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Outline of the talk

1. Introduction to "concentration of measure"

• high-dimensional spheres: Lévy's Lemma 

• consequences for quantum information

• applications in statistical physics

2. Random states with fixed energy

• concentration on energy submanifolds

• proof Idea + tools

• how Gibbs states emerge
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Clearly, a polar cap with                
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As soon as the angle 
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μn ≥ 1 − exp
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)
1√
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μn = 1/2.
θ = π/2

π/2 + ε

Measure is exponentially 
concentrated around any 

equator.
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• Proven for several special classes of channels 
(identity, depolarizing,...)

•  Since '07: counterexamples to generalizations 
(p-Rényi entropy) via measure concentration

• Matt Hastings arXiv:0809.3972: counter-
example to additivity conjecture! 
Main tool: Concentration of measure.

Main Idea: • Stinespring dilation: N (ρ) = Trenv

⎛
⎜⎝ UNρU†

N︸ ︷︷ ︸
R⊂H⊗env

⎞
⎟⎠

• Smin(N ) large ⇔ all states in R highly entangled

• Measure concentration: Smin(N ) generically very large ⇒ entangled ψ
can easily have S(M⊗N (ψ)) < Smin(M) + Smin(N ).
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Motivation:

• Composite system (system+bath           ), initially in 
state       , with time evolution

• Key problem: show that system relaxes locally, i.e. 
that                                  is equal to some standard 
ensemble       for "most" times t, and...

• ... the standard ensemble should only depend on a 
few "macroscopic observables": if M is the set of 
states compatible with macroscopic constraints, then

|ψ〉
S ⊗ B

ρSB(t) = e−itH |ψ〉〈ψ|eitH

ρS(t) := TrBρSB(t)
ρS

Idea: Show that most states              are very close to
via measure concentration      also plausible for 

ρs �
∫
|ψ〉∈M

TrB |ψ〉〈ψ| dψ

|ψ〉 ∈ M ρS

ρS(t)



1. Introduction to "Concentration of Measure"
Applications in Statistical Physics

Papers with this (or similar) approach:

• S. Popescu, A. J. Short, A. Winter, Nature Physics (2006):
State of the universe          restricted to subspace
then almost all states of S are still very close to maximal
mixture
 

• S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghi, PRL (2006)

• J. Gemmer, G. Mahler, Phys. Rev. E (2002)

• N. Linden, S. Popescu, A. J. Short A. Winter, arXiv:0812.2385

S ⊗ E R ⊂ S ⊗ E

ρS = 1/|S|.
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2. Random States with Fixed Energy
Measure Concentration on Energy Submanifolds

Warning: Work in Progress.   

Setting: We fix some Hamiltonian H on       , and we 
draw vector states                with
randomly under the constraint 

ME = {|ψ〉 ∈ C
n | ‖ψ‖2 = 1, 〈ψ|H|ψ〉 = E}

C
n

|ψ〉 ∈ C
n ‖ψ‖ = 1

〈ψ|H|ψ〉 = E.

• Can we prove concentration of
measure on ME?

• Do typical states behave like 
Gibbs states?
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(
const. + log

n
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)

μn−1(ME) ≥ c · μn−1(Sn−1)

But c is tiny unless                       :-(E ≈ TrH/n.

Works (directly) 
only for infinite 
temperature.
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Way out: look at an norm-energy-ellipsoid instead:

OE,α,β := {ψ ∈ C
n | α‖ψ‖2 + β〈ψ|H|ψ〉 = α + βE}

OE,α,β
Sn

LE,α,β

LE,α,β pushes forward Haar measure on Sn to measure μ on OE,α,β .
Then, choose α and β such that 〈‖ψ‖2〉μ = 1 and 〈〈ψ|H|ψ〉〉μ = E.

Transport OE,α,β ∩ Sn back via L−1
E,α,β : this gives ”highly probable”

submanifold in Sn.
→ With Gromov, we get measure concentration.
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OE,α,β := {ψ ∈ C
n | α‖ψ‖2 + β〈ψ|H|ψ〉 = α + βE}

OE,α,β
Sn

LE,α,β

Sampling the n-Sphere:   
• Choose                               with components  
• Resulting Gaussian measure 
• For           , resulting measure very close to      on sphere 
•          pushes it forward: sampling           via 
• If spectrum of H is unbounded for large n, then 
• Thus, measure behaves essentially like                    (Gibbs).

x = (x0, . . . , xn) ∈ R
n dμ(xi) ∼ e−cx2

i .

dμ(x) ∼ ∏
i e−cx2

i = e−c‖x‖2
.

n → ∞ μn Sn.

LE,α,β OE,α,β e−α‖x‖2−βE(x)
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β � α.

exp(−βE(x))
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Way out: look at an norm-energy-ellipsoid instead:

OE,α,β := {ψ ∈ C
n | α‖ψ‖2 + β〈ψ|H|ψ〉 = α + βE}

OE,α,β
Sn

LE,α,β ψ ∈ C
(n+1)/2 ↔ x ∈ R

n+1

〈ψ|H|ψ〉 =: E(x)

Two more gimmicks:
• If spectrum of H does not diverge, then we get exponential
concentration, but not on Gibbs state (counterexamples).

• Formally efficient algorithm for sampling energy submanifold.
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Literature: Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces
Milman, Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces
Ledoux, The Concentration of Measure Phenomenon
Barvinok, Measure Concentration (Math 710 Lecture Notes)

〈ψ|H|ψ〉 = E.


