
All reversible dynamics in maximally
non-local theories are trivial

David Gross,1 Markus Müller,2,3 Roger Colbeck,4,5 and Oscar C. O. Dahlsten4

1Institute for Theoretical Physics, Leibniz University Hannover
2Institute of Mathematics, Technical University of Berlin

3Institute of Physics and Astronomy, University of Potsdam
4Institute of Theoretical Physics, ETH Zurich

5Institute of Theoretical Computer Science, ETH Zurich



1. Beyond quantum: CHSH and PR-boxes
The CHSH inequality
Two questions about physics

2.  All reversible transformations in boxworld
State spaces and their symmetries
Main Results

3. Conclusions

Outline



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

Measurement outcomes:  -1 and +1. C :=
∣∣〈XX〉 − 〈XY〉 − 〈YX〉 − 〈YY〉

∣∣



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

Measurement outcomes:  -1 and +1. C :=
∣∣〈XX〉 − 〈XY〉 − 〈YX〉 − 〈YY〉

∣∣

• If p is a classical probability distribution, then C ≤ 2.

p



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

Measurement outcomes:  -1 and +1. C :=
∣∣〈XX〉 − 〈XY〉 − 〈YX〉 − 〈YY〉

∣∣

• If p is a classical probability distribution, then 
• If        is a quantum state, then             is possible, but still 

C ≤ 2.

|ψ〉

C > 2 C ≤ 2
√

2.|ψ〉



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

Measurement outcomes:  -1 and +1. C :=
∣∣〈XX〉 − 〈XY〉 − 〈YX〉 − 〈YY〉

∣∣

• If p is a classical probability distribution, then 
• If        is a quantum state, then             is possible, but still 
• Hypothetical non-local boxes (e.g. PR-box) can have

C ≤ 2.
C > 2 C ≤ 2

√
2.|ψ〉

C = 4.

?

PR-box



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

Measurement outcomes:  -1 and +1. C :=
∣∣〈XX〉 − 〈XY〉 − 〈YX〉 − 〈YY〉

∣∣

• If p is a classical probability distribution, then 
• If        is a quantum state, then             is possible, but still 
• Hypothetical non-local boxes (e.g. PR-box) can have

C ≤ 2.
C ≤ 2

√
2.

C = 4.

?

PR-box

C > 2|ψ〉 +1 -1 -1 -1



1. Beyond quantum: CHSH and PR-boxes 
The CHSH inequality

Quantum theory allows for stronger correlations than 
classical theories. Particular example: the CHSH inequality.

?

PR-box

Satisfies no-signalling-
principle:  Alice's choice of 
measurement does not affect 
Bob's observed probabilities.
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∑

ai

P (a1, . . . , ai, . . . , aN |A1, . . . , Ai, . . . , AN )

A reversible transformation is a linear map T such that T 
and T-1 map the state space to itself.
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Classical reversible 
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possible.
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Reversible transformations:

Dihedral group D4

• N=2: state space is the 8D "no-signalling polytope"
              24 vertices = 16 (4x4) product states + 8 PR-boxes

No reversible transformation maps 
product states to PR boxes.

The only reversible transformations are 
SWAP and local transformations.
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• local relabellings of outcomes,
• and permutations of subsystems.

No other operations (e.g. CNOT) are possible.

No useful reversible computation at all in boxworld 
(not even classical computation!)

• More non-locality does not necessarily imply more powerful 
computation.
• There must be lots of symmetry in the state
space of a theory for reversible computation.
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Hybrid systems: # of devices and outcomes 
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Theorem 1 remains valid in some cases, but not in all. Counterex.:

Alice: M=2
(gbit)

Bob: M=1
(classical bit)

There is a CNOT operation: Bob's bit can control Alice's gbit, 
but not vice versa.
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Main Results

Hybrid systems: # of devices and outcomes 
varies among the subsystems.

Theorem 2: In every hybrid boxworld system, all reversible 
transformations map pure product states to pure product states.

• No non-locality can ever be reversibly created.
• Measurements done by third parties must be modelled as 
irreversible processes (in contrast to QM!)
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• Reversible transformations map product effects to product effects.

• Preservation of scalar products          enough invariants.



Conclusions

• We have classified all reversible transformations in 
boxworld.
• Except for classical theory (M=1), all reversible 
transformations are local operations and permutations 
of subsystems.
• More generally: for hybrid boxworld systems, no 
entangled states can ever be reversibly prepared from 
product states.
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Thank you!


