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John A. Wheeler, New York Times, Dec. 12 2000:

„Quantum physics [...] has explained the structure of atoms 
and molecules, [...] the behavior of semiconductors [...] and 
the comings and goings of particles from neutrinos to 
quarks.

Successful, yes, but mysterious, too.
Why does the quantum exist?“

1. Motivation
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Modifying quantum theory
is difficult.
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Reversible Dynamics
• determines to large extent the structure of QT,
• allows to explore physically natural modifications of QT,
• suggests that geometry and probability might be 
fundamentally related.

In this talk:
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underlying theory (unknown)

Quantum
theory

Classical probability
theory

??

all probabilistic
theories

Why QT?
What could

that be?
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2. Axiomatization of QT

2001: Lucien Hardy, Quantum Theory from Five Reasonable Axioms

earlier work
(quantum logic; Birkhoff, von 
Neumann, Mackey, Ludwig, ...)

quantum
information

theory

2009 Dakic, Brukner

2010 Masanes, MM 2010 Chiribella et al. 2011 Hardy
reversible dynamics purification permutability

• close to physics

• power of group theory
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(Unnormalized) state ω =
list of all probabilities of „yes“-
outcomes of all possible measurements.

ω = (p1, p2, p3, p4, p5, p6, . . .)

Sometimes, all ω span a finite-dimensional subspace. Ex.: Qubit.
• What‘s the prob. of „spin up“ in X-direction?
• What‘s the prob. of „spin up“ in Y-direction?
• What‘s the prob. of „spin up“ in Z-direction?
• Is the particle there at all?
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Setting the stage: probabilistic theories

(Unnormalized) state ω =
list of all probabilities of „yes“-
outcomes of all possible measurements.

ω = (p1, p2, p3, p4, p5, p6, . . .)

Sometimes, all ω span a finite-dimensional subspace. Ex.: Qubit.
• What‘s the prob. of „spin up“ in X-direction?
• What‘s the prob. of „spin up“ in Y-direction?
• What‘s the prob. of „spin up“ in Z-direction?
• Is the particle there at all?





ω = (p1, p2, p3, p4) ∈ R4

Axiom I: All state spaces are finite-dimensional.
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Setting the stage: probabilistic theories

Prepare state ω or φ with
prob. ½. Result:  1

2ω + 1
2ϕ

State spaces are convex sets.
Extreme points are pure, others mixed.

ω

φ
1
2ω + 1

2ϕ

Outcome probabilities are linear functionals E
with                          for all ψ.

here E(ψ)=0

0 ≤ E(ψ) ≤ 1
here E(ψ)=1

Measurements are 
with                          for all ψ.

(E1, E2, . . . , Ek)�
i Ei(ψ) = 1

here E(ψ)=0.7

Axiom II: No further restrictions on the 
set of possible measurements.
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ω

Transformations T map states to states, and are linear.

ΩA

Reversible transformations form a group         In quantum theory:
They are symmetries of state space: 

GA. ρ �→ UρU†

Normalized state space

T (ΩA) = ΩA

Tω

T‘ω

Qubit:        is the 3D unit ball,

(no reflections!)GA = SO(3)

ΩA

⇒ A system is a pair (ΩA,GA).

state space reversible transformations



2. Axiomatization

Reversibility as an axiom for quantum theory and the search for its closest cousins.     M. Müller, Perimeter Institute

Axiom III: For every pair of pure states
there is a reversible transformation
such that

ϕ,ω,
T ∈ GA

Tϕ = ω.
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Enforces symmetry in state space:

incompatible

Axiom III: For every pair of pure states
there is a reversible transformation
such that

ϕ,ω,
T ∈ GA

Tϕ = ω.
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A

B

state on AB:
correlations

No-signalling condition:
Alice‘s probabilities do not depend on 
Bob‘s choice of measurement.

Alice

Bob
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A

B

Axiom IV (“local tomography“): States on 
AB are uniquely determined by statistics of 
local measurements.

Alice

Bob
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0 0 0
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�
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· ·
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QT:

CPT: P (3) = (P1, P2, 0) −→ P (2) = (P1, P2)

2-level system.
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Some 3-level system:

E1

E2

E3
Impossible to put system in 3rd level
⇒ find particle there with probab. 0

=
E1

E2

ρ(3) =




· · 0
· · 0
0 0 0



 −→ ρ(2) =

�
· ·
· ·

�

QT:

CPT: P (3) = (P1, P2, 0) −→ P (2) = (P1, P2)

2-level system.

“Subspace Axiom“

Axiom V: Subset of an N-outcome state space with PN=0 is 
equivalent to (N-1)-outcome state space.
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Ll. Masanes, MM, New J Phys. 13, 063001 (2011):

I. All state spaces finite-dimensional
II. No additional restrictions on measurements
III. Reversibility
IV. Local tomography
V. Subspace axiom

Thm.: CPT and QT are the only probabilistic theories
satisfying Axioms I-V.
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Ll. Masanes, MM, New J Phys. 13, 063001 (2011):

I. All state spaces finite-dimensional
II. No additional restrictions on measurements
III. Continuous reversibility
IV. Local tomography
V. Subspace axiom

Theorem: Every theory satisfying Axioms I-V
               is equivalent to              , where
•       are the density matrices on 
•      is the group of unitaries, acting by conjugation,
• the measurements are exactly the POVMs.

ΩN CN ,
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(ΩN ,GN )
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Ll. Masanes, MM, New J Phys. 13, 063001 (2011):

I. All state spaces finite-dimensional
II. No additional restrictions on measurements
III. Continuous reversibility
IV. Local tomography
V. Subspace axiom

Theorem: Every theory satisfying Axioms I-V
               is equivalent to              , where
•       are the density matrices on 
•      is the group of unitaries, acting by conjugation,
• the measurements are exactly the POVMs.

ΩN CN ,
GN

(ΩN ,GN )

all probabilistic
theories

QT

singles out uniquely
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Reversibility alone as a powerful axiom

⊗ΩA ΩB

ωAB =





...
Prob(••|XX)

...
Prob(••|Y X)

...





ΩAB := all distributions satisfying no-signalling (“boxworld“)

=
(3-1)-dim. (3-1)-dim.

(9-1)-dim. no-signalling polytope

8 pure
PR-box states

(non-local)

ΩAB
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Reversibility alone as a powerful axiom

⊗ΩA ΩB =
(3-1)-dim. (3-1)-dim.

(9-1)-dim. no-signalling polytope

8 pure
PR-box states

(non-local)

ΩAB

No reversible transformation can map a
product state to a PR-box state.
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D. Gross, MM, R. Colbeck, O. Dahlsten, PRL 104, 080402 (2010):
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Reversibility alone as a powerful axiom

D. Gross, MM, R. Colbeck, O. Dahlsten, PRL 104, 080402 (2010):

Thm.: For any number of parties,             measurements, and 
outcomes, the only reversible transformations in boxworld are
• local relabellings, and
• permutations of subsystems.

Thm.: Even if all parameters vary arbitrarily from site to site, no 
reversible transformation can map product states to entangled states.

M ≥ 2
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Reversibility alone as a powerful axiom

time

entangled
quantum states

PR-boxes

reversible time
evolution

“d
ec

oh
er

en
ce

“

new entangled
quantum states

PR-boxes get lost over time...
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Does locally quantum          globally quantum?
?

=⇒

• Barnum, Beigi, Boixo, Elliott, Wehner, PRL 104, 140401 (2010): 
If A and B are quantum systems, and AB any composition, then all 
correlations on AB are quantum correlations.

•  Acin, Augusiak, Cavalcanti, Hadley, Korbidcz, Lewenstein, 
Masanes, Piani, PRL 104, 140404 (2010):
There are quantum systems A, B, C and a composition ABC 
which contains post-quantum correlations (not allowed in QT).
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...
1 2 3 n4 5

locally: qubit

� �� �
“all systems the same“:

state space is permutation-invariant

de la Torre, Masanes, Short, MM, arXiv: 1110.5482:

Thm.: Consider any locally-tomographic theory in which the 
individual systems are identical qubits. If the theory admits at least 
one continuous reversible interaction between systems, then the 
allowed states, measurements, and transformations must be exactly 
those of quantum theory.
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...
1 2 3 n4 5

locally: qubit

� �� �
“all systems the same“:

state space is permutation-invariant

de la Torre, Masanes, Short, MM, arXiv: 1110.5482:

Thm.: Consider any locally-tomographic theory in which the 
individual systems are identical qubits. If the theory admits at least 
one continuous reversible interaction between systems, then the 
allowed states, measurements, and transformations must be exactly 
those of quantum theory.

Fundamental failure of QT on “large 
scales“ a bit more unlikely.
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Understanding strong self-duality from reversible dynamics:

• Usually, outcome probabilities are computed as

where                   is an “effect“, and                        a state.

•  Dropping normalization:

E(ω) ∈ [0, 1],

E : A → R ω ∈ ΩA ⊂ A

•  In QT:

QT is self-dual!

SA = {ρ | ρ ≥ 0},
EA = {ρ �→ �ρ, P � | P ≥ 0} � SA.

�ρ, P � := Tr(ρP ).

SA = {λ · ω | ω ∈ ΩA,λ ≥ 0},
EA = {E : A → R linear | E(ω) ≥ 0 ∀ω}.
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Def.: If there is an inner product such that the effects are

then the state space is strongly self-dual.
E = {ω �→ �ϕ,ω� | ϕ ∈ S} � S,

• “Most“ state spaces are not strongly self-dual. In 2D, regular 
n-gons are strongly self-dual iff n is odd:

• H. Barnum and A. Wilce: several operational approaches to strong 
self-duality, cf. A. Wilce, arXiv:1110.6607

H. Barnum, R. Duncan, A. Wilce, arXiv:1004.2920.



3. Reversibility

Reversibility as an axiom for quantum theory and the search for its closest cousins.     M. Müller, Perimeter Institute

MM, C. Ududec, arXiv: 1110.3516:

Thm.: If a theory is bit-symmetric, then it is strongly self-dual.
         Moreover, inner product can be chosen invariant,
         non-negative on states,                   iff     is pure, and
                          if      and      are perfectly distinguishable.

�ω,ω� = 1 ω
�ϕ,ω� = 0 ϕ ω
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MM, C. Ududec, arXiv: 1110.3516:

Thm.: If a theory is bit-symmetric, then it is strongly self-dual.
         Moreover, inner product can be chosen invariant,
         non-negative on states,                   iff     is pure, and
                          if      and      are perfectly distinguishable.

�ω,ω� = 1 ω
�ϕ,ω� = 0 ϕ ω

Bit symmetry: If         are 
perfectly distinguishable pure 
states, and so are               
then there is a reversible 
transformation T such that
               and 

ω,ϕ

ω�,ϕ�,

Tω = ω� Tϕ = ϕ�.
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Ll. Masanes, MM, New J Phys. 13, 063001 (2011):

I. All state spaces finite-dimensional
II. No additional restrictions on measurements
III. Continuous reversibility
IV. Local tomography
V. Subspace axiom

all probabilistic
theories

QT

singles out uniquely
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I. All state spaces finite-dimensional
II. No additional restrictions on measurements
III. Continuous reversibility
IV. Local tomography
V. Subspace axiom

all probabilistic
theories

QT

?

?
• If QT remains the only solution: exciting!
• Otherwise: find a few “closest cousins“ of QT.
  Even more exciting!

• Like in particle physics, 
group theory leaves only 
“few“ possibilities.
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of pure states there is a continuous reversible 
transformation that maps one state to the other. 
3. No restrictions on local measurements.
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Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entangling dynamics beyond quantum theory,
arXiv:1111.4060.

Consider two (generalized) bits, described by ball state spaces.
We ask for joint state spaces AB that satisfy the following:

Bd Bd⊗

A B

1. Local tomography
2. Continuous reversibility: In every system, for every pair 
of pure states there is a continuous reversible 
transformation that maps one state to the other. 
3. No restrictions on local measurements.

Not needed.

Actually, only need
to assume “strict

convexity“ (see paper).
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Thm.: The only interacting theory in this family is QT:
• If            then all reversible transformations on AB are of the
  form                            and all states on AB are unentangled.
• If            then we have either QT, or partially-transposed QT,
or the unentangled states of QT.

d �= 3,
TAB = TA ⊗ TB ,

d = 3,
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Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entangling dynamics beyond quantum theory,
arXiv:1111.4060.

Bd Bd⊗

A B

Thm.: The only interacting theory in this family is QT:
• If            then all reversible transformations on AB are of the
  form                            and all states on AB are unentangled.
• If            then we have either QT, or partially-transposed QT,
or the unentangled states of QT.

d �= 3,
TAB = TA ⊗ TB ,

d = 3,

First, guess the local transformation group:
abstract groups d H

SO(d) 3, 4, 5 . . . V

SU(d/2) 4, 6, 8 . . . V ⊕ V∗

U(d/2) 2, 4, 6, 8 . . . V ⊕ V∗

Sp(d/4) 8, 12, 16 . . . V ⊕ V∗

Sp(d/4)× U(1) 8, 12, 16 . . . V ⊕ V∗

Sp(d/4)× SU(2) 4, 8, 12 . . . irreducible

G2 7 V

Spin(7) 8 V

Spin(9) 16 V

Table 1: The first column is the list of abstract groups (or families of groups parametrized

by d) that are transitive on the unit sphere within Rd. The second column contains

the values of d for which this holds. The third column schematically specifies which

representation of each abstract group corresponds to the matrix group H, where V is the

fundamental representation and V∗ its dual (both irreducible). In cases where describing

the representation is complicated we just mention whether it is irreducible.

reversible transformations for a binary system H are the ones listed in Table 4.1 and

described in the Appendix.

Let us recapitulate the definition of some abstract groups:

SO(n) = {Q ∈ Rn×n
|QTQ = 1n and detQ = 1}, (12)

SU(n) = {Q ∈ Cn×n
|Q†Q = 1n and detQ = 1}, (13)

U(n) = {Q ∈ Cn×n
|Q†Q = 1n}, (14)

Sp(n) = {Q ∈ C2n×2n
|Q†Q = 12n and QTJQ = J}, (15)

where J = (iσ2)⊗1n and 1n is the n×n identity matrix. For the definition of G2 see [27],

for the definition of Spin(n) see [22]. The fundamental representation V is the defining

one (12-15). According to Table 4.1, the representation H for SO(d), denoted HSO(d), is

the fundamental V , hence HSO(d) = SO(d). The representation V ⊕ V∗ makes use of a

standard trick to generate a real representation for a group of complex matrices. The

particular map is:

Cn×n −→ R2n×2n

Q �−→ 12 ⊗ reQ+ (iσ2)⊗ imQ . (16)

To see that this is a homomorphism, note that the real matrix (iσ2) behaves as the

imaginary unity (iσ2)
2 = −12. This specifies the representation H for the abstract groups

SU(d/2),U(d/2), Sp(d/4), denoted HSU(d/2),HU(d/2),HSp(d/4). The group SO(d) with d =

2 is not in Table 4.1 because SO(2) = HU(1), and we choose to include it in the U(d/2)
family because SO(2) is reducible, while SO(d) for d ≥ 3 not. Another coincidence is

SU(2) = Sp(1).

The matrix group FSU(2) is the representation of SU(2) obtained through the following

Lie algebra homomorphism:

iσ1 �−→ σ1 ⊗ (iσ2)⊗ 1d/4 , (17)

12
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Bd Bd⊗

A B

In the following, restrict to SO(d).

• local states: ω =

�
1
a

�
, a ∈ Rd, |a| ≤ 1.

• local effects: E(ω) = E · ω, E =
1

2

�
1
x

�
, x ∈ Rd, |x| ≤ 1.

• product states: ωA ⊗ ωB =

�
1
a

�
⊗

�
1
b

�
=





1
b
a

a⊗ b



.
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1
a

�
⊗
�

1
b

�
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�
1
−a

�
⊗
�

1
y

�
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We have f(0) = 0.
Thus f �(0) = 0 and f ��(0) ≥ 0.
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Consider                     transformations in global Lie groupG(t) = etW GAB .

|a| = 1.

�0.2 �0.1 0.0 0.1 0.2

0.2

0.4

0.6

0.8

1.0

t
0

f(t) :=
1

4

�
1
a

�
⊗
�

1
b

�
etW

�
1
−a

�
⊗
�

1
y

�
∈ [0, 1] ∀t.

We have f(0) = 0.
Thus f �(0) = 0 and f ��(0) ≥ 0.

�
1
a

�
⊗

�
1
b

�
W

�
1
−a

�
⊗

�
1
y

�
= 0

�
1
a

�
⊗
�

1
b

�
W 2

�
1
−a

�
⊗

�
1
y

�
≥ 0.
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d ≥ 4,

W = WA ⊗ 1B + 1A ⊗WB .

They generate non-interacting dynamics.
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Rotations in (d-1) dimensions commute only if d=3.
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For            it turns out that the only global Lie algebra 
elements W that satisfy all constraints are of the form

d ≥ 4,

W = WA ⊗ 1B + 1A ⊗WB .

They generate non-interacting dynamics.

Main group-theoretic reasons:
Rotations in (d-1) dimensions commute only if d=3.

d=7 with G2

works almost!
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G. Mauro D‘Ariano:
     “We want to start talking
      about real stuff !“

Wikipedia on Weizsäcker‘s “ur-alternatives“ (1966+):
“Physicist Carl Friedrich von Weizsäcker‘s theory of 
ur-alternatives... is a kind of digital physics as it 
axiomatically constructs quantum physics from the 
distinction between empirically observable, binary 
alternatives.
Weizsäcker used his theory to derive the 3-
dimensionality of space [...]“

Geometry and probability?
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System is described by finite-dim. convex state space.
In principle, effect measured by device can depend on v (somehow).
Notation:
Measurements take place locally and at rest.

Ev.

Assume we live in (d+1) dimensions, and there exist certain systems 
(“direction units“) and devices measuring them.
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2 outcomes:
yes / no.

Device can be rotated in space. Direction: v ∈ Sd−1 ⊂ Rd.

System is described by finite-dim. convex state space.
In principle, effect measured by device can depend on v (somehow).
Notation:
Measurements take place locally and at rest.

Ev.

Now assume 3 operational postulates:

Assume we live in (d+1) dimensions, and there exist certain systems 
(“direction units“) and devices measuring them.
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If     and      are states that have the same maximal yes-probability
                  in the same direction     then  
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continuous reversible time evolution, and bipartite states are 
uniquely determined by local measurements.
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1. Rotation of device makes some difference:
For every                 there is a state      such that
and                    for all 

v ∈ Sd−1 ω Ev(ω) = 1
Ev�(ω) < 1 v� �= v.

2. Direction units carry only direction information:
If     and      are states that have the same maximal yes-probability
                  in the same direction     then  
ω ω�

max
v

Ev(ω) v, ω = ω�.

Thm.: If 1.-3. hold, then necessarily d=3, direction units are 
qubits, devices are (possibly noisy) spin measurements, two 
direction units combine to quantum state space, reversible time 
evolution is unitary & generated by some Hamiltonian.

3. Two uncorrelated direction units can become correlated by 
continuous reversible time evolution, and bipartite states are 
uniquely determined by local measurements.
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A challenge:
     Are there other aspects of space-time
    geometry that can be derived operationally /
    on information-theoretic grounds?



Conclusions

• Axiomatization of QT

• Reversibility as a strong axiom for QT:
• Rules out boxworld
• Locally qubits      globally quantum 
• bit symmetry     strong self-duality
• singles out d=3 balls

• Geometry and probability?

⇒
⇒

Thank you!


