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Overview

1. Classical Theory of Computation

– Universal Turing Machines
– Kolmogorov Complexity and its Invariance

2. Quantum Computation

– Quantum Turing Machines (QTMs)
– Universality of QTMs (?)
– Quantum Kolmogorov Complexity
– A strongly universal QTM

3. Conclusions
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1. Classical Theory of Computation:

Universal Turing Machines

A Turing machine is a mathematical model of a
computing device. It is a triplet (Σ, Q, δ), where

• Σ is the alphabet, e.g. Σ = {0, 1,#}
︸ ︷︷ ︸

input tape

× {0, 1,#}
︸ ︷︷ ︸

output tape

,

• Q =






q0︸︷︷︸

start state

, q1, . . . , qN , qf
︸︷︷︸

final state






is

the set of internal states,

• δ : Σ×Q→ Σ×Q× {left, right} is the transition
function.
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1. Classical Theory of Computation:

Universal Turing Machines

• Start of computation: Head at cell 0, control in
state q0, input x ∈ {0, 1}∗ written on input tape.

• Computation: determined by transition function δ

• Halting: Control is in state qf . → Read output
M(x) from output tape.

⇒ partial recursive function M : {0, 1}∗ → {0, 1}∗.

Theorem 1. [Universal Turing Machine] There is

a TM U such that for every TM M there is a constant

cM such that for every input x ∈ {0, 1}∗ there is
some x̃ ∈ {0, 1}∗ such that

U(x̃) = M(x)

and ℓ(x̃) ≤ ℓ(x) + cM .
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1. Classical Theory of Computation:

Kolmogorov Complexity & Invariance

Definition 2. [Kolmogorov Complexity] Let M be

a TM and s ∈ {0, 1}∗. Then,

CM(s) := min{ℓ(x) | x ∈ {0, 1}∗, M(x) = s}.

• C is a measure of randomness: The smaller CM(s),
the less random/ more regular is s.

• Important proof tool, large theory about C.

Theorem 3. [Invariance] If U is a universal TM and

M is an arbitrary TM, then

CU(s) ≤ CM(s) + constM (s ∈ {0, 1}∗).

4



2. Quantum Computation:

Quantum Turing Machines (QTMs)

E. Bernstein, U. Vazirani, ”Quantum Complexity
Theory”, SIAM Journal on Computing 26 1411-1473
(1997): A QTM is a triplet (Σ, Q, δ), where

• Σ is the alphabet, e.g. Σ = {0, 1,#}
︸ ︷︷ ︸

input tape

× {0, 1,#}
︸ ︷︷ ︸

output tape

,

• Q =






q0︸︷︷︸

start state

, q1, . . . , qN , qf
︸︷︷︸

final state






is

the set of internal states,

• δ : Σ×Q×Σ×Q×{left, right} → C is the transition
amplitude.

δ(00, q0︸ ︷︷ ︸

read

, 11, q1︸ ︷︷ ︸

write

, left) = 1√
2

= δ(00, q0, 11, q1, right)

means: In superposition turn left and right.
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2. Quantum Computation:

Quantum Turing Machines (QTMs)

Inputs and outputs are qubit strings Q, i.e.
density operators on the Hilbert space H{0,1}∗, i.e. on

H{0,1}∗ = ℓ2({ε, 0, 1, 00, 01, . . .
︸ ︷︷ ︸

orthonormal basis

}) =

∞⊕

n=0

(
C

2
)⊗n

.

Example: σ = 1

2
(|0〉 + |111〉)(〈0| + 〈111|) ∈ Q is a

qubit string of length ℓ(σ) = 3.

Definition 4. [Halting of a QTM] We say that a

QTM M halts at time T ∈ N on input σ ∈ Q, iff

〈qf |M
t
C
(σ)|qf〉 =

{
0 if t < T,

1 if t = T,

where M t
C
(σ) is the state of the control at time t.

⇒ QTMs are partial maps M : Q → Q.
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2. Quantum Computation:

Universality of QTMs (?)

(∗) 〈qf |M
t
C
(σ)|qf〉 =

{
0 if t < T

1 if t = T

There are good reasons for not allowing approximate
halting, i.e. 0 < 〈qf |M

t
C
(σ)|qf〉 < 1.

Serious problem:

• QTMs can simulate other QTMs only approximately.

• Thus, halting (∗) can never be simulated perfectly.

• So how can there be a universal QTM?
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2. Quantum Computation:

Universality of QTMs (?)

Bernstein and Vazirani: There is a QTM U such
that for every QTM M there is a string sM such that

∥
∥
∥
∥
∥
∥

MT
O

(|ψ〉)
︸ ︷︷ ︸

content of output tape

− U(sM , T, δ, |ψ〉)

∥
∥
∥
∥
∥
∥

Tr

< δ

for every input |ψ〉, accurary δ > 0 and time T ∈ N.

• Number of time steps T given as input in advance.

• U simulates M efficiently (quickly).

• Aim of B&V: Study computational complexity:
How ”fast” are quantum algorithms?
⇒ Time T known in advance. No problem.
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2. Quantum Computation:

Quantum Kolmogorov Complexity

Definition 5. [≈ Berthiaume et. al. 2001] Let M

be a QTM and ρ ∈ Q a qubit string.

QCM(ρ) := min

{

ℓ(σ)

∣
∣
∣
∣
‖ρ−M(σ, k)‖

Tr
≤

1

k
∀k ∈ N

}

Question: Is there a ”universal” QTM U such that
for every QTM M

QCU(ρ) ≤ QCM(ρ) + constM (ρ ∈ Q) ?

Bernstein-Vazirani universal QTM U is not enough:
Halting time T can be very large; giving T as input
makes the input very long.
Can we do better?
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2. Quantum Computation:

A strongly universal QTM

Theorem 6. [M.M., quant-ph/0605030] There is

a QTM U such that for every QTM M and every

qubit string σ ∈ Q there is a σM ∈ Q such that

‖U(σM , δ) −M(σ)‖Tr < δ (δ > 0)

while ℓ(σM) ≤ ℓ(σ) + constM .

Corollary 7. [Invariance]
There is a QTM U such that for every QTM M there

is a constant cM ∈ N such that

QCU(ρ) ≤ QCM(ρ) + cM (ρ ∈ Q).

Proof is based on thorough analysis of the halting
structure of input qubit strings: Every input σ can be
decomposed into classical and quantum part (in a
non-trivial way).
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3. Conclusions

• Turing Machines and Kolmogorov Complexity have
quantum counterparts.

• There are different notions of universality for
quantum Turing machines.

• What we have shown: There is a ”strongly uni-
versal” QTM U such that for every QTM M and
qubit string σ ∈ Q there is a σM ∈ Q such that

‖U(σM , δ) −M(σ)‖Tr < δ (δ > 0)

while ℓ(σM) ≤ ℓ(σ) + constM .

• Thus, it makes sense to study quantum Kolmogo-
rov complexity.

• More information: quant-ph/0605030.
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