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1. Motivation / undecidability in general

Quantum computers are believed to be more powerful than 
classical computers (Shor‘s algorithm, ...).

• Original idea (D. Deutsch ’84): it is inherently more difficult 
to simulate quantum systems than classical systems.

• Quantum complexity theory.  Example: The 2-local 
Hamiltonian problem. Given            and

where all       act on at most 2 qubits,                            
decide if the smallest eigenvalue is           or   
This problem is QMA-complete.

Hj



1. Motivation / undecidability in general

Quantum computers are believed to be more powerful than 
classical computers (Shor‘s algorithm, ...).

• Original idea (Feynman ’81): it is inherently more difficult to 
simulate quantum systems than classical systems.

• Quantum complexity theory.  Example: The 2-local 
Hamiltonian problem. Given            and

where all       act on at most 2 qubits,                            
decide if the smallest eigenvalue is           or   
This problem is QMA-complete.

Hj



1. Motivation / undecidability in general

Quantum computers are believed to be more powerful than 
classical computers (Shor‘s algorithm, ...).

• Original idea (Feynman ’81): it is inherently more difficult to 
simulate quantum systems than classical systems.

• Quantum complexity theory.  Example: The 2-local 
Hamiltonian problem. Given            and
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Fix a universal Turing machine which takes 
natural numbers             as input.x ∈ N

Halting problem: Given input           , will the
TM eventually halt on that input, or will it run forever?

x ∈ N

Alan Turing 1936: The halting problem is undecidable. 
That is, there is no single algorithm which, for every 
input x, decides in finite time whether the TM
halts on input x or not.
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Matrix mortality problem: Given some finite set of integer 
matrices                          is there any finite matrix product
                         which equals the zero matrix?

Paterson 1970; Halava, Harju 2001: The matrix mortality 
problem is undecidable, even for eight 3x3 integer matrices.
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Earlier works in similar spirit:
• V. Blondel, E. Jeandel, P. Koiran, and N. Portier, Decidable and 
undecidable problems about quantum automata, SIAM J Comp. 
34, 1464-1473 (2005).
• H. Derksen, E. Jeandel, and P. Koiran, Quantum automata and 
algebraic groups, J. Symb. Comp. 39, 357-371 (2005)
• M. Hirvensalo, Various aspects of finite quantum automata, 
Developments of Language Theory, vol. 5257, Lecture Notes in 
Computer Science, Springer (2008).
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The Quantum Setting

• Input: quantum state 
• Device: specified by K “Kraus operators“
   
   Normalization: 

•Output: with prob.                               we get outcome j and
  output 
•Sequence: 

K�

j=1

A†
jAj = 1.
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†
j),

ρ� = AjρA
†
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{Aj}Kj=1 ⊂ Cd×d.
ρ ∈ Cd×d, ρ ≥ 0, Trρ = 1.
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2. The “measurement occurrence problem“
The Classical Setting

Classical measurement occurrence problem (CMOP): 
Given a description of a measurement device in terms 
of K substochastic matrices 
decide whether there is any finite sequence
which can never be observed, regardless of the input 
state.

j1, . . . , jn
Q1, . . . , QK ∈ Qd×d,



Prob(j1, . . . , jn) = Tr(Ajn . . . Aj1ρA
†
j1
. . . A†
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)
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Prob(j1, . . . , jn) = Tr(Ajn . . . Aj1ρA
†
j1
. . . A†

jn
) = 0

⇔ A†
j1
. . . A†

jn
Ajn . . . Aj1 = 0

⇔ Ajn . . . Aj1 = 0. Instance of the matrix mortality problem!

Undecidability of MMP ⇒ undecidability of QMOP ?

Not quite! Normalization                        gives additional information.
�

j A
†
jAj = 1
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Summary: quantum cs. classical MOP

Quantum MOP Classical MOP

MMP MMP≥0

Destructive interference
undecidable

Only constructive interference
decidable
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Paradigm of a non-computable number: Chaitin‘s Omega.
Let U be a prefix-free universal Turing machine. Set

Ω :=
�

p: U halts on input p

2−�(p) ≤ 1.

• There is an algorithm which, on input n, computes an 
approximation Ωn such that
• But: There is no algorithm which, on input n, computes an 
approximation Ω‘n such that                            Ω is not computable.

Ωn ≤ Ωn+1 and lim
n→∞

Ωn = Ω.

|Ω− Ω�
n| < 1/n.
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• Hastings 2008: no!
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Are further natural quantum problems undecidable?

Are natural quantities in quantum 
information theory noncomputable?

HSW: classical capacity of a quantum channel N

cn is a computable, increasing sequence with

C(N ) = lim
n→∞

1

n
χ(N⊗n)

� �� �
=:cn

lim
n→∞

cn = C(N ).

But: maybe            is not computable in general?C(N )

This would prove - once and for all - that there
cannot be any single-letter formula.
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Conclusions

Quantum MOP Classical MOP

MMP MMP≥0

Destructive interference
undecidable

Only constructive interference
decidable

• Undecidability in quantum measurements:

• Speculation: are quantum channel capacities noncomputable?


