All reversible dynamics in maximally non-local theories are trivial

David Gross,¹ Markus Müller,^{2,3} Roger Colbeck,^{4,5} and Oscar C. O. Dahlsten⁴

¹Institute for Theoretical Physics, Leibniz University Hannover
²Institute of Mathematics, Technical University of Berlin
³Institute of Physics and Astronomy, University of Potsdam
⁴Institute of Theoretical Physics, ETH Zurich
⁵Institute of Theoretical Computer Science, ETH Zurich

Outline

I. Beyond quantum: CHSH and PR-boxes The CHSH inequality Two questions about physics

2. All reversible transformations in boxworld

State spaces and their symmetries Main Results

3. Conclusions

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Measurement outcomes: - | and + |. $\mathbf{C} := |\langle \mathbf{X}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{Y} \rangle|$

• If p is a classical probability distribution, then $C \leq 2$.

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Measurement outcomes: - | and + |. $\mathbf{C} := |\langle \mathbf{X}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{Y} \rangle|$

- If p is a classical probability distribution, then $C \leq 2$.
- If $|\psi\rangle$ is a quantum state, then ${f C}>{f 2}$ is possible, but still ${f C}\leq {f 2}\sqrt{{f 2}}.$

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Measurement outcomes: - | and + |. $\mathbf{C} := |\langle \mathbf{X}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{X} \rangle - \langle \mathbf{Y}\mathbf{Y} \rangle|$

- If p is a classical probability distribution, then $C \leq 2$.
- If $|\psi\rangle$ is a quantum state, then $\mathbf{C} > \mathbf{2}$ is possible, but still $\mathbf{C} \leq \mathbf{2}\sqrt{\mathbf{2}}$.
- Hypothetical non-local boxes (e.g. PR-box) can have C = 4.

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

Quantum theory allows for **stronger correlations** than classical theories. Particular example: the **CHSH inequality**.

I. Such boxes are not observed in nature. Are there strong apriori reasons why they are unlikely to exist?

I. Such boxes are not observed in nature. Are there strong apriori reasons why they are unlikely to exist?

Previous results: existence of PR-boxes would have strange consequences:

- Some communication complexity problems would become trivial (van Dam, quant-ph/0501159),
- information causality would be violated (Pawlowski et al., Nature 461, 1101 (2009))...

I. Such boxes are not observed in nature. Are there strong apriori reasons why they are unlikely to exist?

Previous results: existence of PR-boxes would have strange consequences:

- Some communication complexity problems would become trivial (van Dam, quant-ph/0501159),
- information causality would be violated (Pawlowski et al., Nature 461, 1101 (2009))...

2. Is quantum mechanics optimal in its computational power, compared to other probabilistic theories?

- Conjecture by J. Barrett: Yes! (Phys. Rev. A 75, 032304 (2007))
- Can quantum computers efficiently simulate all probabilistic theories?

I. Such boxes are not observed in nature. Are there strong apriori reasons why they are unlikely to exist?

Previous results: existence of PR-boxes would have strange consequences:

- Some communication complexity problems would become trivial (van Dam, quant-ph/0501159),
- information causality would be violated (Pawlowski et al., Nature 461, 1101 (2009))...

2. Is quantum mechanics optimal in its computational power, compared to other probabilistic theories?

- Conjecture by J. Barrett: Yes! (Phys. Rev. A 75, 032304 (2007))
- Can quantum computers efficiently simulate all probabilistic theories?

What about **reversible computation** in probabilistic theories?

- N: number of parties (Alice, Bob, Charlie, ...)
- M: number of measurement devices (X,Y,...)
- K: number of outcomes per device (-1, +1, ...)

- N: number of parties (Alice, Bob, Charlie, ...)
- M: number of measurement devices (X,Y,...)
- K: number of outcomes per device (-1, +1, ...)

- N: number of parties (Alice, Bob, Charlie, ...)
- M: number of measurement devices (X,Y,...)
- K: number of outcomes per device (-1, +1, ...)

A state is a map P that assigns probabilities $P(a_1, \ldots, a_N | A_1, \ldots, A_N)$ to the outcomes a_1, \ldots, a_N , given measurements A_1, \ldots, A_N .

- N: number of parties (Alice, Bob, Charlie, ...)
- M: number of measurement devices (X,Y,...)
- K: number of outcomes per device (-1, +1, ...)

A state is a map P that assigns probabilities

$$P(a_1,\ldots,a_N|A_1,\ldots,A_N)$$

to the outcomes a_1, \ldots, a_N , given measurements A_1, \ldots, A_N .

(N,M,K)-boxworld consists of all states P that are

- non-negative,
- normalized in the obvious sense, and
- satisfy the no-signalling condition: $\sum_{a_i} P(a_1, \dots, a_i, \dots, a_N | A_1, \dots, A_i, \dots, A_N)$ this sum is independent of A_i .

- N: number of parties (Alice, Bob, Charlie, ...)
- M: number of measurement devices (X,Y,...)
- K: number of outcomes per device (-1, +1, ...)

A state is a map P that assigns probabilities

$$P(a_1,\ldots,a_N|A_1,\ldots,A_N)$$

to the outcomes a_1, \ldots, a_N , given measurements A_1, \ldots, A_N .

(N,M,K)-boxworld consists of all states P that are

- non-negative,
- normalized in the obvious sense, and
- satisfy the no-signalling condition: $\sum_{a_i} P(a_1, \dots, a_i, \dots, a_N | A_1, \dots, A_i, \dots, A_N)$ this sum is independent of A_i .

A **reversible transformation** is a linear map T such that T and T^{-1} map the state space to itself.

• M=I (single device): classical probability theory For simplicity, assume K=2 (classical bits, or coins).

• M=1 (single device): classical probability theory For simplicity, assume K=2 (classical bits, or coins).

State space consists of all probability distributions on the 2^N bit strings. All permutations are reversible transformations (these are many!).

• M=I (single device): classical probability theory For simplicity, assume K=2 (classical bits, or coins).

State space consists of all probability distributions on the 2^N bit strings. All permutations are reversible transformations (these are many!).

Geometrically, the state space is a simplex (highly symmetric).

• M=1 (single device): classical probability theory For simplicity, assume K=2 (classical bits, or coins).

State space consists of all probability distributions on the 2^N bit strings. All permutations are reversible transformations (these are many!).

Geometrically, the state space is a simplex (highly symmetric). Example: CNOT

 $\begin{array}{ccccc} 00 & \mapsto & 00 \\ 01 & \mapsto & 01 \\ 10 & \mapsto & 11 \\ 11 & \mapsto & 10 \end{array}$

• M=1 (single device): classical probability theory For simplicity, assume K=2 (classical bits, or coins).

State space consists of all probability distributions on the 2^N bit strings. All permutations are reversible transformations (these are many!).

Geometrically, the state space is a simplex (highly symmetric).

Example: CNOT

 $11 \mapsto 10$

- M=2 (two devices X and Y): "generalized bits" (gbits) if K=2.
 - N=I: prob. for X- and Y-outcomes vary independently

- M=2 (two devices X and Y): "generalized bits" (gbits) if K=2.
 - N=1: prob. for X- and Y-outcomes vary independently

Reversible transformations: Dihedral group D₄

• M=2 (two devices X and Y): "generalized bits" (gbits) if K=2.

• N=1: prob. for X- and Y-outcomes vary independently

- M=2 (two devices X and Y): "generalized bits" (gbits) if K=2.
 - N=I: prob. for X- and Y-outcomes vary independently

P(+1|Y) = 0 P(-1|X) = 0 P(+1|X) = 1 P(-1|Y) = 0 P(+1|Y) = 1

Reversible transformations: Dihedral group D₄

N=2: state space is the 8D "no-signalling polytope"
24 vertices = 16 (4x4) product states + 8 PR-boxes

- M=2 (two devices X and Y): "generalized bits" (gbits) if K=2.
 - N=1: prob. for X- and Y-outcomes vary independently

P(+1|Y

Reversible transformations: Dihedral group D₄

 N=2: state space is the 8D "no-signalling polytope" 24 vertices = 16 (4x4) product states + 8 PR-boxes

P(+1|X)

P(-1|Y) = 0

P(+1|Y) = 1

No reversible transformation maps product states to PR boxes.

The only reversible transformations are SWAP and local transformations.

Theorem I: If $M \ge 2$ (at least two devices), then all reversible transformations in (N,M,K)-boxworld are combinations of

- local relabellings of measurements,
- local relabellings of outcomes,
- and permutations of subsystems.

No other operations (e.g. CNOT) are possible.

Theorem I: If $M \ge 2$ (at least two devices), then all reversible transformations in (N,M,K)-boxworld are combinations of

- local relabellings of measurements,
- local relabellings of outcomes,
- and permutations of subsystems.

No other operations (e.g. CNOT) are possible.

No useful reversible computation at all in boxworld (not even *classical computation*!)

Theorem I: If $M \ge 2$ (at least two devices), then all reversible transformations in (N,M,K)-boxworld are combinations of

- local relabellings of measurements,
- local relabellings of outcomes,
- and permutations of subsystems.

No other operations (e.g. CNOT) are possible.

No useful reversible computation at all in boxworld (not even *classical computation*!)

More non-locality does not necessarily imply more powerful computation.

• There must be lots of symmetry in the state space of a theory for reversible computation.

Hybrid systems: # of devices and outcomes varies among the subsystems.

Hybrid systems: # of devices and outcomes varies among the subsystems.

Theorem I remains valid in some cases, but not in all. Counterex.:

There is a CNOT operation: Bob's bit can control Alice's gbit, but **not vice versa**.

Hybrid systems: # of devices and outcomes varies among the subsystems.

Theorem 2: In every hybrid boxworld system, all reversible transformations map pure product states to pure product states.

Hybrid systems: # of devices and outcomes varies among the subsystems.

Theorem 2: In every hybrid boxworld system, all reversible transformations map pure product states to pure product states.

- No non-locality can ever be reversibly created.
- Measurements done by third parties **must** be modelled as irreversible processes (in contrast to QM!)

2. All reversible transformations in boxworld **Proof Idea**

• Switch from "Schrödinger" to "Heisenberg" picture. QM: states ρ , effects=projectors $\Pi \longrightarrow$ probabilities $\operatorname{tr}(\rho\Pi)$ $\mathcal{U}(\rho) := U\rho U^{\dagger} \longrightarrow \mathcal{U}^{\dagger}(\Pi) := U^{\dagger}\Pi U$

2. All reversible transformations in boxworld **Proof Idea**

2. All reversible transformations in boxworld **Proof Idea**

- Switch from "Schrödinger" to "Heisenberg" picture. QM: states ρ , effects=projectors $\Pi \longrightarrow$ probabilities $tr(\rho \Pi)$ $\mathcal{U}(\rho) := U\rho U^{\dagger} \longrightarrow \mathcal{U}^{\dagger}(\Pi) := U^{\dagger}\Pi U$ • Boxworld: difficult cone of unnormalized states simpler "dual cone" of effects PR (\mathbf{X}) PR PR 🚬 Extremal rays are all spanned by product effects
 - Reversible transformations map product effects to product effects.
 - Preservation of scalar products enough invariants.

Conclusions

- We have classified all reversible transformations in boxworld.
- Except for classical theory (M=1), all reversible transformations are local operations and permutations of subsystems.
- More generally: for hybrid boxworld systems, no entangled states can ever be reversibly prepared from product states.

arXiv:0910.1840, Phys. Rev. Lett. 104, 080402 (2010)

Thank you!