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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states

Markus Müller Max Planck Institute for Mathematics in the Sciences, Leipzig

Convex Trace Functions on Quantum Channels and the Additivity Conjecture



The Additivity and Multiplicativity Conjectures General Definition Structural Properties Open Problems

The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states ⇔ S(σ) = 0.
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states ⇔ S(σ) = 0.
◮ A quantum channel Φ : B(Cm) → B(Cn) is a linear,

completely positive, trace-preserving map. It maps quantum
states to quantum states.
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states ⇔ S(σ) = 0.
◮ A quantum channel Φ : B(Cm) → B(Cn) is a linear,

completely positive, trace-preserving map. It maps quantum
states to quantum states.

For a quantum channel Φ, define the minimum output entropy as

Smin(Φ) := min
ρ

S(Φ(ρ))
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states ⇔ S(σ) = 0.
◮ A quantum channel Φ : B(Cm) → B(Cn) is a linear,

completely positive, trace-preserving map. It maps quantum
states to quantum states.

For a quantum channel Φ, define the minimum output entropy as

Smin(Φ) := min
ρ

S(Φ(ρ)) = min
ρ pure

S(Φ(ρ)).
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The Additivity and Multiplicativity Conjectures
Basic Notation:

◮ Quantum states σ on C
n are density matrices, i.e.

σ ∈ M(n × n, C) with Trσ = 1 and σ ≥ 0.
◮ The von Neumann entropy of a quantum state σ is

S(σ) := −Tr (σ log σ). It holds S(σ ⊗ ρ) = S(σ) + S(ρ).
◮ A quantum state σ is pure if it is a projection, i.e. σ2 = σ ⇔

it is not a convex combination of other states ⇔ S(σ) = 0.
◮ A quantum channel Φ : B(Cm) → B(Cn) is a linear,

completely positive, trace-preserving map. It maps quantum
states to quantum states.

For a quantum channel Φ, define the minimum output entropy as

Smin(Φ) := min
ρ

S(Φ(ρ)) = min
ρ pure

S(Φ(ρ)).

Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.
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Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.

◮ “≤” is trivial:
Smin(Φ ⊗ Ω) ≤ S(Φ ⊗ Ω(σΦ ⊗ σΩ)) = Smin(Φ) + Smin(Ω).
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Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.

◮ “≤” is trivial:
Smin(Φ ⊗ Ω) ≤ S(Φ ⊗ Ω(σΦ ⊗ σΩ)) = Smin(Φ) + Smin(Ω).

◮ Additivity holds true for many special channels, e.g. if Φ = Id ,
or if Φ is a unital qubit channel or entanglement-breaking.
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◮ Conjecture is supported by numerical calculations,
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Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.

◮ “≤” is trivial:
Smin(Φ ⊗ Ω) ≤ S(Φ ⊗ Ω(σΦ ⊗ σΩ)) = Smin(Φ) + Smin(Ω).

◮ Additivity holds true for many special channels, e.g. if Φ = Id ,
or if Φ is a unital qubit channel or entanglement-breaking.

◮ Conjecture is supported by numerical calculations,

◮ but open in general.

Markus Müller Max Planck Institute for Mathematics in the Sciences, Leipzig

Convex Trace Functions on Quantum Channels and the Additivity Conjecture



The Additivity and Multiplicativity Conjectures General Definition Structural Properties Open Problems

Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.

◮ “≤” is trivial:
Smin(Φ ⊗ Ω) ≤ S(Φ ⊗ Ω(σΦ ⊗ σΩ)) = Smin(Φ) + Smin(Ω).

◮ Additivity holds true for many special channels, e.g. if Φ = Id ,
or if Φ is a unital qubit channel or entanglement-breaking.

◮ Conjecture is supported by numerical calculations,

◮ but open in general.

Observation
Additivity is true for Φ ⊗ Ω if and only if there exists an
unentangled global minimizer ρ∗ of the map

ρ 7→ S(Φ ⊗ Ω(ρ)),
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Additivity Conjecture: Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) ∀Φ,Ω.

◮ “≤” is trivial:
Smin(Φ ⊗ Ω) ≤ S(Φ ⊗ Ω(σΦ ⊗ σΩ)) = Smin(Φ) + Smin(Ω).

◮ Additivity holds true for many special channels, e.g. if Φ = Id ,
or if Φ is a unital qubit channel or entanglement-breaking.

◮ Conjecture is supported by numerical calculations,

◮ but open in general.

Observation
Additivity is true for Φ ⊗ Ω if and only if there exists an
unentangled global minimizer ρ∗ of the map

ρ 7→ S(Φ ⊗ Ω(ρ)),

that is, if entanglement does not help to get purer output states.
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
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◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
◮ But false in general: Counterexamples known for

◮ p > 4.79 (Werner, Holevo 2002)
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
◮ But false in general: Counterexamples known for

◮ p > 4.79 (Werner, Holevo 2002)
◮ all p > 1 (Winter, Hayden 2007)
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
◮ But false in general: Counterexamples known for

◮ p > 4.79 (Werner, Holevo 2002)
◮ all p > 1 (Winter, Hayden 2007)
◮ 0 ≤ p ≤ 0.11 (Cubitt, Harrow, Leung, Montanaro, Winter ’07)
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

◮ Analogous conjecture (max 7→ min) for 0 ≤ p < 1.
◮ Main Motivation: If (1) is true for all p ∈ (1, 1 + ε) or

p ∈ (1 − ε, 1), then additivity conjecture for Smin is true.
◮ Again, (1) is true for many special channels.
◮ But false in general: Counterexamples known for

◮ p > 4.79 (Werner, Holevo 2002)
◮ all p > 1 (Winter, Hayden 2007)
◮ 0 ≤ p ≤ 0.11 (Cubitt, Harrow, Leung, Montanaro, Winter ’07)
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Operator p-norm (p ≥ 1) for states is ‖σ‖p := (Tr σp)
1
p .

Multiplicativity Conjecture: For all channels Φ, Ω,

max
ρ

‖Φ ⊗ Ω(ρ)‖p = max
ρ1

‖Φ(ρ1)‖p · max
ρ2

‖Ω(ρ2)‖p. (1)

Observation
Eq. (1) is true if and only if there exists an unentangled global
maximizer ρ∗ of the map

ρ 7→ Tr (Φ ⊗ Ω(ρ)p) .
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ.
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.

1
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.

1
◮ As f is convex, ρu can be chosen pure.
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.

1
◮ As f is convex, ρu can be chosen pure.

◮ Smin(ρ) = −maxρ Tr η(Φ(ρ)) with
η(x) := x log x . Thus, additivity is true iff
x log x is additive.
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General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.

1
◮ As f is convex, ρu can be chosen pure.

◮ Smin(ρ) = −maxρ Tr η(Φ(ρ)) with
η(x) := x log x . Thus, additivity is true iff
x log x is additive.

◮ Multiplicativity is true for p > 1 and Φ ⊗ Ω
iff xp is additive for (Φ,Ω).

Markus Müller Max Planck Institute for Mathematics in the Sciences, Leipzig

Convex Trace Functions on Quantum Channels and the Additivity Conjecture



The Additivity and Multiplicativity Conjectures General Definition Structural Properties Open Problems

General Definition
A convex function f : [0, 1] → R is additive for a pair of channels
(Φ,Ω) if there exists some unentangled input state ρu such that

Tr f (Φ ⊗ Ω(ρu)) ≥ Tr f (Φ ⊗ Ω(σ))

for all input states σ. “f additive” :⇔ f additive for all channels.

1
◮ As f is convex, ρu can be chosen pure.

◮ Smin(ρ) = −maxρ Tr η(Φ(ρ)) with
η(x) := x log x . Thus, additivity is true iff
x log x is additive.

◮ Multiplicativity is true for p > 1 and Φ ⊗ Ω
iff xp is additive for (Φ,Ω).

Ultimate Goal: Classify the set of additive functions!
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Structural Properties (an Example)

Theorem
If a convex function f : [0, 1] → R is additive for all channels, and
(λ1, . . . , λn) is any probability vector, then the function

f̃ (x) :=

n
∑

i=1

f (λix)

is additive for all channels, too.
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Structural Properties (an Example)

Theorem
If a convex function f : [0, 1] → R is additive for all channels, and
(λ1, . . . , λn) is any probability vector, then the function

f̃ (x) :=

n
∑

i=1

f (λix)

is additive for all channels, too.

Proof. Let Φ, Ω arbitrary and σ :=







λ1

. . .

λn






; set

Φ̃ := Φ ⊗ σ.
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Structural Properties (an Example)

Theorem
If a convex function f : [0, 1] → R is additive for all channels, and
(λ1, . . . , λn) is any probability vector, then the function

f̃ (x) :=

n
∑

i=1

f (λix)

is additive for all channels, too.

Proof. Let Φ, Ω arbitrary and σ :=







λ1

. . .

λn






; set

Φ̃ := Φ ⊗ σ. The function f is additive for Φ̃ ⊗ Ω, so
Tr f (Φ̃ ⊗ Ω(ρ)) = Tr f̃ (Φ ⊗ Ω(ρ)) has an unentangled global
maximizer.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.

◮ Additive functions are continuous at zero((p = 0)-counterexample by Winter

et al.) The value at x = 1 is arbitrary.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.

◮ Additive functions are continuous at zero((p = 0)-counterexample by Winter

et al.) The value at x = 1 is arbitrary.

◮ For channels of the form Id ⊗ Φ, every convex function is
additive.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.

◮ Additive functions are continuous at zero((p = 0)-counterexample by Winter

et al.) The value at x = 1 is arbitrary.

◮ For channels of the form Id ⊗ Φ, every convex function is
additive.

◮ The set of additive functions for Φ ⊗ Ω is a closed cone. It is
convex if both channels are “unitarily covariant”.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.

◮ Additive functions are continuous at zero((p = 0)-counterexample by Winter

et al.) The value at x = 1 is arbitrary.

◮ For channels of the form Id ⊗ Φ, every convex function is
additive.

◮ The set of additive functions for Φ ⊗ Ω is a closed cone. It is
convex if both channels are “unitarily covariant”.

◮ Werner-Holevo channel in dim. d : Φd(ρ) := 1
d−1

(

1 − ρT
)

.
For Φ3 ⊗ Φ3, every operator-convex function is additive.
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More Structural Properties
(Reminder: “Additive” means “additive for all channels”.)

◮ Affine functions of the form f (x) = ax + b are additive.

◮ Additive functions are continuous at zero((p = 0)-counterexample by Winter

et al.) The value at x = 1 is arbitrary.

◮ For channels of the form Id ⊗ Φ, every convex function is
additive.

◮ The set of additive functions for Φ ⊗ Ω is a closed cone. It is
convex if both channels are “unitarily covariant”.

◮ Werner-Holevo channel in dim. d : Φd(ρ) := 1
d−1

(

1 − ρT
)

.
For Φ3 ⊗ Φ3, every operator-convex function is additive.

◮

x0

Functions f with two affine pieces and kink at x0

are additive iff x0 ≥ γ, where 1
3 ≤ γ ≤ 1 is a constant.
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Entropy is Special:

Theorem
If there exists any additive convex function on [0, 1] of the form

a(x) log x

such that a 6≡ 0 is analytic in a neighborhood of zero, then x log x
is additive, i.e. the additivity conjecture is true.
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Theorem
If there exists any additive convex function on [0, 1] of the form

a(x) log x

such that a 6≡ 0 is analytic in a neighborhood of zero, then x log x
is additive, i.e. the additivity conjecture is true.

The Proof uses
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Entropy is Special:

Theorem
If there exists any additive convex function on [0, 1] of the form

a(x) log x

such that a 6≡ 0 is analytic in a neighborhood of zero, then x log x
is additive, i.e. the additivity conjecture is true.

The Proof uses

◮ the property “f additive⇒
∑

i f (λix) additive” from above,
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Entropy is Special:

Theorem
If there exists any additive convex function on [0, 1] of the form

a(x) log x

such that a 6≡ 0 is analytic in a neighborhood of zero, then x log x
is additive, i.e. the additivity conjecture is true.

The Proof uses

◮ the property “f additive⇒
∑

i f (λix) additive” from above,

◮ the p > 1-multiplicativity-counterexamples by P. Hayden and
A. Winter,
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Entropy is Special:

Theorem
If there exists any additive convex function on [0, 1] of the form

a(x) log x

such that a 6≡ 0 is analytic in a neighborhood of zero, then x log x
is additive, i.e. the additivity conjecture is true.

The Proof uses

◮ the property “f additive⇒
∑

i f (λix) additive” from above,

◮ the p > 1-multiplicativity-counterexamples by P. Hayden and
A. Winter,

◮ the fact that the set of additive functions is closed.
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Many open Problems

◮ Is the set of additive functions convex?
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Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions?

Markus Müller Max Planck Institute for Mathematics in the Sciences, Leipzig

Convex Trace Functions on Quantum Channels and the Additivity Conjecture



The Additivity and Multiplicativity Conjectures General Definition Structural Properties Open Problems

Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions? Example:

Φ 7→ (1 − ε)Φ ⊕ ε1 corresponds to

f additive ⇒ f ((1 − ε)x) additive (under regularity conditions on f ).
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Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions? Example:

Φ 7→ (1 − ε)Φ ⊕ ε1 corresponds to

f additive ⇒ f ((1 − ε)x) additive (under regularity conditions on f ).

◮ Already proven: maxρ Tr f (Φ ⊗ Ω(ρ)) ≤ maxρ Tr f (Φ(ρ)) if
f : [0, 1] → R is convex and f (0) = 0.
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Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions? Example:

Φ 7→ (1 − ε)Φ ⊕ ε1 corresponds to

f additive ⇒ f ((1 − ε)x) additive (under regularity conditions on f ).

◮ Already proven: maxρ Tr f (Φ ⊗ Ω(ρ)) ≤ maxρ Tr f (Φ(ρ)) if
f : [0, 1] → R is convex and f (0) = 0. To do: prove that

maxρ,σ Tr f (Φ ⊗ Φ(ρ ⊗ σ)) = maxρ Tr f (Φ ⊗ Φ(ρ ⊗ ρ)).
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Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions? Example:

Φ 7→ (1 − ε)Φ ⊕ ε1 corresponds to

f additive ⇒ f ((1 − ε)x) additive (under regularity conditions on f ).

◮ Already proven: maxρ Tr f (Φ ⊗ Ω(ρ)) ≤ maxρ Tr f (Φ(ρ)) if
f : [0, 1] → R is convex and f (0) = 0. To do: prove that

maxρ,σ Tr f (Φ ⊗ Φ(ρ ⊗ σ)) = maxρ Tr f (Φ ⊗ Φ(ρ ⊗ ρ)).

◮ Conjecture (from Hayden-Winter counterexample channels):
If f is an additive function such that f ′(0) exists, then
f (x) = ax + b.

Markus Müller Max Planck Institute for Mathematics in the Sciences, Leipzig

Convex Trace Functions on Quantum Channels and the Additivity Conjecture



The Additivity and Multiplicativity Conjectures General Definition Structural Properties Open Problems

Many open Problems

◮ Is the set of additive functions convex?

◮ Do infinitesimal channel perturbations correspond to tangent
vectors on the manifold of additive functions? Example:

Φ 7→ (1 − ε)Φ ⊕ ε1 corresponds to

f additive ⇒ f ((1 − ε)x) additive (under regularity conditions on f ).

◮ Already proven: maxρ Tr f (Φ ⊗ Ω(ρ)) ≤ maxρ Tr f (Φ(ρ)) if
f : [0, 1] → R is convex and f (0) = 0. To do: prove that

maxρ,σ Tr f (Φ ⊗ Φ(ρ ⊗ σ)) = maxρ Tr f (Φ ⊗ Φ(ρ ⊗ ρ)).

◮ Conjecture (from Hayden-Winter counterexample channels):
If f is an additive function such that f ′(0) exists, then
f (x) = ax + b.

Many thanks to: Nihat Ay, David Gross, Tyll Krüger, Ruedi
Seiler, Rainer Siegmund-Schultze, Arleta Szko la, Andreas Winter,
Christopher Witte.
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