\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$

3.The postulates

is the same as

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.
$\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$

3.The postulates

is the same as

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

$\omega^{A} \omega^{B} \mapsto\left(G_{R} \omega^{A}\right)\left(G_{R} \omega^{B}\right)$
hence $\quad \omega^{A B} \mapsto\left(G_{R} G_{R}\right) \omega^{A B}$.

3.The postulates

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

3.The postulates

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

Equivalent: "The product states span $A B$ ".
"Local tomography"

3.The postulates

Postulate 3 (Global coordinate transformation). For any rotation $R \in S O(d)$, there is a unique linear map on $A B$ which acts as R on both subsystems individually.

Equivalent: "The product states span $A B$ ".
"Local tomography"

Still many possibilities in all dimensions d.

3.The postulates

Two direction bits should be able to interact via some continuous reversible time evolution:

3.The postulates

Two direction bits should be able to interact via some continuous reversible time evolution:

> Postulate 4 (Interaction). On $A B$, there is a continuous one-parameter group of transformations $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ which is not a product of local transformations, $T_{t}^{A B} \neq T_{t}^{A} T_{t}^{B}$.

3.The postulates

Two direction bits should be able to interact via some continuous reversible time evolution:

> Postulate 4 (Interaction). On $A B$, there is a continuous one-parameter group of transformations $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ which is not a product of local transformations, $T_{t}^{A B} \neq T_{t}^{A} T_{t}^{B}$.

Otherwise no interaction, never!

Overview

I. Overview
2. Convex state spaces
3.The postulates
$\longrightarrow 4$. Deriving $d=3$ and quantum theory
5.What does all this tell us?

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, arXiv: I I I I. 4060

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, arXiv: I I I I. 4060

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, arXiv: I I I I. 4060

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

Prepare pure state on A with "Bloch vector" $x \in \mathbb{R}^{d}$

- (Ominn or $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

... similarly on B...

- Lie algebra element $X \in \mathfrak{g}$
- Lie algebra element $X \in \mathfrak{g}$

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

LI. Masanes, MM, R.Aug generated by X...

... then perform a global transformation

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A} \quad \gamma_{t \in \mathbb{R}}\right.$ and local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

... and finally measure if the local state still points in direction x.
LI. Masanes, MM, R.Augusiak, and D.Perce nint. 4060

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and cal rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

LI. Masanes, MM, R.Augusiak, and D. Peres wann w.it1. 4060

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ ad local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

4. Deriving $d=3$ and QT

Only 3D-balls can "talk to each other":

LI. Masanes, MM, R.Augusiak, and D. Pérez-García, arXiv: I I I I. 4060

- (Unknown) Lie group $\mathcal{G}^{A B}$ generated by $\left\{T_{t}^{A B}\right\}_{t \in \mathbb{R}}$ and local rotations
- Lie algebra element $X \in \mathfrak{g}^{A B}$

Probability for $t=0$ is

$$
p(t=0)=1
$$

4. Deriving $d=3$ and QT

Probability for $t=0$ is $p(t=0)=1$.

4. Deriving $d=3$ and QT

Probability for $t=0$ is $p(t=0)=1$.
帾

$$
\Rightarrow p^{\prime}(0)=0, \quad p^{\prime \prime}(0) \leq 0
$$

4. Deriving $d=3$ and QT

Probability for $t=0$ is $p(t=0)=1$.

$\Rightarrow p^{\prime}(0)=0, \quad p^{\prime \prime}(0) \leq 0$.
\Rightarrow Constraints on $X: \quad \mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X \omega_{x}^{A} \omega_{y}^{B}=0$,

$$
\mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X^{2} \omega_{x}^{A} \omega_{y}^{B} \leq 0
$$

4. Deriving $d=3$ and QT

Probability for $t=0$ is

$$
p(t=0)=1 .
$$

$\Rightarrow p^{\prime}(0)=0, p^{\prime \prime}(0) \leq 0$.
\Rightarrow Constraints on $X: \quad \mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X \omega_{x}^{A} \omega_{y}^{B}=0$,

$$
\mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X^{2} \omega_{x}^{A} \omega_{y}^{B} \leq 0
$$

With some effort, one proves:

- If $d \neq 3, X$ satisfies all constraints only if $X=X^{A}+X^{B}$ (non-interacting).

4. Deriving $d=3$ and QT

Probability for $t=0$ is
$p(t=0)=1$.

$\Rightarrow p^{\prime}(0)=0, p^{\prime \prime}(0) \leq 0$.
\Rightarrow Constraints on $X: \quad \mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X \omega_{x}^{A} \omega_{y}^{B}=0$,

$$
\mathcal{M}_{x}^{A} \mathcal{M}_{y}^{B} X^{2} \omega_{x}^{A} \omega_{y}^{B} \leq 0
$$

With some effort, one proves:

- If $d \neq 3, X$ satisfies all constraints only if $X=X^{A}+X^{B}$ (non-interacting).
- If $d=3$, states ω can be parametrized as 4×4 Hermitian matrices, and X satisfies all constraints iff it generates conjugation by unitaries,

$$
\rho \mapsto U \rho U^{\dagger}
$$

4. Deriving $d=3$ and QT

Theorem 2: From Postulates 1-4, it follows that the spatial dimension must be $d=3$.

4. Deriving $d=3$ and QT

Theorem 2: From Postulates 1-4, it follows that the spatial dimension must be $d=3$.

Theorem 3: From Postulates 1-4, it follows that the state space of two direction bits is two-qubit quantum state space (i.e. the set of 4×4 density matrices), and time evolution is given by a oneparameter group of unitaries, $\rho \mapsto U(t) \rho U(t)^{\dagger}$.

Overview

I. Overview
2. Convex state spaces
3.The postulates
4. Deriving $d=3$ and quantum theory
$\longrightarrow 5$.What does all this tell us?

Conclusions

- We proved: natural interplay between space + probability is only possible if space is 3-dimensional, and quantum theory holds.

Conclusions

- We proved: natural interplay between space + probability is only possible if space is 3-dimensional, and quantum theory holds.
- What could this tell us? Some speculation:

Conclusions

- We proved: natural interplay between space + probability is only possible if space is 3-dimensional, and quantum theory holds.
- What could this tell us? Some speculation:

5. Conclusions

> ruling out $d \neq 3$:
> LI. Masanes, MM, D. Pérez-García, R. Augusiak, arXiv: | | | |. 4060
$d=3$ implies quantum theory:
G. de la Torre, LI. Masanes, T. Short, MM, Phys. Rev. Lett. I 09, 090403 (20I2) arXiv:IIIO.5482
this talk:
MM, LI. Masanes, arXiv:I206.0630

Thank you!

Thanks to: Lucien Hardy, Lee Smolin, Cozmin Ududec, Rob Spekkens, Tobias Fritz, ...

| | | | 5. Conclusions |
| :--- | :--- | :--- | :--- | :--- |
| Three-dimensionality of space and the quantum bit (arXiv:I206.0630). M. Müller*, Ll. Masanes | | | |

