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Motivation

Are quantum computers more powerful than classical
computers?

Quantum computers can solve some problems faster than
classical computers (→ Shor’s factoring algorithm).
Answer for Computational Complexity: Yes.

What about description length (compression)?
Can classical words be compressed further by allowing
quantum descriptions?
Answer for Kolmogorov Complexity: ???

For fixed classical words like x = 00100010, compare its
classical and its quantum minimal description lengths.
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Classical Kolmogorov Complexity

Finite binary words: {0,1}∗ := {ε,0,1,00,01,10,11,000, . . .}
A computer is a partial recursive function U : {0,1}∗ → {0,1}∗.

Definition of Kolmogorov Complexity

Let U be a (fixed, but arbitrary) universal computer. Then,

C(x) := min{ℓ(p) | U(p) = x} (x ∈ {0,1}∗).

Example

C(101010 . . .10
︸ ︷︷ ︸

2n times “10 ”

) ≤ log n + O(log log n)

C(x) ≤ ℓ(x) + const., C(110111000011 . . .
︸ ︷︷ ︸

n random bits

) ≈ n.
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Qubit Strings

Quantum information theory: study superpositions like

|ψ〉 :=
1√
2

(|10〉 + |0110〉) .

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on H{0,1}∗ ,
the Hilbert space with {0,1}∗ as orthonormal basis.

Thus, |ψ〉 is a qubit string, and so is σ := 2
3 |ψ〉〈ψ| + 1

3 |00〉〈00|.

Properties

Distance measure: trace norm ‖ρ− σ‖Tr := 1
2Tr|ρ− σ|

Length: ℓ(σ) := max{ℓ(s) | 〈s|σ|s〉 > 0}.

For example ℓ(|ψ〉) = 4, and ‖ |ψ〉〈ψ| − σ‖Tr = 1
3 .
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Quantum Kolmogorov Complexity

Similarly as classical computers, quantum computers are
partial maps U : input qubit string σ 7→ output qubit string U(σ).

Definition ( ≈ Berthiaume et al. 2001)

Let U be a universal quantum computer and δ > 0. Then, for
every qubit string ρ, define

QCδ(ρ) := min{ℓ(σ) | ‖ρ− U(σ)‖Tr ≤ δ}.

Moreover, we set

QC(ρ) := min
{

ℓ(σ) | ‖ρ− U(σ, k)‖Tr ≤
1
k

for every k ∈ N

}

.

As classically, QC(ρ) ≤ ℓ(ρ) + const.
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Statement of the Theorem

Result: Concerning minimal description lengths, quantum
computers are not more powerful than classical computers:

Theorem (Quantum Complexity of Classical Words)

For every classical word x ∈ {0,1}∗,

C(x) = QC(|x〉) + O(1).

If 0 < δ < 1
6 , then

QCδ(|x〉) ≤ C(x) + const. ≤ QCδ(|x〉)
1 − 4δ

+ const′.
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Outline of Proof, Part 1

Equation (1) follows from (2) by an appropriate limit δ → 0.
It remains to show Equation (2).

Theorem (Quantum Complexity of Classical Words)

For every classical word x ∈ {0,1}∗,

C(x) = QC(|x〉) + O(1). (1)

If 0 < δ < 1
6 , then

QCδ(|x〉) ≤ C(x) + const. ≤ QCδ(|x〉)
1 − 4δ

+ const′. (2)
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Theorem (Quantum Complexity of Classical Words)

QCδ(|x〉) ≤ C(x) + const. ≤ QCδ(|x〉)
1 − 4δ

+ const′.

Proof of QCδ(|x〉) ≤ C(x) + const.:

Bennett: Every classical computation can be done
reversibly...

... and can thus be simulated by a universal quantum
computer.

Thus, quantum computers are at least as powerful in
compression as classical computers.
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Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Statement of the Main Theorem
Outline of Proof, Part 1
Outline of Proof, Part 2

Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Statement of the Main Theorem
Outline of Proof, Part 1
Outline of Proof, Part 2

Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Statement of the Main Theorem
Outline of Proof, Part 1
Outline of Proof, Part 2

Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Statement of the Main Theorem
Outline of Proof, Part 1
Outline of Proof, Part 2

Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Statement of the Main Theorem
Outline of Proof, Part 1
Outline of Proof, Part 2

Outline of Proof, Part 2

Theorem (Quantum Complexity of Classical Words)

C(x) ≤ QCδ(|x〉)
1 − 4δ

+ const.

Outline of Proof:

Classical words are mutually orthogonal qubit strings, i.e.
〈s|t〉 = 0 if s, t ∈ {0,1}∗ with s 6= t .

(Almost) orthogonal outputs must have (almost) orthogonal
inputs. There are only few short orthogonal qubit strings.

They can all be discovered by short classical computer
programs that simulate the quantum computer with brute
force.

Markus Müller On the Quantum Complexity of Classical Words



Motivation
Kolmogorov Complexity

Main Theorem
Conclusions

Conclusions

Classical and quantum Kolmogorov complexities agree up
to an additive constant on the classical words, e.g.

C(x) = QC(|x〉) + O(1) for every x ∈ {0,1}∗.

Concerning description length alone, quantum and
classical computers are equally powerful.

As C is a special case of QC, both complexities can thus
be treated in a single mathematical framework.
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