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Two kinds of missing information:
• Observer's lack of knowledge: knows 
only volume, temperature, ...
• Physical uncertainty: different cups 
prepared differently, time evolution, ...

>>
Statistical physics: makes objective predictions, 
based on subjective lack of knowledge.

"Postulate of equal apriori probabilities": = =...
Why does it work?
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HR

‖ρS − ΩS‖1 large

ρS ≈ ΩS

Theorem (Concentration of measure): Draw |ψ〉 ∈ HR

randomly acc. to unitarily invariant measure. Then,

Prob
[
‖ρS − ΩS‖1 ≥ ε +

dS√
dR

]
≤ 2 exp

(
−CdRε2

)
,

where C = 1/18π3, dR = dimHR, dS = dimHS , ΩS = TrE (1S/dS).



1. Motivation from statistical mechanics 
The perfect coffee machine

{|ψ〉 {|ψ〉 {|ψ〉

n = 1 n = 2 n = 3



1. Motivation from statistical mechanics 
The perfect coffee machine

{|ψ〉 {|ψ〉 {|ψ〉

n = 1 n = 2 n = 3

{ { {ρS ρS ρS



1. Motivation from statistical mechanics 
The perfect coffee machine

{ { {ρS ρS ρS



1. Motivation from statistical mechanics 
The perfect coffee machine

{ { {ρS ρS ρS

measurements ("coffee tomography")



1. Motivation from statistical mechanics 
The perfect coffee machine

{ { {ρS ρS ρS

measurements ("coffee tomography")

Reveals      . But                   (microcanonical ensemble)
for "almost all" 
Hence, almost all coffee machines (compatible with 
restrictions) prepare the microcanonical ensemble.

ρS ≈ ΩSρS

|ψ〉 ∈ HR.
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• Exact form of        is not given by Popescu et al. 
(generality!).

• Goldstein, Lebowitz, Tumulka, Zanghi, PRL 96 (2006):
 no interaction                             fixed energy                    
subspace       spanned by spectral window 
bath's spectral density exponential around      then

ΩS

H = HS + Henv,
HR [E −∆, E + ∆],

E,

E,

TextΩS ∼ exp(−βHS).

What if the constraint is not given by a subspace?

1. Motivation from statistical mechanics 
Form of the reduced density matrix
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Going beyond subspaces

• Observers may have knowledge on systems that is 
different from "being element of a subspace".
• Example: given Hamiltonian H, the energy expectation 
value                       might be known instead.

• Several authors (e.g. Brody et al., Proc. R. Soc. A 463 (2007)) proposed the set

(not a subspace!) as a "quantum microcanonical ensemble".

〈ψ|H|ψ〉 = E

ME = {|ψ〉 ∈ Cn | 〈ψ|H|ψ〉 = E, ‖ψ‖ = 1}

This is the "mean energy ensemble" (m.e.e.)!

Goal of our work:
• Prove typicality (=measure concentration) for m.e.e.,
• analyze its role in quantum statistical mechanics.
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• Concentration of measure = typicality for energy ensemble
• Note that                     but                           . Not Gibbs![ψA, HA] = 0 ψA != exp(−βHA)
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where          is given by an algebraic equation, and       are the
eigenvalues of 
The amount of concentration and s depend on the spectrum!

H = HA ⊗HB H = HA + HB

|ψ〉 ∈ H ‖ψ‖ = 1 〈ψ|H|ψ〉 = E.
ψA := TrB |ψ〉〈ψ|

ψA ≈ ρc

s ∈ R

ρc =
1

dimH

dimHB∑

k=1

E + s

HA + EB
k + s

EB
k

HB .

This follows from an even more general result:
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Main Theorem (arXiv:1003.4982):  Let H be any observable on
    , and draw a pure normalized state                randomly under
the constraint 
If f is any real function (on states) with  

where the constants a, c,    depend on the spectrum (with some
freedom of choice), and    is the median of f on the mean
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The median    can be approximated by integration over a
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Prob
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then

For some spectra, this result can be trivial (e.g.           )!c ≈ 0

Typicality in mean energy ensemble!
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M. Gromov, Metric Structures for Riemannian 
and Non-Riemannian Spaces (Birkhäuser '01).

Uε(ME)

N = {ψ : 〈ψ|H|ψ〉 ≤ E(1 + 1/2n)}
Standard result: measure concentration in ellipsoid N

Mean energy manifold inherits concentration 
of measure from surrounding ellipsoid.

2. Typicality in mean energy ensemble 
Idea of proof: integral geometry

ME = {|ψ〉 ∈ Cn | ‖ψ‖2 = 1, 〈ψ|H|ψ〉 = E}

covers a large part of N if
energy offset chosen adequately.
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Intuition:

short curves have small nbh... ... long curves have large nbh.

Intuition fails if curve is too "meandering":

How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon's needle experiment"):
C: curve, D: domain (e.g.                )∫

lines L
#(L ∩ C) dL = 2 · length(C)

D = Uε(C)

∫

lines L
length(L ∩D) dL = π · area(D)

2. Typicality in mean energy ensemble 
Proof: how to estimate neighborhood volume
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|ψ〉

1 2 3 m
H =

1
2

(
m1 +

m∑

i=1

Zi

)

Ground state energy 0, infinite temperature: energy 
dimH = 2m =: n.                             Draw       randomly under |ψ〉 〈ψ|H|ψ〉 != α · m

m/2.

                             where 0 ≤ α ≤ 1/2.

Observation: Bound from our theorem gets useless:

For Ising spectrum, we get                 Why is that?

Prob
{

|f(ψ)− f̄ | > λε
}

! exp
(
−c nε2 + 2δ

√
n
)

c ≈ 1/n.
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2. Typicality in mean energy ensemble 
No concentration in the Ising model

︸ ︷︷ ︸
|ψ〉

1 2 3 m
H =

1
2

(
m1 +

m∑

i=1

Zi

)

Ground state energy 0, infinite temperature: energy 
dimH = 2m =: n.                             Draw       randomly under |ψ〉 〈ψ|H|ψ〉 != α · m

m/2.

                             where 0 ≤ α ≤ 1/2.

Theorem: There is no exponential concentration.
Best possible concentration bound is

with                      see graph.
Prob

{
|f − f̄ | > λε

}
! exp

(
−c npε2

)

p ≡ p(α) < 1,
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⇒
n = 2m

m/2.

20 40 60 80 100energy

2!1028

4!1028

6!1028

8!1028

1!1029
" of levels

m = 100• If        is to have much 
smaller energy, then it "does 
not see" most of the levels      
effectively lives in smaller dim.

⇒

|ψ〉
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