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Nowadays: quantum gravity.
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But: Possibly new laws of probability /
ipf@erTItion processing.
How does statistical physics change?

In the meantime, we will also

* get a unified view on typical entanglement and coin tossing,
* compute typ. ent. in (anti)symmetric subspaces,

* find a good entropy measure for general state spaces.
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2. Entanglement and statistical physics

Why do systems thermalize despite global unitary evolution!?

Yap(t)) = e 484 5(0))
Ya(t) == Trp|ap(t))(Yar(t)

Concentration of measure: if |B| large, then “almost all* |¢)) € AB-
look locally like ¥4 ~ 1/|A].

Random states |¢)) € AB typically
* look locally like statistical ensembles,
* are almost maximally entangled,
- 2
* have low local purity Tr (1% ).
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Now: What about typ. entanglement / local purity in general?
How is it in new probabilistic theories? Or old ones (classically)? ...
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3. Purity in dynamical state spaces

outcomes x and Z (UnnOI’malized) state W) =

l physical system list of all probabilities of ,,yes"-

outcomes of all possible measurements.

w = (P1,P2,P3,D4,D5, D6, - - -)

Sometimes, W described by finitely many values. Example: Qubit

e What's t
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* |s the particle t

NE
Ne
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DO
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DI'O

. of ,,spin up* in X-direction!?

. of ,,spin up™ in Y-direction!? A
. of ,,spin up” in Z-direction? w = (p1,p2,P3,p4) € R

nere at all?
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Qubit: N=2, K=4

Transformations T map states to states, and are linear.

Reversible transformations form a group G 4. In quantum theory: P U,OUT
They are symmetries of state space: T'((),) = (24

5 &0
>\) B

Normallzed state space
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, Qubit: € 4 is the 3D unit ball,
* Ga = S0O(3) (no reflections!)

g/

Qu\t;iti\l:/Z K=4 = A dynamical state space is a pair (24,G4).

state space reversible transf.

 Quantum theory:
()4 = density matrices on CV, G4 = projective unitary group. K = N~.

e Classical probability theory:
() 4 = probability distributions (p1,...,pn), G4 =permutations. X = .

To do: define purity.
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Qubit: N=2, K=4

How to draw a random state (5 with fixed purity P(w45) = P :
e Fix an arbitrary initial state "' with P(@AB ) = Po.

e apply a Haar-random reversible transformation T to it.

e the resultis WP = Tp4B.
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Theorem: If AB is locally tomographic and contains a composite
classical subsystem, then

 Ka—-1 NusNp-—1
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4:wP(“’A)

Random pure quantum states: K = N2, P(w48)=1.

Ng+1 1
T, P(w?) = A ~
NaoNp+1 Np
Due to Markov's inequality, this is the typical behaviour.

almost maximally entangled!
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Qubit: N=2, K=4

Theorem: If AB is locally tomographic and contains a composite
classical subsystem, then

 Ka—-1 NusNp-—1
 KaKp—1 N4yu-—1

P(w?).

4:wP(“’A)

Random pure classical states: K =N, P(w?P)=1.

3, P(w?) = 1. There are no entangled classical states.
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Analogous calculations with constraint
R C AB give new quantum results
as by-products, e.g.:

Theorem. If wy is a random pure state on the

symmetric R, = C" vV C" or antisymmetric subspace
R_.=C"ANC" on AB =C"® C"™, then

2 T | (w2)7] =

2(%::1)
n?+n+2
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If B is post-quantum with K > Nz, typical pure
states w*? have P(w?) ~ Ng/Kp < 1/N5.
Small B can purify large A.

Post-quantum ,
black holes may ;
keep information‘

much longer. }

BH lifetime

Purity of emitted
radiation

(all emitted Hawking radiation)
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P. Hayden and |. Preskill, Black holes as mirrors, . HEP 09(120), 2007.
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B8 R (k qubits)

decoupled

T (k qubits) Az*
A,

L.
/ ti me

| |
blgllck hole Alllce&Rob half—way AIic'e throws k+c more Bob recovers
is formed are couple radiated diary into BH qubits radiated Alice’s diary

‘CU(U)RAB> _ UA 28 1RB‘¢RAB>

Tr {(wRA) 2} <

Decoupling:
R||A
[ a0 @)™ - g7 @ e < LS

— 2—26.
As]?

max. mix.
P. Hayden and |. Preskill, Black holes as mirrors, . HEP 09(120), 2007.
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B8 R (k qubits)

decoupled

T (k qubits) Az*
A,

L.
/ ti me

| |
blgllck hole Alllce&Rob half—way AIic'e throws k+c more Bob recovers
is formed are couple radiated diary into BH qubits radiated Alice’s diary

w(U)RAB _ (UA R 1RB)¢RAB
(Ka, —1)(NgNa — 1)
(NrRNa, — 1)(Ka — 1)

(Nr — 1)(Ka, — 1)
(NrNa, —1)(Ka — 1)

Post-quantum decoupling:
[ aule@)™e - R e )13 = ).
Ga

~P(u").
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B8 R (k qubits)

decoupled
Ak qubis) AY  mEm
| A, -
i 5/
. L3
i
I i . X =2 time
black hole Alllce&Rob half—way Alice throws k+c more Bob recovers

is formed are couple radiated diary into BH qubits radiated Alice’s diary

UVBAB _ (A & 18B)RAB
Post-quantum decoupling: w(U) ( )Y

7 N2
/ AU &(U) 42 — (pR @ pA2)M |2 < VR
G A KA

Same as quantum if X > N2 ?

1
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B8 R (k qubits)

decoupled

A.Y

=

i (k qubits)

But: “Half-way"” much later? Bob unable to decode!
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Thank you!
(arXiv:1107.6029)




