Strongly Universal Quantum Turing Machines & Invariance of Kolmogorov Complexity

Markus Müller

Technical University of Berlin
Institute for Mathematics MA 7-2
Straße des 17. Juni 136, 10623 Berlin, Germany

Overview

- 1. Classical Theory of Computation
 - Universal Turing Machines
 - Kolmogorov Complexity and its Invariance
- 2. Quantum Computation
 - Quantum Turing Machines (QTMs)
 - Universality of QTMs (?)
 - Quantum Kolmogorov Complexity
 - A strongly universal QTM
- 3. Conclusions

1. Classical Theory of Computation: Universal Turing Machines

A Turing machine is a **mathematical model** of a computing device. It is a **triplet** (Σ, Q, δ) , where

 \bullet Σ is the alphabet, e.g. $\Sigma = \underbrace{\{0,1,\#\}}_{\text{input tape}} \times \underbrace{\{0,1,\#\}}_{\text{output tape}}$,

•
$$Q = \left\{ \underbrace{q_0}_{start\ state}, q_1, \ldots, q_N, \underbrace{q_f}_{final\ state} \right\}$$
 is the set of internal states,

• $\delta: \Sigma \times Q \to \Sigma \times Q \times \{\text{left}, \text{right}\}\$ is the **transition function**.

1. Classical Theory of Computation: Universal Turing Machines

- Start of computation: Head at cell 0, control in state q_0 , input $x \in \{0,1\}^*$ written on input tape.
- ullet Computation: determined by transition function δ
- Halting: Control is in state q_f . \to Read **output** M(x) from output tape.
 - \Rightarrow partial recursive function $M:\{0,1\}^* \rightarrow \{0,1\}^*$.

Theorem 1. [Universal Turing Machine] There is a TM U such that for every TM M there is a constant c_M such that for every input $x \in \{0,1\}^*$ there is some $\tilde{x} \in \{0,1\}^*$ such that

$$U(\tilde{x}) = M(x)$$

and $\ell(\tilde{x}) \leq \ell(x) + c_M$.

1. Classical Theory of Computation: Kolmogorov Complexity & Invariance

Definition 2. [Kolmogorov Complexity] Let M be a TM and $s \in \{0,1\}^*$. Then,

$$C_M(s) := \min\{\ell(x) \mid x \in \{0,1\}^*, M(x) = s\}.$$

- C is a measure of **randomness**: The smaller $C_M(s)$, the less random/ more regular is s.
- Important **proof tool**, large theory about *C*.

Theorem 3. [Invariance] If U is a universal TM and M is an arbitrary TM, then

$$C_U(s) \le C_M(s) + \text{const}_M \qquad (s \in \{0, 1\}^*).$$

2. Quantum Computation: Quantum Turing Machines (QTMs)

E. Bernstein, U. Vazirani, "Quantum Complexity Theory", SIAM Journal on Computing **26** 1411-1473 (1997): A QTM is a **triplet** (Σ, Q, δ) , where

- \bullet Σ is the <code>alphabet</code>, e.g. $\Sigma = \underbrace{\{0,1,\#\}}_{\text{input tape}} \times \underbrace{\{0,1,\#\}}_{\text{output tape}}$,
- $Q = \left\{ \underbrace{q_0}_{start\ state}, q_1, \ldots, q_N, \underbrace{q_f}_{final\ state} \right\}$ is the set of internal states,
- $\delta: \Sigma \times Q \times \Sigma \times Q \times \{\text{left}, \text{right}\} \to \mathbb{C}$ is the **transition** amplitude.

$$\delta(\underbrace{00,q_0}_{\textit{read}},\underbrace{11,q_1}_{\textit{write}}, \mathsf{left}) \ = \ \tfrac{1}{\sqrt{2}} \ = \ \delta(00,q_0,11,q_1,\mathsf{right})$$

means: In superposition turn left and right.

2. Quantum Computation: Quantum Turing Machines (QTMs)

Inputs and outputs are qubit strings Q, i.e. density operators on the Hilbert space $\mathcal{H}_{\{0,1\}^*}$, i.e. on

$$\mathcal{H}_{\{0,1\}^*} = \ell^2(\{\underline{\varepsilon}, 0, 1, 00, 01, \ldots\}) = \bigoplus_{n=0}^{\infty} (\mathbb{C}^2)^{\otimes n}.$$

Example: $\sigma = \frac{1}{2}(|0\rangle + |111\rangle)(\langle 0| + \langle 111|) \in \mathcal{Q}$ is a qubit string of length $\ell(\sigma) = 3$.

Definition 4. [Halting of a QTM] We say that a QTM M halts at time $T \in \mathbb{N}$ on input $\sigma \in \mathcal{Q}$, iff

$$\langle q_f | M_{\mathbf{C}}^t(\sigma) | q_f \rangle = \begin{cases} 0 & \text{if } t < T, \\ 1 & \text{if } t = T, \end{cases}$$

where $M_{\mathbf{C}}^t(\sigma)$ is the state of the control at time t.

 \Rightarrow QTMs are partial maps $M: \mathcal{Q} \rightarrow \mathcal{Q}$.

2. Quantum Computation: Universality of QTMs (?)

(*)
$$\langle q_f | M_{\mathbf{C}}^t(\sigma) | q_f \rangle = \begin{cases} 0 & \text{if } t < T \\ 1 & \text{if } t = T \end{cases}$$

There are good reasons for **not** allowing **approximate** halting, i.e. $0 < \langle q_f | M_{\mathbf{C}}^t(\sigma) | q_f \rangle < 1$.

Serious problem:

- QTMs can simulate other QTMs only approximately.
- Thus, halting (*) can **never** be simulated **perfectly**.
- So how can there be a universal QTM?

2. Quantum Computation: Universality of QTMs (?)

Bernstein and Vazirani: There is a QTM \mathcal{U} such that for every QTM M there is a string s_M such that

$$\left\|\underbrace{M_{\mathbf{O}}^T(|\psi\rangle)}_{\text{content of output tape}} - \mathcal{U}(s_M, T, \delta, |\psi\rangle)\right\|_{\mathrm{Tr}} < \delta$$

for every input $|\psi\rangle$, accurary $\delta>0$ and time $T\in\mathbb{N}$.

- Number of time steps T given as input in advance.
- \mathcal{U} simulates M efficiently (quickly).
- Aim of B&V: Study computational complexity: How "fast" are quantum algorithms?
 ⇒ Time T known in advance. No problem.

2. Quantum Computation: Quantum Kolmogorov Complexity

Definition 5. [\approx **Berthiaume et. al. 2001**] *Let* M *be a QTM and* $\rho \in \mathcal{Q}$ *a qubit string.*

$$QC_M(\rho) := \min \left\{ \ell(\sigma) \mid \|\rho - M(\sigma, k)\|_{\mathrm{Tr}} \le \frac{1}{k} \, \forall k \in \mathbb{N} \right\}$$

Question: Is there a "universal" QTM U such that for every QTM M

$$QC_{\mathbf{U}}(\rho) \leq QC_{M}(\rho) + \text{const}_{M} \qquad (\rho \in \mathcal{Q}) ?$$

Bernstein-Vazirani universal QTM \mathcal{U} is **not enough**: Halting time T can be **very large**; giving T as input **makes the input very long**.

Can we do better?

2. Quantum Computation: A strongly universal QTM

Theorem 6. [M.M., quant-ph/0605030] There is a QTM U such that for every QTM M and every qubit string $\sigma \in \mathcal{Q}$ there is a $\sigma_M \in \mathcal{Q}$ such that

$$||U(\sigma_M, \delta) - M(\sigma)||_{\mathrm{Tr}} < \delta \qquad (\delta > 0)$$

while $\ell(\sigma_M) \leq \ell(\sigma) + \text{const}_M$.

Corollary 7. [Invariance]

There is a QTM U such that for every QTM M there is a constant $c_M \in \mathbb{N}$ such that

$$QC_U(\rho) \le QC_M(\rho) + c_M \qquad (\rho \in \mathcal{Q}).$$

Proof is based on thorough analysis of the halting structure of input qubit strings: Every input σ can be decomposed into classical and quantum part (in a non-trivial way).

3. Conclusions

- Turing Machines and Kolmogorov Complexity have quantum counterparts.
- There are different notions of universality for quantum Turing machines.
- What we have shown: There is a "strongly universal" QTM U such that for every QTM M and qubit string $\sigma \in \mathcal{Q}$ there is a $\sigma_M \in \mathcal{Q}$ such that

$$||U(\sigma_M, \delta) - M(\sigma)||_{\operatorname{Tr}} < \delta \qquad (\delta > 0)$$

while $\ell(\sigma_M) \leq \ell(\sigma) + \text{const}_M$.

- Thus, it makes sense to study quantum Kolmogorov complexity.
- More information: quant-ph/0605030.