Concentration of measure, typical quantum states with fixed mean energy, and emergence of Gibbs states

Markus Müller^{1,3}, David Gross², Jens Eisert¹

¹ Physics Department, University of Potsdam
² Institute for Mathematical Physics, TU Braunschweig
³ Institute of Mathematics, TU Berlin

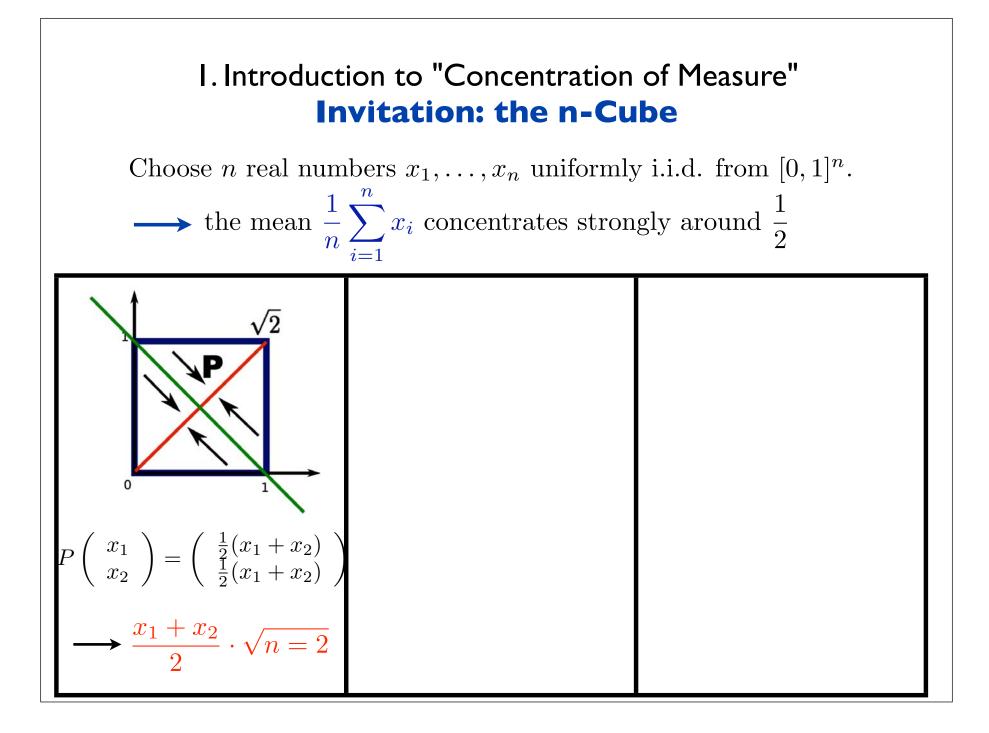
Outline of the talk

I. Introduction to "concentration of measure"

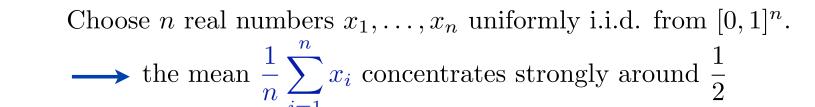
- high-dimensional spheres: Lévy's Lemma
- consequences for *quantum information*
- applications in statistical physics

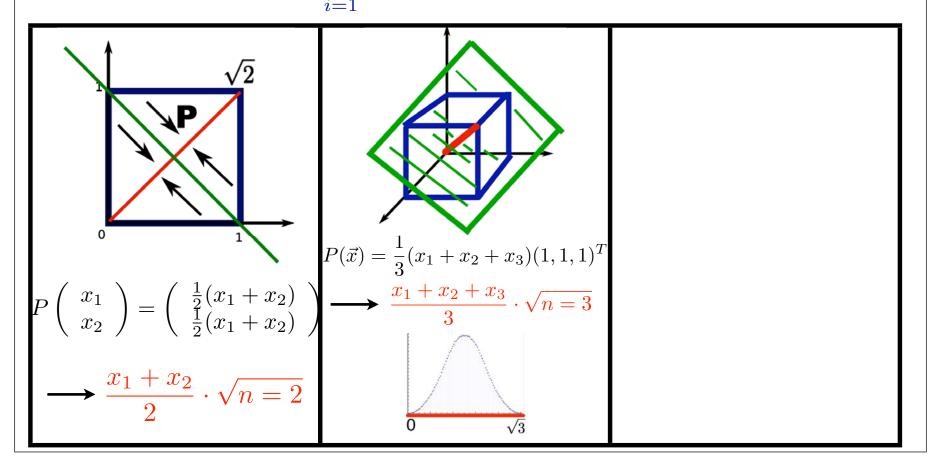
2. Random states with fixed energy

- concentration on energy submanifolds
- proof Idea + tools
- how Gibbs states emerge

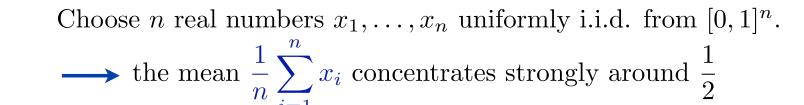


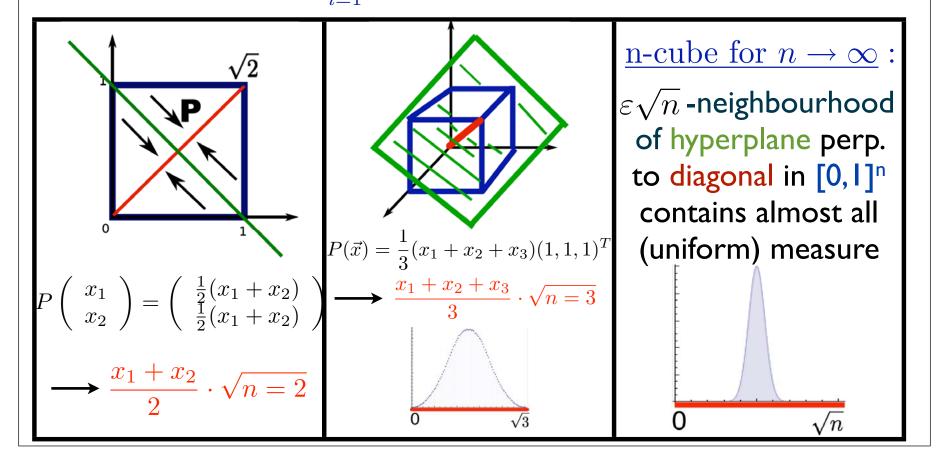
I. Introduction to "Concentration of Measure" Invitation: the n-Cube





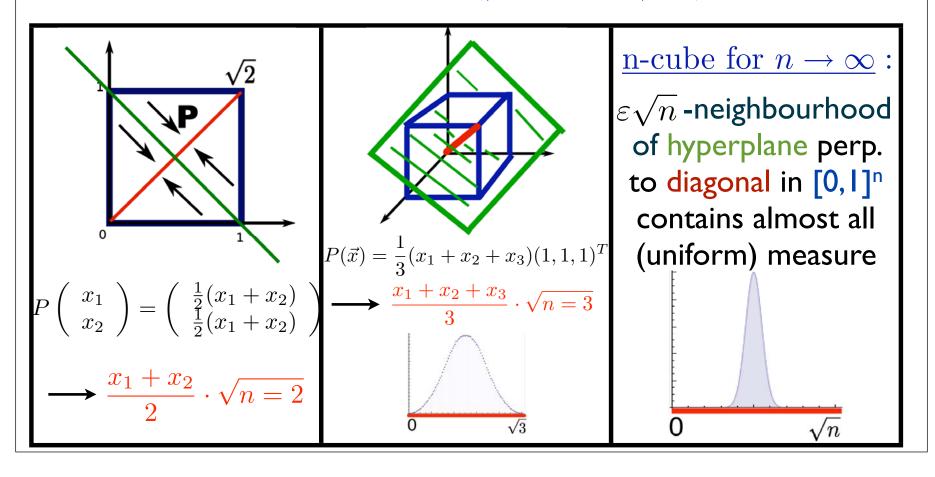
I. Introduction to "Concentration of Measure" Invitation: the n-Cube

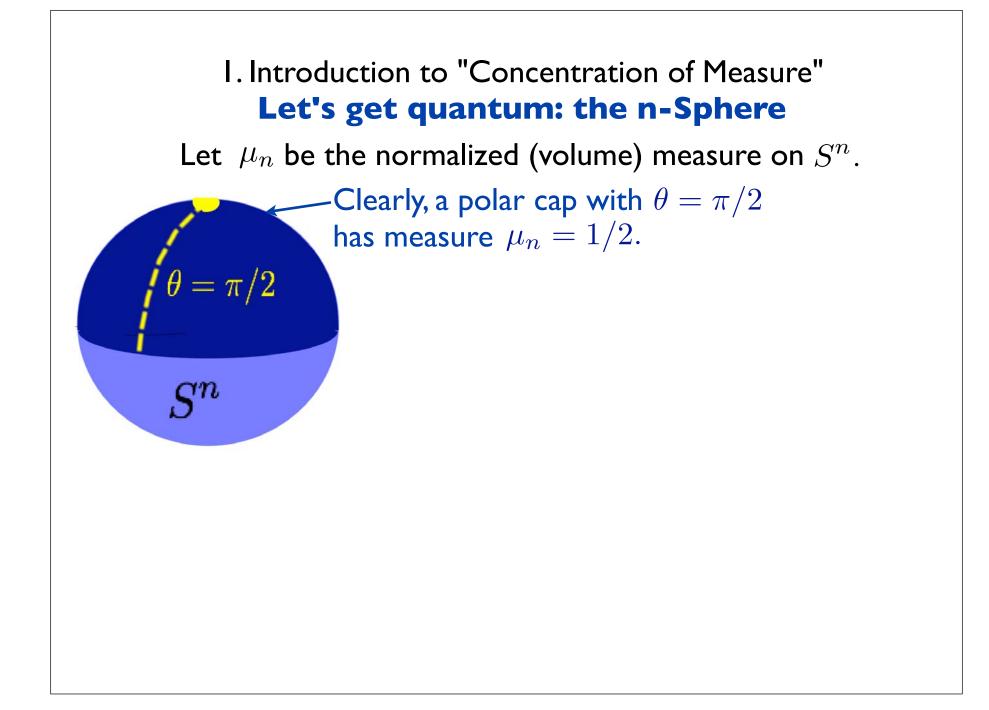


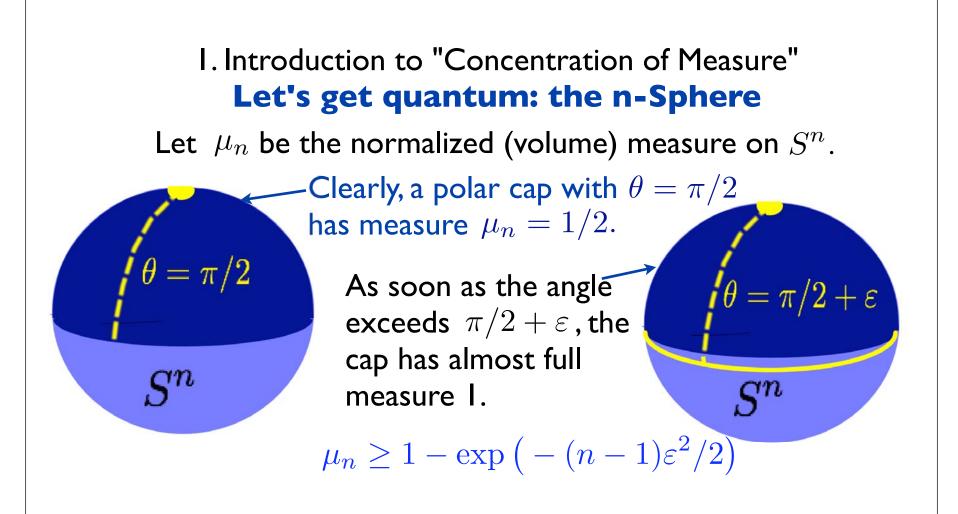


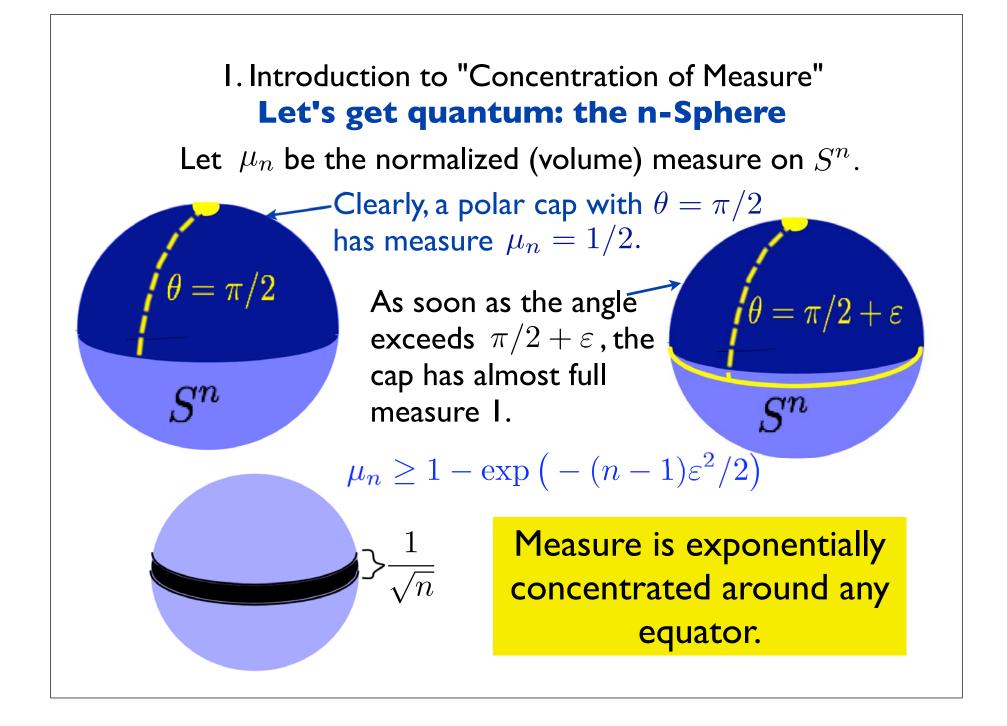
I. Introduction to "Concentration of Measure" Invitation: the n-Cube

Q: How much is "almost all"? A:A lot! Hoeffding bound: Prob $\left(\left| \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{2} \right| \ge \varepsilon \right) \le 2 \exp(-2n^2 \varepsilon^2)$









I. Introduction to "Concentration of Measure" Let's get quantum: the n-Sphere

Some consequences:

A. Draw two vectors at random, then they are almost surely almost perpendicular. (also quantum!)

I. Introduction to "Concentration of Measure" Let's get quantum: the n-Sphere

Some consequences:

A. Draw two vectors at random, then they are almost surely almost perpendicular. (also quantum!)
B. Lévy's Lemma:

Let $f: S^n \to \mathbb{R}$ be Lipschitz with constant η . Then,

 $\mu_n\left\{|f(x) - \mathbb{E}f| > \varepsilon\right\} \le 2\exp\left(c(n+1)\varepsilon^2/\eta^2\right),$

where $c = (9\pi^3 \ln 2)^{-1}$.

I. Introduction to "Concentration of Measure" Let's get quantum: the n-Sphere

Some consequences:

A. Draw two vectors at random, then they are almost surely almost perpendicular. (also quantum!)
B. Lévy's Lemma:

Let $f: S^n \to \mathbb{R}$ be Lipschitz with constant η . Then,

$$\mu_n\left\{|f(x) - \mathbb{E}f| > \varepsilon\right\} \le 2\exp\left(c(n+1)\varepsilon^2/\eta^2\right)$$

where $c = (9\pi^3 \ln 2)^{-1}$.

C. By embedding \mathbb{C}^n into \mathbb{R}^{2n} , measure on sphere is the unitarily invariant (Haar) measure on pure quantum states \longrightarrow measure concentration in QInfo

Hayden, Leung, Winter, "Aspects of Generic Entanglement" (2004): If $|\varphi\rangle$ is a random state on $A \otimes B$ with $|B| \ge |A| \ge 3$, then

$$\mathbb{P}\left\{S(\varphi_A) < \log|A| - \alpha - \frac{|A|}{|B|\ln 2}\right\} \le \exp\left(-\frac{(|A| \cdot |B| - 1)c\alpha^2}{(\log|A|)^2}\right)$$

where $c = (8\pi^2 \ln 2)^{-1}$.

Hayden, Leung, Winter, "Aspects of Generic Entanglement" (2004): If $|\varphi\rangle$ is a random state on $A \otimes B$ with $|B| \ge |A| \ge 3$, then

$$\mathbb{P}\left\{S(\varphi_A) < \log|A| - \alpha - \frac{|A|}{|B|\ln 2}\right\} \le \exp\left(-\frac{(|A| \cdot |B| - 1)c\alpha^2}{(\log|A|)^2}\right)$$

where $c = (8\pi^2 \ln 2)^{-1}$.

→ Most states are highly entangled (same for subspaces). Application: Additivity Conjecture

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

 Proven for several special classes of channels (identity, depolarizing,...)

Application: Additivity Conjecture (* 1997, † 2009)

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

- Proven for several special classes of channels (identity, depolarizing,...)
- Since '07: counterexamples to generalizations (p-Rényi entropy) via measure concentration

Application: Additivity Conjecture (* 1997, † 2009)

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

- Proven for several special classes of channels (identity, depolarizing,...)
- Since '07: counterexamples to generalizations (p-Rényi entropy) via measure concentration
- Matt Hastings arXiv:0809.3972: counterexample to additivity conjecture! Main tool: Concentration of measure.

Application: Additivity Conjecture (* 1997, † 2009)

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

- Proven for several special classes of channels (identity, depolarizing,...)
- Since '07: counterexamples to generalizations (p-Rényi entropy) via measure concentration
- Matt Hastings arXiv:0809.3972: counterexample to additivity conjecture! Main tool: Concentration of measure.

Application: Additivity Conjecture (* 1997, † 2009)

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

- Proven for several special classes of channels (identity, depolarizing,...)
- Since '07: counterexamples to generalizations (p-Rényi entropy) via measure concentration
- Matt Hastings arXiv:0809.3972: counterexample to additivity conjecture! Main tool: Concentration of measure.

Application: Additivity Conjecture (* 1997, † 2009)

For quantum channels \mathcal{M} , let $S^{min}(\mathcal{M}) := \min_{\psi} S(\mathcal{M}(\psi))$. Conjecture: it holds

- Proven for several special classes of channels (identity, depolarizing,...)
- Since '07: counterexamples to generalizations (p-Rényi entropy) via measure concentration
- Matt Hastings arXiv:0809.3972: counterexample to additivity conjecture! Main tool: Concentration of measure.

Main Idea: • Stinespring dilation: $\mathcal{N}(\rho) = \operatorname{Tr}_{env}$

$${}_{nv}\left(\underbrace{U_{\mathcal{N}}\rho U_{\mathcal{N}}^{\dagger}}_{R\subset\mathcal{H}\otimes env}\right)$$

- $S^{min}(\mathcal{N})$ large \Leftrightarrow all states in R highly entangled
- Measure concentration: $S^{min}(\mathcal{N})$ generically very large \Rightarrow entangled ψ can easily have $S(\mathcal{M} \otimes \mathcal{N}(\psi)) < S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$.

Motivation:

• Composite system (system+bath $S \otimes B$), initially in state $|\psi\rangle$, with time evolution $\rho_{SB}(t) = e^{-itH} |\psi\rangle\langle\psi|e^{itH}$

Motivation:

- Composite system (system+bath $S \otimes B$), initially in state $|\psi\rangle$, with time evolution $\rho_{SB}(t) = e^{-itH} |\psi\rangle\langle\psi|e^{itH}$
- Key problem: show that system relaxes locally, i.e. that $\rho_S(t) := \operatorname{Tr}_B \rho_{SB}(t)$ is equal to some standard ensemble ρ_S for "most" times *t*, and...

Motivation:

- Composite system (system+bath $S \otimes B$), initially in state $|\psi\rangle$, with time evolution $\rho_{SB}(t) = e^{-itH} |\psi\rangle\langle\psi|e^{itH}$
- Key problem: show that system relaxes locally, i.e. that $\rho_S(t) := \operatorname{Tr}_B \rho_{SB}(t)$ is equal to some standard ensemble ρ_S for "most" times *t*, and...
- ... the standard ensemble should only depend on a few "macroscopic observables": if M is the set of states compatible with macroscopic constraints, then

$$\rho_s \simeq \int_{|\psi\rangle \in M} \operatorname{Tr}_B |\psi\rangle \langle \psi | \, d\psi$$

Motivation:

- Composite system (system+bath $S \otimes B$), initially in state $|\psi\rangle$, with time evolution $\rho_{SB}(t) = e^{-itH} |\psi\rangle\langle\psi|e^{itH}$
- Key problem: show that system relaxes locally, i.e. that $\rho_S(t) := \operatorname{Tr}_B \rho_{SB}(t)$ is equal to some standard ensemble ρ_S for "most" times *t*, and...
- ... the standard ensemble should only depend on a few "macroscopic observables": if M is the set of states compatible with macroscopic constraints, then

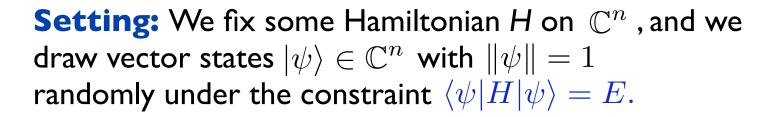
$$\rho_s \simeq \int_{|\psi\rangle \in M} \operatorname{Tr}_B |\psi\rangle \langle \psi| \, d\psi$$

Idea: Show that most states $|\psi\rangle \in M$ are very close to ρ_S via measure concentration \longrightarrow also plausible for $\rho_S(t)$

Papers with this (or similar) approach:

- S. Popescu, A. J. Short, A. Winter, Nature Physics (2006): State of the universe S ⊗ E restricted to subspace R ⊂ S ⊗ E then almost all states of S are still very close to maximal mixture ρ_S = 1/|S|.
- S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghi, PRL (2006)
- J. Gemmer, G. Mahler, Phys. Rev. E (2002)
- N. Linden, S. Popescu, A. J. Short A. Winter, *arXiv:0812.2385*

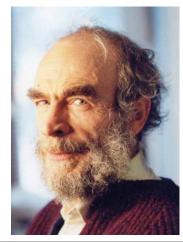
Warning: Work in Progress.



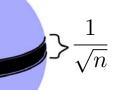
Warning: Work in Progress.

 $M_E = \{ |\psi\rangle \in \mathbb{C}^n \mid \|\psi\|^2 = 1, \langle \psi|H|\psi\rangle = E \}$

Setting: We fix some Hamiltonian H on \mathbb{C}^n , and we draw vector states $|\psi\rangle \in \mathbb{C}^n$ with $||\psi|| = 1$ randomly under the constraint $\langle \psi | H | \psi \rangle = E$.



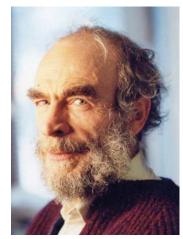
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01):



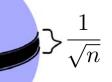
"Observable diameter" of the n-Sphere is about $1/\sqrt{n}$.

GROMOV AWARDED 2009 ABEL PRIZE

The 2009 Abel Prize is awarded to **Mikhail Leonidovich Gromov**, Permanent France, "for his revolutionary contributions to geometry." The award is 6 million



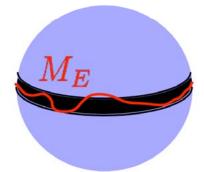
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01):

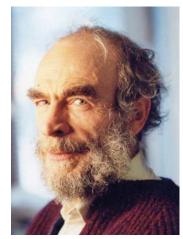


 $\frac{1}{\sqrt{n}}$ "Observable diameter" of the n-Sphere is about $1/\sqrt{n}$.

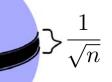
GROMOV AWARDED 2009 ABEL PRIZE The 2009 Abel Prize is awarded to Mikhail Leonidovich Gromov, Permanent France, "for his revolutionary contributions to geometry." The award is 6 million

Concentration on (n-1)-dim. Submanifold M_E : ObsDiam $(M_E) \lesssim \frac{1}{\sqrt{n}} \left(\text{const.} + \log \frac{n}{c} \right)$





M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01):



 $rac{1}{\sqrt{n}}$ "Observable diameter" of the n-Sphere is about $1/\sqrt{n}$.

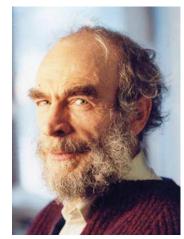
GROMOV AWARDED 2009 ABEL PRIZE The 2009 Abel Prize is awarded to Mikhail Leonidovich Gromov, Permanent France, "for his revolutionary contributions to geometry." The award is 6 million

Concentration on (n-I)-dim. Submanifold M_E : ObsDiam $(M_E) \lesssim \frac{1}{\sqrt{n}} \left(\text{const.} + \log \frac{n}{c} \right)$ ME

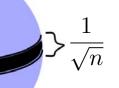
Need to lower-bound (n-1)-measure of M_E :

 $\mu_{n-1}(M_E) \ge \mathbf{c} \cdot \mu_{n-1}(S^{n-1})$

But c is tiny unless $E \approx \text{Tr}H/n$. :-(



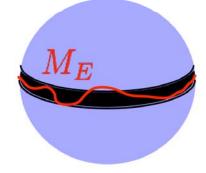
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01):



 $\sqrt[3]{\sqrt{n}}$ "Observable diameter" of the n-Sphere is about $1/\sqrt{n}$.

GROMOV AWARDED 2009 ABEL PRIZE The 2009 Abel Prize is awarded to Mikhail Leonidovich Gromov, Permanent France, "for his revolutionary contributions to geometry." The award is 6 million

Concentration on (n-1)-dim. Submanifold M_E : ObsDiam $(M_E) \lesssim \frac{1}{\sqrt{n}} \left(\text{const.} + \log \frac{n}{c} \right)$



Need to lower-bound (n-1)-measure of M_E :

 $\mu_{n-1}(M_E) \ge \mathbf{c} \cdot \mu_{n-1}(S^{n-1})$

But c is tiny unless $E \approx \text{Tr}H/n$. :-(

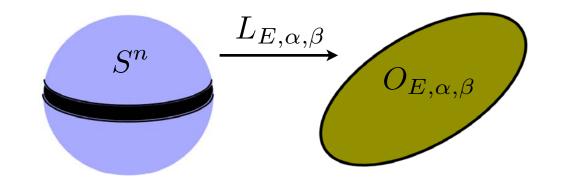
Works (directly) only for infinite temperature.

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

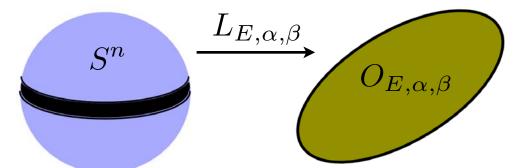
Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



Way out: look at an norm-energy-ellipsoid instead:

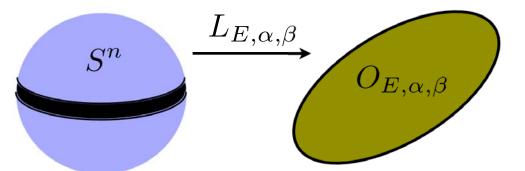
 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



 $L_{E,\alpha,\beta}$ pushes forward Haar measure on S^n to measure μ on $O_{E,\alpha,\beta}$. Then, choose α and β such that $\langle \|\psi\|^2 \rangle_{\mu} = 1$ and $\langle \langle \psi|H|\psi \rangle \rangle_{\mu} = E$.

Way out: look at an norm-energy-ellipsoid instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



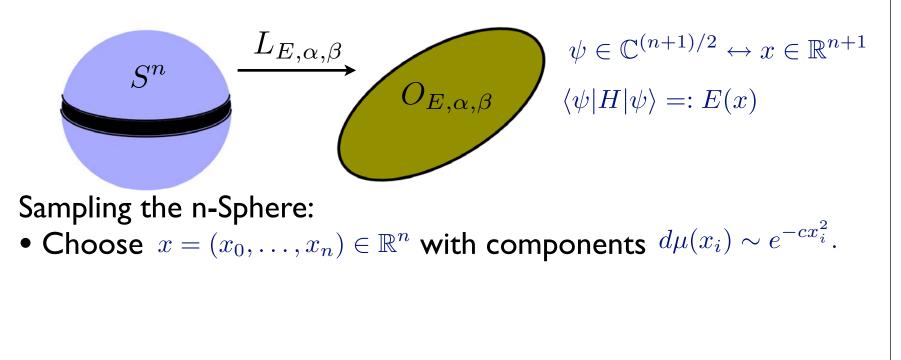
 $L_{E,\alpha,\beta}$ pushes forward Haar measure on S^n to measure μ on $O_{E,\alpha,\beta}$. Then, choose α and β such that $\langle \|\psi\|^2 \rangle_{\mu} = 1$ and $\langle \langle \psi|H|\psi \rangle \rangle_{\mu} = E$.

Transport $O_{E,\alpha,\beta} \cap S^n$ back via $L_{E,\alpha,\beta}^{-1}$: this gives "highly probable" submanifold in S^n .

 \rightarrow With Gromov, we get measure concentration.

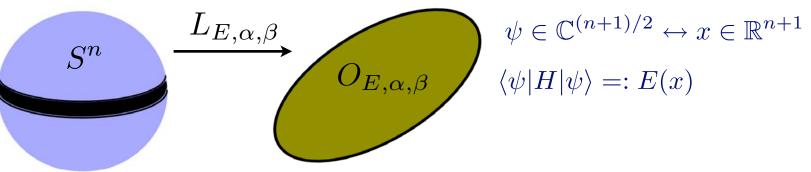
Way out: look at an norm-energy-ellipsoid instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



Way out: look at an norm-energy-ellipsoid instead:

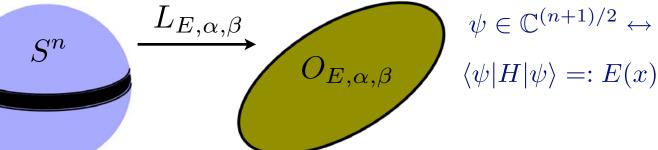
 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



- Choose $x = (x_0, \ldots, x_n) \in \mathbb{R}^n$ with components $d\mu(x_i) \sim e^{-cx_i^2}$.
- Resulting Gaussian measure $d\mu(x) \sim \prod_{i=1}^{r} e^{-cx_{i}^{2}} = e^{-c||x||^{2}}$.

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

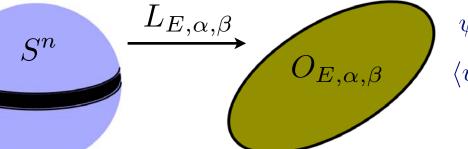


$$\psi \in \mathbb{C}^{(n+1)/2} \leftrightarrow x \in \mathbb{R}^{n+1}$$

- Choose $x = (x_0, \ldots, x_n) \in \mathbb{R}^n$ with components $d\mu(x_i) \sim e^{-cx_i^2}$.
- Resulting Gaussian measure $d\mu(x) \sim \prod_{i=1}^{n} e^{-cx_{i}^{2}} = e^{-c||x||^{2}}$.
- For $n \to \infty$, resulting measure very close to μ_n on sphere S^n .

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

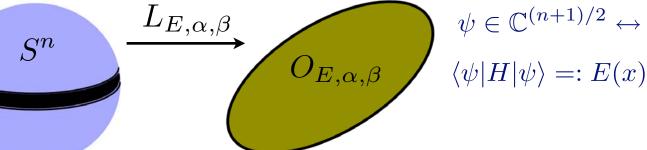


$$\psi \in \mathbb{C}^{(n+1)/2} \leftrightarrow x \in \mathbb{R}^{n+1}$$
$$\langle \psi | H | \psi \rangle =: E(x)$$

- Choose $x = (x_0, \ldots, x_n) \in \mathbb{R}^n$ with components $d\mu(x_i) \sim e^{-cx_i^2}$.
- Resulting Gaussian measure $d\mu(x) \sim \prod_{i=1}^{n} e^{-cx_{i}^{2}} = e^{-c||x||^{2}}$.
- For $n \to \infty$, resulting measure very close to μ_n on sphere S^n .
- $L_{E,\alpha,\beta}$ pushes it forward: sampling $O_{E,\alpha,\beta}$ via $e^{-\alpha \|x\|^2 \beta E(x)}$

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

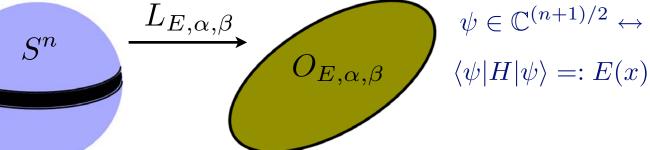


$$\psi \in \mathbb{C}^{(n+1)/2} \leftrightarrow x \in \mathbb{R}^{n+1}$$

- Choose $x = (x_0, \ldots, x_n) \in \mathbb{R}^n$ with components $d\mu(x_i) \sim e^{-cx_i^2}$.
- Resulting Gaussian measure $d\mu(x) \sim \prod_i e^{-cx_i^2} = e^{-c||x||^2}$.
- For $n \to \infty$, resulting measure very close to μ_n on sphere S^n .
- $L_{E,\alpha,\beta}$ pushes it forward: sampling $O_{E,\alpha,\beta}$ via $e^{-\alpha ||x||^2 \beta E(x)}$
- If spectrum of H is unbounded for large n, then $\beta \gg \alpha$.

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

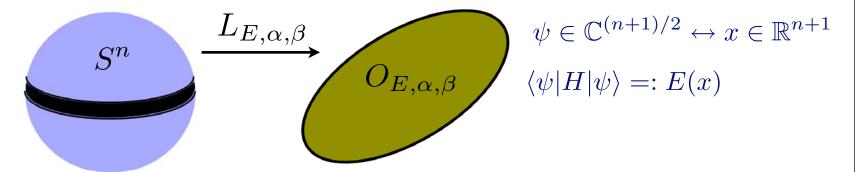


$$\psi \in \mathbb{C}^{(n+1)/2} \leftrightarrow x \in \mathbb{R}^{n+1}$$

- Choose $x = (x_0, \ldots, x_n) \in \mathbb{R}^n$ with components $d\mu(x_i) \sim e^{-cx_i^2}$.
- Resulting Gaussian measure $d\mu(x) \sim \prod_{i=1}^{n} e^{-cx_{i}^{2}} = e^{-c||x||^{2}}$.
- For $n \to \infty$, resulting measure very close to μ_n on sphere S^n .
- $L_{E,\alpha,\beta}$ pushes it forward: sampling $O_{E,\alpha,\beta}$ via $e^{-\alpha ||x||^2 \beta E(x)}$
- If spectrum of H is unbounded for large n, then $\beta \gg \alpha$.
- Thus, measure behaves essentially like $exp(-\beta E(x))$ (Gibbs).

Way out: look at an norm-energy-ellipsoid instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$

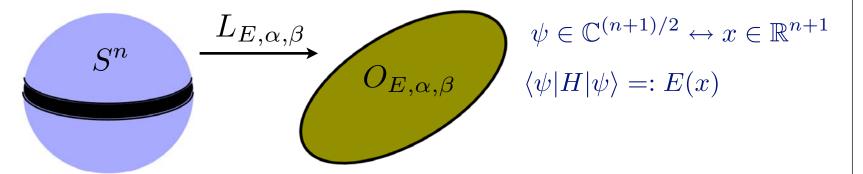


Two more gimmicks:

• If spectrum of H does not diverge, then we get exponential concentration, but not on Gibbs state (counterexamples).

Way out: look at an *norm-energy-ellipsoid* instead:

 $O_{E,\alpha,\beta} := \{ \psi \in \mathbb{C}^n \mid \alpha \|\psi\|^2 + \beta \langle \psi | H | \psi \rangle = \alpha + \beta E \}$



Two more gimmicks:

- If spectrum of *H* does not diverge, then we get exponential concentration, but not on Gibbs state (counterexamples).
- Formally efficient algorithm for sampling energy submanifold.

Conclusions

- concentration of measure: n-dimensional unit spheres have "observable diameter" $1/\sqrt{n}$.
- consequences: most quantums states very entangled; idea for app. in statistical physics

Conclusions

- concentration of measure: n-dimensional unit spheres have "observable diameter" $1/\sqrt{n}$.
- consequences: most quantums states very entangled; idea for app. in statistical physics
- what we have shown: measure concentration under energy constraint

$$\langle \psi | H | \psi \rangle = E.$$

• typical states with fixed energy behave as Gibbs states if energy spectrum diverges.

Conclusions

- concentration of measure: n-dimensional unit spheres have "observable diameter" $1/\sqrt{n}$.
- consequences: most quantums states very entangled; idea for app. in statistical physics
- what we have shown: measure concentration under energy constraint

 $\langle \psi | H | \psi \rangle = E.$

• typical states with fixed energy behave as Gibbs states if energy spectrum diverges.

Literature: Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces Milman, Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces Ledoux, The Concentration of Measure Phenomenon Barvinok, Measure Concentration (Math 710 Lecture Notes)