On the Quantum Complexity of Classical Words

Markus Müller

Technische Universität Berlin Institut für Mathematik Straße des 17. Juni 136 10623 Berlin Max-Planck-Institut für Mathematik in den Naturwissenschaften Inselstraße 22 04103 Leipzig

ECCS 2007, Dresden

Outline

- Motivation
- Kolmogorov Complexity
 - Classical Kolmogorov Complexity
 - Qubit Strings
 - Quantum Kolmogorov Complexity
- Main Theorem
 - Statement of the Main Theorem
 - Outline of Proof, Part 1
 - Outline of Proof, Part 2

Outline

- **Motivation**
- Kolmogorov Complexity
 - Classical Kolmogorov Complexity
 - Qubit Strings
 - Quantum Kolmogorov Complexity
- Main Theorem
 - Statement of the Main Theorem
 - Outline of Proof, Part 1
 - Outline of Proof, Part 2

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 Answer for Kolmogorov Complexity. ???

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 - Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 - Answer for Kolmogorov Complexity: ????

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 Answer for Kolmogorov Complexity: ???

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 Answer for Kolmogorov Complexity. ???

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?

Answer for Kolmogorov Complexity: ???

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 Answer for Kolmogorov Complexity: ???

Are quantum computers more powerful than classical computers?

- Quantum computers can solve some problems faster than classical computers (→ Shor's factoring algorithm).
 Answer for Computational Complexity: Yes.
- What about description length (compression)?
 Can classical words be compressed further by allowing quantum descriptions?
 Answer for Kolmogorov Complexity: ???

Outline

- **1** Motivation
- 2 Kolmogorov Complexity
 - Classical Kolmogorov Complexity
 - Qubit Strings
 - Quantum Kolmogorov Complexity
- Main Theorem
 - Statement of the Main Theorem
 - Outline of Proof, Part 1
 - Outline of Proof, Part 2

Finite binary words: $\{0,1\}^* := \{\varepsilon,0,1,00,01,10,11,000,\ldots\}$

Definition of Kolmogorov Complexity

Let U be a (fixed, but arbitrary) universal computer. Then,

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(101010...10) \le \log n + \mathcal{O}(\log \log n)$$

2n times "10 "

$$C(x) \le \ell(x) + \text{const.}$$

$$C(110111000011...) \approx n.$$

Finite binary words: $\{0,1\}^* := \{\varepsilon,0,1,00,01,10,11,000,...\}$ A computer is a partial recursive function $U: \{0,1\}^* \to \{0,1\}^*$.

Definition of Kolmogorov Complexity

Let *U* be a (fixed, but arbitrary) universal computer. Then

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(101010...10) \le \log n + \mathcal{O}(\log \log n)$$

2n times "10 "

$$C(x) \le \ell(x) + \text{const.}$$

$$C(110111000011...) \approx n.$$

Finite binary words: $\{0,1\}^* := \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$ A computer is a partial recursive function $U : \{0,1\}^* \to \{0,1\}^*$.

Definition of Kolmogorov Complexity

Let *U* be a (fixed, but arbitrary) universal computer. Then,

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(101010...10) \le \log n + \mathcal{O}(\log \log n)$$

2n times "10 "

$$C(x) \le \ell(x) + \text{const.},$$

$$C(110111000011...) \approx n$$

Finite binary words: $\{0,1\}^* := \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ A computer is a partial recursive function $U : \{0,1\}^* \to \{0,1\}^*$.

Definition of Kolmogorov Complexity

Let *U* be a (fixed, but arbitrary) universal computer. Then,

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(\underbrace{101010\ldots 10}) \leq \log n + \mathcal{O}(\log\log n)$$

2n times "10 "

$$C(x) \le \ell(x) + \text{const.}$$

 $C(\underbrace{110111000011\ldots}) \approx n.$

Finite binary words: $\{0,1\}^* := \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ A computer is a partial recursive function $U : \{0,1\}^* \to \{0,1\}^*$.

Definition of Kolmogorov Complexity

Let *U* be a (fixed, but arbitrary) universal computer. Then,

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(\underbrace{101010\ldots 10}) \leq \log n + \mathcal{O}(\log\log n)$$

2n times "10 '

$$C(x) \leq \ell(x) + \text{const.},$$

 $C(\underbrace{110111000011\ldots}) \approx n.$

Finite binary words: $\{0,1\}^* := \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ A computer is a partial recursive function $U : \{0,1\}^* \to \{0,1\}^*$.

Definition of Kolmogorov Complexity

Let *U* be a (fixed, but arbitrary) universal computer. Then,

$$C(x) := \min\{\ell(p) \mid U(p) = x\}$$
 $(x \in \{0, 1\}^*).$

Example

$$C(\underbrace{101010\ldots 10}) \leq \log n + \mathcal{O}(\log\log n)$$

2n times "10 "

$$C(x) \leq \ell(x) + \text{const.},$$

$$C(110111000011...) \approx n.$$

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma:=\frac{2}{3}|\psi\rangle\langle\psi|+\frac{1}{3}|00\rangle\langle00|$.

 $\rangle > 0$.

• Length: $\ell(\sigma) := \max\{\ell(s) \mid \langle s | \sigma | s \rangle > 0\}$.

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma := \frac{2}{3} |\psi\rangle\langle\psi| + \frac{1}{3} |00\rangle\langle00|$.

Properties

• Distance measure: trace norm $\|\rho - \sigma\|_{\mathrm{Tr}} := \frac{1}{2}\mathrm{Tr}|\rho - \sigma$

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma := \frac{2}{3} |\psi\rangle\langle\psi| + \frac{1}{3} |00\rangle\langle00|$.

Properties

• Distance measure: trace norm $\|\rho - \sigma\|_{\mathrm{Tr}} := \frac{1}{2}\mathrm{Tr}|\rho - \sigma$

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma := \frac{2}{3} |\psi\rangle\langle\psi| + \frac{1}{3} |00\rangle\langle00|$.

Properties

- Distance measure: trace norm $\|\rho \sigma\|_{\mathrm{Tr}} := \frac{1}{2}\mathrm{Tr}|\rho \sigma|$
- Length: $\ell(\sigma) := \max\{\ell(s) \mid \langle s | \sigma | s \rangle > 0\}$

For example $\ell(|\psi\rangle)=4$, and $\|\,|\psi\rangle\langle\psi|-\sigma\|_{\mathrm{Tr}_4}=\frac{1}{\sqrt{3}}$

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma := \frac{2}{3} |\psi\rangle\langle\psi| + \frac{1}{3} |00\rangle\langle00|$.

Properties

- Distance measure: trace norm $\|\rho \sigma\|_{Tr} := \frac{1}{2} Tr |\rho \sigma|$
- Length: $\ell(\sigma) := \max\{\ell(s) \mid \langle s | \sigma | s \rangle > 0\}.$

For example $\ell(|\psi\rangle)=4$, and $\||\psi\rangle\langle\psi|-\sigma\|_{\mathrm{Tr}_4}=\frac{1}{\sqrt{3}}$

Quantum information theory: study superpositions like

$$|\psi
angle := rac{1}{\sqrt{2}} \left(|10
angle + |0110
angle
ight).$$

Definition (Qubit Strings)

A qubit string σ is a state vector or density operator on $\mathcal{H}_{\{0,1\}^*}$, the Hilbert space with $\{0,1\}^*$ as orthonormal basis.

Thus, $|\psi\rangle$ is a qubit string, and so is $\sigma := \frac{2}{3} |\psi\rangle\langle\psi| + \frac{1}{3} |00\rangle\langle00|$.

Properties

- Distance measure: trace norm $\|\rho \sigma\|_{Tr} := \frac{1}{2} Tr |\rho \sigma|$
- Length: $\ell(\sigma) := \max\{\ell(s) \mid \langle s | \sigma | s \rangle > 0\}.$

For example
$$\ell(|\psi\rangle)=4$$
, and $\||\psi\rangle\langle\psi|-\sigma\|_{\mathrm{Tr}}=\frac{1}{3}$

Similarly as classical computers, quantum computers are partial maps U: input qubit string $\sigma \mapsto$ output qubit string $U(\sigma)$.

Definition (≈ Berthiaume et al. 2001

Let U be a universal quantum computer and $\delta > 0$. Then, for every qubit string ρ , define

$$\mathsf{QC}^\delta(
ho) := \mathsf{min}\{\ell(\sigma) \mid \|
ho - U(\sigma)\|_{\mathrm{Tr}} \leq \delta\}.$$

Moreover, we set

$$QC(\rho) := \min \left\{ \ell(\sigma) \mid \|\rho - U(\sigma, \mathbf{k})\|_{\operatorname{Tr}} \leq \frac{1}{\mathbf{k}} \text{ for every } \mathbf{k} \in \mathbb{N} \right\}.$$

As classically, $QC(\rho) \le \ell(\rho) + \text{const}$

Similarly as classical computers, quantum computers are partial maps U: input qubit string $\sigma \mapsto$ output qubit string $U(\sigma)$.

Definition (\approx Berthiaume et al. 2001)

Let U be a universal quantum computer and $\delta > 0$. Then, for every qubit string ρ , define

$$QC^{\delta}(\rho) := \min\{\ell(\sigma) \mid \|\rho - U(\sigma)\|_{Tr} \leq \frac{\delta}{\delta}\}.$$

Moreover, we set

$$QC(\rho) := \min \left\{ \ell(\sigma) \mid \|\rho - U(\sigma, k)\|_{\operatorname{Tr}} \leq \frac{1}{k} \text{ for every } k \in \mathbb{N} \right\}$$

As classically, $QC(
ho) \leq \ell(
ho) + ext{const.}$

Similarly as classical computers, quantum computers are partial maps U: input qubit string $\sigma \mapsto$ output qubit string $U(\sigma)$.

Definition (≈ Berthiaume et al. 2001)

Let *U* be a universal quantum computer and $\delta > 0$. Then, for every qubit string ρ , define

$$QC^{\delta}(\rho) := \min\{\ell(\sigma) \mid \|\rho - U(\sigma)\|_{Tr} \leq \frac{\delta}{\delta}\}.$$

Moreover, we set

$$QC(\rho) := \min \left\{ \ell(\sigma) \mid \|\rho - U(\sigma, k)\|_{\operatorname{Tr}} \leq \frac{1}{k} \text{ for every } k \in \mathbb{N} \right\}.$$

As classically, $\mathsf{QC}(
ho) \leq \ell(
ho) + \mathsf{const.}$

Similarly as classical computers, quantum computers are partial maps U: input qubit string $\sigma \mapsto$ output qubit string $U(\sigma)$.

Definition (\approx Berthiaume et al. 2001)

Let *U* be a universal quantum computer and $\delta > 0$. Then, for every qubit string ρ , define

$$QC^{\delta}(\rho) := \min\{\ell(\sigma) \mid \|\rho - U(\sigma)\|_{Tr} \leq \frac{\delta}{\delta}\}.$$

Moreover, we set

$$QC(\rho) := \min \left\{ \ell(\sigma) \mid \|\rho - U(\sigma, k)\|_{\operatorname{Tr}} \leq \frac{1}{k} \text{ for every } k \in \mathbb{N} \right\}.$$

As classically, $QC(\rho) \le \ell(\rho) + \text{const.}$

Outline

- **Motivation**
- 2 Kolmogorov Complexity
 - Classical Kolmogorov Complexity
 - Qubit Strings
 - Quantum Kolmogorov Complexity
- Main Theorem
 - Statement of the Main Theorem
 - Outline of Proof, Part 1
 - Outline of Proof, Part 2

Statement of the Theorem

Result: Concerning minimal description lengths, quantum computers are not more powerful than classical computers:

Theorem (Quantum Complexity of Classical Words

For every classical word $x \in \{0, 1\}^*$,

$$C(x) = QC(|x\rangle) + \mathcal{O}(1).$$

If
$$0 < \delta < \frac{1}{6}$$
, then

$$\operatorname{\mathsf{QC}}^\delta(|x\rangle) \leq C(x) + \operatorname{const.} \leq \frac{\operatorname{\mathsf{QC}}^\delta(|x\rangle)}{1 - 4\delta} + \operatorname{const'}$$

Statement of the Theorem

Result: Concerning minimal description lengths, quantum computers are not more powerful than classical computers:

Theorem (Quantum Complexity of Classical Words)

For every classical word $x \in \{0, 1\}^*$,

$$C(\mathbf{x}) = QC(|\mathbf{x}\rangle) + \mathcal{O}(1).$$

If $0 < \delta < \frac{1}{6}$, then

$$\operatorname{\sf QC}^\delta(|x\rangle) \leq C(x) + \operatorname{const.} \leq \frac{\operatorname{\sf QC}^\delta(|x\rangle)}{1 - 4\delta} + \operatorname{const}'$$

Statement of the Theorem

Result: Concerning minimal description lengths, quantum computers are not more powerful than classical computers:

Theorem (Quantum Complexity of Classical Words)

For every classical word $x \in \{0, 1\}^*$,

$$C(x) = QC(|x\rangle) + \mathcal{O}(1).$$

If $0 < \frac{\delta}{6}$, then

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

Equation (1) follows from (2) by an appropriate limit $\delta \to 0$ It remains to show Equation (2).

Theorem (Quantum Complexity of Classical Words)

For every classical word $x \in \{0, 1\}^*$,

$$C(x) = QC(|x\rangle) + \mathcal{O}(1). \tag{1}$$

If $0 < \frac{\delta}{6}$, then

$$QC^{\delta}(|x\rangle) \le C(x) + \text{const.} \le \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$
 (2)

Equation (1) follows from (2) by an appropriate limit $\delta \to 0$.

It remains to show Equation (2)

Theorem (Quantum Complexity of Classical Words)

For every classical word $x \in \{0, 1\}^*$,

$$C(x) = QC(|x\rangle) + \mathcal{O}(1). \tag{1}$$

If $0 < \frac{\delta}{6}$, then

$$QC^{\delta}(|x\rangle) \le C(x) + \text{const.} \le \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$
 (2)

Equation (1) follows from (2) by an appropriate limit $\delta \to 0$. It remains to show Equation (2).

Theorem (Quantum Complexity of Classical Words)

For every classical word $x \in \{0,1\}^*$,

$$C(x) = QC(|x\rangle) + \mathcal{O}(1). \tag{1}$$

If
$$0 < \frac{\delta}{6}$$
, then

$$QC^{\delta}(|x\rangle) \le C(x) + \text{const.} \le \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$
 (2)

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

Proof of $QC^{\delta}(|x\rangle) \leq C(x) + \text{const.}$:

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

Proof of $QC^{\delta}(|x\rangle) \leq C(x) + \text{const.}$:

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$QC^{\delta}(|x\rangle) \leq C(x) + \text{const.} \leq \frac{QC^{\delta}(|x\rangle)}{1 - 4\delta} + \text{const'}.$$

- Bennett: Every classical computation can be done reversibly...
- ... and can thus be simulated by a universal quantum computer.
- Thus, quantum computers are at least as powerful in compression as classical computers.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle=0$ if $s,t\in\{0,1\}^*$ with $s\neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal qubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle=0$ if $s,t\in\{0,1\}^*$ with $s\neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal gubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle = 0$ if $s, t \in \{0, 1\}^*$ with $s \neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal qubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle = 0$ if $s,t\in\{0,1\}^*$ with $s\neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal qubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle=0$ if $s,t\in\{0,1\}^*$ with $s\neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal qubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Theorem (Quantum Complexity of Classical Words)

$$C(x) \leq \frac{QC^{\delta}(|x\rangle)}{1-4\delta} + \text{const.}$$

- Classical words are mutually orthogonal qubit strings, i.e. $\langle s|t\rangle = 0$ if $s,t\in\{0,1\}^*$ with $s\neq t$.
- (Almost) orthogonal outputs must have (almost) orthogonal inputs. There are only few short orthogonal qubit strings.
- They can all be discovered by short classical computer programs that simulate the quantum computer with brute force.

Conclusions

 Classical and quantum Kolmogorov complexities agree up to an additive constant on the classical words, e.g.

$$C(x) = QC(|x\rangle) + O(1)$$
 for every $x \in \{0, 1\}^*$.

- Concerning description length alone, quantum and classical computers are equally powerful.
- As C is a special case of QC, both complexities can thus be treated in a single mathematical framework.

Conclusions

 Classical and quantum Kolmogorov complexities agree up to an additive constant on the classical words, e.g.

$$C(x) = QC(|x\rangle) + O(1)$$
 for every $x \in \{0, 1\}^*$.

- Concerning description length alone, quantum and classical computers are equally powerful.
- As C is a special case of QC, both complexities can thus be treated in a single mathematical framework.

Conclusions

 Classical and quantum Kolmogorov complexities agree up to an additive constant on the classical words, e.g.

$$C(x) = QC(|x\rangle) + O(1)$$
 for every $x \in \{0, 1\}^*$.

- Concerning description length alone, quantum and classical computers are equally powerful.
- As C is a special case of QC, both complexities can thus be treated in a single mathematical framework.