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Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Kolmogorov complexity C (x) (and its prefix-free version K (x))

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Kolmogorov complexity C (x) (and its prefix-free version K (x))

◮ have important applications in math and computer science,

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Kolmogorov complexity C (x) (and its prefix-free version K (x))

◮ have important applications in math and computer science,

◮ are small if x is simple: if x = 0101 . . . 01
︸ ︷︷ ︸

n

then K (x) ≈ log n.

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Kolmogorov complexity C (x) (and its prefix-free version K (x))

◮ have important applications in math and computer science,

◮ are small if x is simple: if x = 0101 . . . 01
︸ ︷︷ ︸

n

then K (x) ≈ log n.

◮ are large if x is random: if x = 01001010 . . .
︸ ︷︷ ︸

n

(fair coin tosses)

then K (x) ≈ n.

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Algorithmic Information Content (AIC):
If U is a universal computer, mapping binary strings
{0, 1}∗ = {λ, 0, 1, 00, 01, . . .} to binary strings, then

C (x) := min{ℓ(p) | U(p) = x}

is the “algorithmic information content” of x , also called
“Kolmogorov complexity” of the string x .

Kolmogorov complexity C (x) (and its prefix-free version K (x))

◮ have important applications in math and computer science,

◮ are small if x is simple: if x = 0101 . . . 01
︸ ︷︷ ︸

n

then K (x) ≈ log n.

◮ are large if x is random: if x = 01001010 . . .
︸ ︷︷ ︸

n

(fair coin tosses)
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Effective Complexity (M. Gell-Mann & S. Lloyd)
Idea: Instead of the AIC K (x), define the effective complexity of x

as the AIC of its regularities (→ discard the random aspects).
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How to decide which ensemble E to take for a given string x?
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How to decide which ensemble E to take for a given string x?
There is a countably-infinite number of computable ensembles E.

E.g. E10(x) :=

{
1 if x = 10
0 else
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How to decide which ensemble E to take for a given string x?
There is a countably-infinite number of computable ensembles E.

E.g. E :=uniform distribution on all strings of length 42
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K (E)
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Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

How to decide which ensemble E to take for a given string x?
There is a countably-infinite number of computable ensembles E.

E.g. E :=uniform distribution on all strings of length 42

H(E)

K (E)

E10

E1011010

E

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth
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Plotting all computable E . . .
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How to decide which ensemble E to take for a given string x?

One of them is Ex(s) :=

{
1 if s = x ,

0 otherwise.
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How to decide which ensemble E to take for a given string x?

Step 1: Allow only those E with E(x)
≈
≥ 2−H(E) .

H(E)

K (E)

E10

E1011010

E
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How to decide which ensemble E to take for a given string x?

Observation: The remaining ensembles all have total information
Σ(E) := K (E) + H(E) ≥ K (Ex) −O(1) = K (x) −O(1).
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How to decide which ensemble E to take for a given string x?

Step 2: Find the ensemble E
∗ with minimal K (E) along this

approximate line → we are done: E(x) := K (E∗).
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K (E)
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How to decide which ensemble E to take for a given string x?

Definition (Effective Complexity)

Eδ,∆(x) is defined as the minimal K (E) of all ensembles E with
E(x) ≥ 2−H(E)(1+δ) and K (E) + H(E) ≤ K (x) + ∆.

H(E)

K (E)

Ex

E(x)

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

How to decide which ensemble E to take for a given string x?

Definition (Effective Complexity)

Eδ,∆(x) is defined as the minimal K (E) of all ensembles E with
E(x) ≥ 2−H(E)(1+δ) and K (E) + H(E) ≤ K (x) + ∆.

H(E)

K (E)
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E(x)

∆
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Random Strings are Effectively Simple:

A string x of length n is “random” or r -incompressible, if

K (x) ≥ n + K (n) − r .
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is not).
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Random Strings are Effectively Simple:

A string x of length n is “random” or r -incompressible, if

K (x) ≥ n + K (n) − r .

◮ Most strings are r -incompressible (only a fraction of 2−r+O(1)

is not).

◮ Example: Typical outcomes of fair coin tosses.

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.
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Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that
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for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:

◮ r -incompressible strings x have K (x) ≥ n + K (n) − r .
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:

◮ r -incompressible strings x have K (x) ≥ n + K (n) − r .

◮ E :=uniform distribution on {0, 1}n, then

Markus Müller, Arleta Szko la, Nihat Ay Max Planck Institute for Mathematics in the Sciences, Leipzig

Effective Complexity



Definition of Effective Complexity Random Strings are Simple Existence of Complex Strings Complexity and Depth

Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:

◮ r -incompressible strings x have K (x) ≥ n + K (n) − r .

◮ E :=uniform distribution on {0, 1}n, then

◮ E(x) = 2−n = 2−H(E) ≥ 2−H(E)(1+δ) for every δ ≥ 0.
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:

◮ r -incompressible strings x have K (x) ≥ n + K (n) − r .

◮ E :=uniform distribution on {0, 1}n, then

◮ E(x) = 2−n = 2−H(E) ≥ 2−H(E)(1+δ) for every δ ≥ 0.

◮ Σ(E) ≡ H(E) + K (E) ≤ n + K (n) + c
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Random Strings are Effectively Simple:

Theorem (after Gell-Mann and Lloyd 1996)

There is a constant c > 0 such that

Eδ,∆(x) ≤ log n + O(log log n)

for all r -incompressible strings x of length n, δ ≥ 0 and ∆ ≥ r + c.

Reminder for later: even Eδ,∆(x) ≤ K (C (x)) + r + O(1).

Idea of Proof:

◮ r -incompressible strings x have K (x) ≥ n + K (n) − r .

◮ E :=uniform distribution on {0, 1}n, then

◮ E(x) = 2−n = 2−H(E) ≥ 2−H(E)(1+δ) for every δ ≥ 0.

◮ Σ(E) ≡ H(E) + K (E) ≤ n + K (n) + c ≤ K (x) + ∆.
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Existence of Effectively Complex Strings:
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n).
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
◮ Are there strings x with E(x) ≈ n?
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
◮ Are there strings x with E(x) ≈ n?

Theorem (MM, A. Szko la, N. Ay ’08)

For every δ, ∆ ≥ 0 and n ∈ N, there is a string x of length n with

Eδ,∆(x) ≥ (1 − δ)n −O(log n).
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
◮ Are there strings x with E(x) ≈ n?

Theorem (MM, A. Szko la, N. Ay ’08)

For every δ, ∆ ≥ 0 and n ∈ N, there is a string x of length n with

Eδ,∆(x) ≥ (1 − δ)n −O(log n).

◮ Is also true for E with constraints: adding constraits makes
effective complexity increase.
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
◮ Are there strings x with E(x) ≈ n?

Theorem (MM, A. Szko la, N. Ay ’08)

For every δ, ∆ ≥ 0 and n ∈ N, there is a string x of length n with

Eδ,∆(x) ≥ (1 − δ)n −O(log n).

◮ Is also true for E with constraints: adding constraits makes
effective complexity increase.

◮ Main ingredient: Gács ’01: There are (“non-stochastic”)
strings x with a strange property:
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Existence of Effectively Complex Strings:
Most strings are r -incompressible and have E(x) ≤ O(log n). Are
there any effectively complex strings at all?

◮ Eδ,∆(x) = K (E∗) ≤ K (E∗) + H(E∗) ≤ K (x) + ∆≤ n + O(1).
◮ Are there strings x with E(x) ≈ n?

Theorem (MM, A. Szko la, N. Ay ’08)

For every δ, ∆ ≥ 0 and n ∈ N, there is a string x of length n with

Eδ,∆(x) ≥ (1 − δ)n −O(log n).

◮ Is also true for E with constraints: adding constraits makes
effective complexity increase.

◮ Main ingredient: Gács ’01: There are (“non-stochastic”)
strings x with a strange property: For every simple set S ,
there is always a simpler way to describe x given S then to
specify its position (index) within S .
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Existence of Effectively Complex Strings:

Open Problem: Find more intuitive examples, or give a better
interpretation! (→ Gell-Mann, Lloyd: DNA?)

Theorem (MM, A. Szko la, N. Ay ’08)

For every δ, ∆ ≥ 0 and n ∈ N, there is a string x of length n with

Eδ,∆(x) ≥ (1 − δ)n −O(log n).

◮ Is also true for E with constraints: adding constraits makes
effective complexity increase.

◮ Main ingredient: Gács ’01: There are (“non-stochastic”)
strings x with a strange property: For every simple set S ,
there is always a simpler way to describe x given S then to
specify its position (index) within S .
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Effective Complexity and Logical Depth (informal)
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Effective Complexity and Logical Depth (informal)

Bennett ’88: The logical depth of a string x is the minimal number
of time steps required by a universal computer to produce x from
an almost-minimal program.
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Effective Complexity and Logical Depth (informal)

Bennett ’88: The logical depth of a string x is the minimal number
of time steps required by a universal computer to produce x from
an almost-minimal program.

◮ Random strings x of length n have C (x) ≈ n, and thus small
depth: “Print the following digits: 010010 . . .

︸ ︷︷ ︸

x

” is an

almost-minimal program, so Depth(x) ≈ n (x is “shallow”).
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Effective Complexity and Logical Depth (informal)

Bennett ’88: The logical depth of a string x is the minimal number
of time steps required by a universal computer to produce x from
an almost-minimal program.

◮ Random strings x of length n have C (x) ≈ n, and thus small
depth: “Print the following digits: 010010 . . .

︸ ︷︷ ︸

x

” is an

almost-minimal program, so Depth(x) ≈ n (x is “shallow”).

◮ x = x1x2 . . . xn with xk := 22k

-th binary digit of log(π + e)
is probably deep: Depth(x) ≈ 22n

.
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Effective Complexity and Logical Depth (informal)

Bennett ’88: The logical depth of a string x is the minimal number
of time steps required by a universal computer to produce x from
an almost-minimal program.

◮ Random strings x of length n have C (x) ≈ n, and thus small
depth: “Print the following digits: 010010 . . .

︸ ︷︷ ︸

x

” is an

almost-minimal program, so Depth(x) ≈ n (x is “shallow”).

◮ x = x1x2 . . . xn with xk := 22k

-th binary digit of log(π + e)
is probably deep: Depth(x) ≈ 22n

.

◮ The Quark and the Jaguar: Gell-Mann discusses interrelations
between algorithmic information content and effective
complexity as well as logical depth.
→ relation between depth and complexity?
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Effective Complexity and Logical Depth:
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Effective Complexity and Logical Depth:

Theorem (MM, A. Szko la, N. Ay ’08)

If f : N → N is a strictly increasing, computable function and x is

a string then

E(x) > K (C (x)) + K (f ) + O(1)

implies Depth(x) > f (C (x)).
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Effective Complexity and Logical Depth:

Theorem (MM, A. Szko la, N. Ay ’08)

If f : N → N is a strictly increasing, computable function and x is

a string then

E(x) > K (C (x)) + K (f ) + O(1)

implies Depth(x) > f (C (x)).

◮ f can be simple (i.e. K (f ) small), but absurdly rapidly

growing, i.e. f (n) := nnn
n
...

(power tower of height n).
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Effective Complexity and Logical Depth:

Theorem (MM, A. Szko la, N. Ay ’08)

If f : N → N is a strictly increasing, computable function and x is

a string then

E(x) > K (C (x)) + K (f ) + O(1)

implies Depth(x) > f (C (x)).

◮ f can be simple (i.e. K (f ) small), but absurdly rapidly

growing, i.e. f (n) := nnn
n
...

(power tower of height n).

◮ K (C (x)) = O(log n), so the inequality condition is weak.
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Effective Complexity and Logical Depth:

Theorem (MM, A. Szko la, N. Ay ’08)

If f : N → N is a strictly increasing, computable function and x is

a string then

E(x) > K (C (x)) + K (f ) + O(1)

implies Depth(x) > f (C (x)).

◮ f can be simple (i.e. K (f ) small), but absurdly rapidly

growing, i.e. f (n) := nnn
n
...

(power tower of height n).

◮ K (C (x)) = O(log n), so the inequality condition is weak.

◮ Holds also for effective complexity with constraints (under
mild assumptions on the constraints).
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Effective Complexity and Logical Depth:
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Effective Complexity and Logical Depth:

E(x)

Depth(x)
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

◮ If E(x) > K (C (x)) + K (f ) + O(1), then
Depth(x) > f (C (x)).
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

absurdly
large

◮ If E(x) > K (C (x)) + K (f ) + O(1), then
Depth(x) > f (C (x)).
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

absurdly
large

◮ If x is incompressible, then E(x) ≤ K (C (x)) + O(1). But x is
random hence shallow, so Depth(x) = n + O(1).
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

absurdly
large

◮ If x is incompressible, then E(x) ≤ K (C (x)) + O(1). But x is
random hence shallow, so Depth(x) = n + O(1).
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

absurdly
large

??

◮ If x is incompressible, then E(x) ≤ K (C (x)) + O(1). But x is
random hence shallow, so Depth(x) = n + O(1).
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Effective Complexity and Logical Depth:

E(x)

Depth(x)

n = ℓ(x)
n = ℓ(x)

K (C (x))

absurdly
large

??

◮ The “edge of depth” at K (C (x)). Happens also for E with
constraints.
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Conclusions

◮ M. Gell-Mann and S. Llyod have proposed effective complexity
as a complexity measure, to overcome limitations of
Algorithmic Information Content (“Kolmogorov Complexity”).
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Conclusions

◮ M. Gell-Mann and S. Llyod have proposed effective complexity
as a complexity measure, to overcome limitations of
Algorithmic Information Content (“Kolmogorov Complexity”).

◮ We have proposed a formal definition Eδ,∆(x) of effective
complexity, including all the additive constants, and examined
its properties. In particular, we have
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◮ M. Gell-Mann and S. Llyod have proposed effective complexity
as a complexity measure, to overcome limitations of
Algorithmic Information Content (“Kolmogorov Complexity”).

◮ We have proposed a formal definition Eδ,∆(x) of effective
complexity, including all the additive constants, and examined
its properties. In particular, we have

◮ reproduced the result by Gell-Mann and Lloyd that
incompressible (random) strings x are simple, i.e. have
E(x) ≤ log n + O(log log n),
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Conclusions

◮ M. Gell-Mann and S. Llyod have proposed effective complexity
as a complexity measure, to overcome limitations of
Algorithmic Information Content (“Kolmogorov Complexity”).

◮ We have proposed a formal definition Eδ,∆(x) of effective
complexity, including all the additive constants, and examined
its properties. In particular, we have

◮ reproduced the result by Gell-Mann and Lloyd that
incompressible (random) strings x are simple, i.e. have
E(x) ≤ log n + O(log log n),

◮ shown that there exist effectively complex strings x with
E(x) ≥ n −O(log n),
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Conclusions

◮ M. Gell-Mann and S. Llyod have proposed effective complexity
as a complexity measure, to overcome limitations of
Algorithmic Information Content (“Kolmogorov Complexity”).

◮ We have proposed a formal definition Eδ,∆(x) of effective
complexity, including all the additive constants, and examined
its properties. In particular, we have

◮ reproduced the result by Gell-Mann and Lloyd that
incompressible (random) strings x are simple, i.e. have
E(x) ≤ log n + O(log log n),

◮ shown that there exist effectively complex strings x with
E(x) ≥ n −O(log n),

◮ found a relation between effective complexity and Bennett’s
logical depth: If E(x) > K (C (x)) + O(1), then Depth(x) is
astronomically large. Otherwise, it can be arbitrarily small.
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