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1. Some motivation... and history

In 1900, the black-body spectrum
showed experimental deviations
from theory (Wien‘s law).

Max Planck derived correct law

Main assumption: Thermodynamics remains valid
    in the realm of new physics.

This + quantization of energy assumption 
          produce correct formula.

ρ(ν, T ) =
8πhν3

c3
/
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exp[hν/(kT )]− 1
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Nowadays: quantum gravity.
Black hole thermodynamics is used to get
information on new physics.

But: Possibly new laws of probability / 
information processing. 
How does statistical physics change?

In the meantime, we will also
• get a unified view on typical entanglement and coin tossing,
• compute typ. ent. in (anti)symmetric subspaces,
• find a good entropy measure for general state spaces.
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Why do systems thermalize despite global unitary evolution?

A B
|ψAB(t)� = e−iHABt|ψAB(0)�

ψA(t) := TrB |ψAB(t)��ψAB(t)|

Concentration of measure: if |B| large, then “almost all“ 
                   look locally like  
 

|ψ� ∈ AB
ψA ≈ 1/|A|.

Random states                 typically
• look locally like statistical ensembles,
• are almost maximally entangled,
• have low local purity

|ψ� ∈ AB

Tr(ψ2
A).
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Now: What about typ. entanglement / local purity in general?
How is it in new probabilistic theories? Or old ones (classically)? ...



3. Purity in dynamical state spaces

(Unnormalized) state ω =
list of all probabilities of „yes“-
outcomes of all possible measurements.

ω = (p1, p2, p3, p4, p5, p6, . . .)

Sometimes, ω described by finitely many values. Example: Qubit
• What‘s the prob. of „spin up“ in X-direction?
• What‘s the prob. of „spin up“ in Y-direction?
• What‘s the prob. of „spin up“ in Z-direction?
• Is the particle there at all?
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Qubit: N=2, K=4

Qubit:        is the 3D unit ball,

(no reflections!)GA = SO(3)

ΩA

⇒ A dynamical state space is a pair (ΩA,GA).

state space reversible transf.

• Quantum theory:
       = density matrices on                 = projective unitary group.
   
• Classical probability theory:
        = probability distributions                             =permutations.

ΩA GACN ,

ΩA (p1, . . . , pN ), GA

K = N2.

K = N.

To do: define purity.
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Qubit: N=2, K=4

μ

To state ω, define Bloch vector ω̂ := ω − µ.
ω

ω̂
Def.: Purity           of a state ω is

        scaled such that pure states have purity 1.

P(ω)

P(ω) := �ω̂, ω̂� = �ω̂�2,

Properties: •                          for all reversible transformations T,
•                          and         is convex,
•                 if and only if ω is maximally mixed,
•                 if and only if ω is pure.

P(Tω) = P(ω)
0 ≤ P(ω) ≤ 1,

√
P

P(ω) = 0
P(ω) = 1

Quantum states on       Cn : P(ρ) =
n

n− 1
Tr(ρ2)− 1

n− 1
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Qubit: N=2, K=4

A B

How to draw a random state          with fixed purity           
• Fix an arbitrary initial state          with 
• apply a Haar-random reversible transformation T to it.
• the result is 

ωAB P(ωAB) = P0 :
ϕAB P(ϕAB) = P0.

ωAB := TϕAB .

ωAB



3. Purity in dynamical state spaces

Qubit: N=2, K=4

A B
ωAB

Theorem: If AB is locally tomographic and contains a composite
                  classical subsystem, then

EωP(ωA) =
KA − 1

KAKB − 1
· NANB − 1

NA − 1
· P(ωAB).



3. Purity in dynamical state spaces

Qubit: N=2, K=4

A B
ωAB

Theorem: If AB is locally tomographic and contains a composite
                  classical subsystem, then

EωP(ωA) =
KA − 1

KAKB − 1
· NANB − 1

NA − 1
· P(ωAB).

Random pure quantum states: K = N2, P(ωAB) = 1.

EωP(ωA) =
NA + 1

NANB + 1
≈ 1

NB
almost maximally entangled!

Due to Markov‘s inequality, this is the typical behaviour.
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ωAB

Theorem: If AB is locally tomographic and contains a composite
                  classical subsystem, then

EωP(ωA) =
KA − 1

KAKB − 1
· NANB − 1

NA − 1
· P(ωAB).

Random pure classical states:

There are no entangled classical states.

K = N, P(ωAB) = 1.

EωP(ωA) = 1.
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A

B

Theorem: If AB is locally tomographic and contains a composite
                  classical subsystem, then

EωP(ωA) =
KA − 1

KAKB − 1
· NANB − 1

NA − 1
· P(ωAB).

Classical coin tossing: initially, ϕAB = ϕA ⊗ ϕB .

Coin‘s state        pure (fully known), environment state        mixed.ϕA ϕB

AQubit: N=2, K=4

N = K;

random permutation T.ωAB = TϕAB , EωP(ωA) = P(ωAB) = P(ϕAB).

Ignorance about
environment gets
transferred to coin.



3. Purity in dynamical state spaces

A
B

R

Analogous calculations with constraint
              give new quantum results
as by-products, e.g.:
R ⊆ AB

Theorem. If ω± is a random pure state on the
symmetric R+ = Cn ∨ Cn or antisymmetric subspace
R− = Cn ∧ Cn on AB = Cn ⊗ Cn, then

Eω±Tr
��
ωA
±
�2�

=
2(n± 1)

n2 ± n+ 2
.
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B

A
(all emitted Hawking radiation)

If all is quantum, and B.H. formed from pure state:
N qubits in Hawking radiation A can only be 
maximally mixed if B keeps N qubits for purification.

BH lifetime

Purity of emitted
radiation1
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hyper-
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classical bit
N=2, K=2 quantum bit

N=2, K=4

decoherence

hyperbit
N=2, K=?

?

(Wikimedia Commons)

B

A
(all emitted Hawking radiation)

If B is post-quantum with                    typical pure
states          have
Small B can purify large A.

BH lifetime

Purity of emitted
radiation1

0

KB � N2
B ,

ωAB P(ωA) ≈ NB/KB � 1/NB .

Post-quantum
black holes may
keep information

much longer.
 

hyper-
decoherence?



Hawking radiation

time
black hole
is formed

Alice&Rob
are couple

half-way
radiated

U

Alice throws
diary into BH

R

A

(k qubits)

(k qubits) A2

A1

k+c more
qubits radiated

V

4. Decoupling and black-hole thermodynamics

Bob recovers
Alice‘s diary

P. Hayden and J. Preskill, Black holes as mirrors, J. HEP 09(120), 2007.

B



Hawking radiation

time
black hole
is formed

Alice&Rob
are couple

half-way
radiated

U

Alice throws
diary into BH

R

A

(k qubits)

(k qubits) A2

A1

k+c more
qubits radiated

V

4. Decoupling and black-hole thermodynamics

Bob recovers
Alice‘s diary

P. Hayden and J. Preskill, Black holes as mirrors, J. HEP 09(120), 2007.

B

|ω(U)RAB� = UA ⊗ 1RB |ψRAB�Decoupling:
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4. Decoupling and black-hole thermodynamics

Bob recovers
Alice‘s diary

B

Post-quantum decoupling:

decoupled

ω(U)RAB = (UA ⊗ 1RB)ψRAB

�

GA

dU �ω̂(U)RA2 − (ψR ⊗ µA2)∧�21
?
≤ N2

R

KA1

. Same as quantum if K ≥ N2 ?

But: “Half-way“ much later? Bob unable to decode?
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• Purity is a nice entropy measure in probabilistic theories.

• Unified view on typical entanglement and coin tossing: 
randomization depends basically on parameters N and K.

• New quantum results on typical entanglement, e.g. in 
(anti-)symmetric subspaces.

• Some speculation on post-quantum black hole physics: 
purification, general decoupling theorem.
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