Typical entanglement, coin tossing, and a general-probabilistic decoupling theorem

Markus Müller

Perimeter Institute for Theoretical Physics, Waterloo (Canada)

Jointly with Oscar Dahlsten, Vlatko Vedral arXiv: 1007.6029

Part on black holes with Jonathan Oppenheim

Outline

- I. Some motivation... and history
- 2. Entanglement and statistical physics
- 3. Purity in dynamical state spaces
- 4. Decoupling and black-hole thermodynamics

In 1900, the black-body spectrum showed experimental deviations from theory (Wien's law).

Max Planck derived correct law $\rho(\nu, T) = \frac{8\pi h\nu^3}{c^3} / \left(\exp[h\nu/(kT)] - 1 \right)$

In 1900, the black-body spectrum showed experimental deviations from theory (Wien's law).

Max Planck derived correct law $\rho(\nu, T) = \frac{8\pi h\nu^3}{c^3} / \left(\exp[h\nu/(kT)] - 1 \right)$

Main assumption: Thermodynamics remains valid in the realm of new physics.

This + quantization of energy assumption produce correct formula.

In 1900, the black-body spectrum showed experimental deviations from theory (Wien's law).

Nowadays: quantum gravity. Black hole thermodynamics is used to get information on new physics.

(Wikimedia Commons)

Nowadays: quantum gravity. Black hole thermodynamics is used to get information on new physics.

But: Possibly new laws of probability / information processing. How does statistical physics change?

Nowadays: quantum gravity. Black hole thermodynamics is used to get information on new physics.

Nowadays: quantum gravity. Black hole thermodynamics is used to get information on new physics.

In the meantime, we will also

- get a unified view on typical entanglement and coin tossing,
- compute typ. ent. in (anti)symmetric subspaces,
- find a good entropy measure for general state spaces.

Why do systems thermalize despite global unitary evolution?

 $\begin{aligned} |\psi_{AB}(t)\rangle &= e^{-iH_{AB}t} |\psi_{AB}(0)\rangle \\ \psi_{A}(t) &:= \mathrm{Tr}_{B} |\psi_{AB}(t)\rangle \langle \psi_{AB}(t)| \end{aligned} \qquad A \end{aligned}$

Why do systems thermalize despite global unitary evolution?

 $\begin{aligned} |\psi_{AB}(t)\rangle &= e^{-iH_{AB}t} |\psi_{AB}(0)\rangle \\ \psi_{A}(t) &:= \mathrm{Tr}_{B} |\psi_{AB}(t)\rangle \langle \psi_{AB}(t)| \end{aligned}$

Concentration of measure: if |B| large, then "almost all" $|\psi\rangle \in AB$ look locally like $\psi_A \approx \mathbf{1}/|A|$.

Why do systems thermalize despite global unitary evolution?

 $|\psi_{AB}(t)\rangle = e^{-iH_{AB}t}|\psi_{AB}(0)\rangle$ $\psi_{A}(t) := \operatorname{Tr}_{B}|\psi_{AB}(t)\rangle\langle\psi_{AB}(t)|$

Concentration of measure: if |B| large, then "almost all" $|\psi\rangle \in AB$ look locally like $\psi_A \approx \mathbf{1}/|A|$.

Random states $|\psi\rangle\in AB$ typically

- look locally like statistical ensembles,
- are almost maximally entangled,
- have low local purity $Tr(\psi_A^2)$.

Generalization: Constraint by subspace $|\psi\rangle \in R \subseteq AB$.

• S. Popescu, A. J. Short, and A. Winter, *Entanglement and the foundations of statistical mechanics*, Nat. Phys. **2**, 754 (2006).

N. Linden, S. Popescu, A. J. Short, and A. Winter, On the speed of fluctuations around thermodynamic equilibrium, New J. Phys. 12, 055021 (2010).

• P. Reimann, Foundations of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. **101**, 190403 (2008).

• J. Gemmer, M. Michel, and G. Mahler, *Quantum Thermodynamics* (Springer, Berlin, 2009), Vol. 784.

A	B
	R

Generalization: Constraint by subspace $|\psi\rangle \in R \subseteq AB$.

• S. Popescu, A. J. Short, and A. Winter, *Entanglement and the foundations of statistical mechanics*, Nat. Phys. **2**, 754 (2006).

N. Linden, S. Popescu, A. J. Short, and A. Winter, On the speed of fluctuations around thermodynamic equilibrium, New J. Phys. 12, 055021 (2010).

• P. Reimann, Foundations of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. **101**, 190403 (2008).

• J. Gemmer, M. Michel, and G. Mahler, *Quantum Thermodynamics* (Springer, Berlin, 2009), Vol. 784.

Energy constraint $\langle \psi | H | \psi \rangle = E$:

• MM, D. Gross, and J. Eisert, Concentration of measure for quantum states with a fixed expectation value, Commun. Math. Phys. **303/3**, 785-824 (2011).

A	B
	R

Generalization: Constraint by subspace $|\psi\rangle \in R \subseteq AB$.

• S. Popescu, A. J. Short, and A. Winter, *Entanglement and the foundations of statistical mechanics*, Nat. Phys. **2**, 754 (2006).

N. Linden, S. Popescu, A. J. Short, and A. Winter, On the speed of fluctuations around thermodynamic equilibrium, New J. Phys. 12, 055021 (2010).

• P. Reimann, Foundations of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. **101**, 190403 (2008).

• J. Gemmer, M. Michel, and G. Mahler, *Quantum Thermodynamics* (Springer, Berlin, 2009), Vol. 784.

Energy constraint $\langle \psi | H | \psi \rangle = E$:

• MM, D. Gross, and J. Eisert, *Concentration of measure for quantum states* with a fixed expectation value, Commun. Math. Phys. **303/3**, 785-824 (2011).

Now: What about typ. entanglement / local purity in general? How is it in new probabilistic theories? Or old ones (classically)? ...

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of all possible measurements.

 $\omega = (p_1, p_2, p_3, p_4, p_5, p_6, \ldots)$

Sometimes, ω described by finitely many values. Example: Qubit

- What's the prob. of "spin up" in X-direction?
- What's the prob. of "spin up" in Y-direction?
- What's the prob. of "spin up" in Z-direction?
- Is the particle there at all?

 $\boldsymbol{\flat} \, \boldsymbol{\omega} = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4$

(Unnormalized) state $\omega =$ list of all probabilities of "yes"outcomes of all possible measurements. $\omega = (p_1, p_2, p_5, p_4, p_5, p_6, ...)$

Sometimes, ω described by finitely many values. Example: Qubit

- What's the prob. of "spin up" in X-direction?
- What's the prob. of "spin up" in Y-direction?
- What's the prob. of "spin up" in Z-direction?
- Is the particle there at all?

 $\omega = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4$

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of fiducial measurements.

$$\omega = (p_1, p_2, \dots, p_K).$$

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of fiducial measurements.

$$\omega = (p_1, p_2, \dots, p_K).$$

K = # of degrees of freedom.

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of fiducial measurements. $\omega = (p_1, p_2, \dots, p_K).$

K = # of degrees of freedom.

Normalized states are points in convex state spaces. Extremal points are pure, others mixed.

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of fiducial measurements. $\omega = (p_1, p_2, \dots, p_K).$

K = # of degrees of freedom.

Normalized states are points in convex state spaces. Extremal points are pure, others mixed.

Outcome probabilities are linear functionals E with $0 \le E(\psi) \le 1$ for all Ψ .

Measurements are (E_1, E_2, \dots, E_n) with $\sum_i E_i(\psi) = 1$ for all ψ .

(Unnormalized) state ω = list of all probabilities of "yes"outcomes of fiducial measurements.

$$\omega = (p_1, p_2, \dots, p_K).$$

K = # of degrees of freedom.
N = # of perfectly distinguishable states

Normalized states are points in convex state spaces. Extremal points are pure, others mixed.

Outcome probabilities are linear functionals E with $0 \le E(\psi) \le 1$ for all Ψ .

Measurements are (E_1, E_2, \dots, E_n) with $\sum_i E_i(\psi) = 1$ for all ψ .

here $E(\Psi)=1$ Normalized Extremal points Outcome with 0 = here $E(\Psi)=0.7$

here $E(\psi)=1$ Normalized states are points in convex state spaces. Extremal points are pure, others mixed.

Outcome probabilities are linear functionals E with $0 \le E(\psi) \le 1$ for all Ψ .

Measurements are (E_1, E_2, \dots, E_n) with $\sum_i E_i(\psi) = 1$ for all ψ .

K = # of degrees of freedom.
 N = # of perfectly distinguishable states

K = # of degrees of freedom.N = # of perfectly distinguishable states

Qubit: **N**=2, **K**=4

Transformations T map states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T(\Omega_A) = \Omega_A$

Qubit: Ω_A is the 3D unit ball,

 $\mathcal{G}_A = SO(3)$ (no reflections!)

Qubit: **N**=2, **K**=4

Transformations T map states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T(\Omega_A) = \Omega_A$

Qubit: Ω_A is the 3D unit ball,

 $\mathcal{G}_A = SO(3)$ (no reflections!)

 \Rightarrow A dynamical state space is a pair $(\Omega_A, \mathcal{G}_A)$.

state space

reversible transf.

 $\mathcal{G}_A = SO(3)$ (no reflections!)

 $\Rightarrow A \text{ dynamical state space is a pair } (\Omega_A, \mathcal{G}_A).$ state space reversible transf.

• Quantum theory:

Qubit: **N**=2, **K**=4

$$\Omega_A$$
 = density matrices on \mathbb{C}^N , \mathcal{G}_A = projective unitary group. $K = N^2$

• Classical probability theory: $\Omega_A =$ probability distributions $(p_1, \dots, p_N), \ \mathcal{G}_A =$ permutations. K = N.

 $\mathcal{G}_A = SO(3)$ (no reflections!)

 $\Rightarrow A \text{ dynamical state space is a pair } (\Omega_A, \mathcal{G}_A).$ state space reversible transf.

• Quantum theory:

Qubit: **N**=2, **K**=4

$$\Omega_A$$
 = density matrices on \mathbb{C}^N , \mathcal{G}_A = projective unitary group. $K = N^2$

• Classical probability theory: $\Omega_A =$ probability distributions $(p_1, \dots, p_N), \ \mathcal{G}_A =$ permutations. K = N.

To do: define purity.

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.

Qubit: **N**=2, **K**=4

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.
 - \Rightarrow unique invariant maximally mixed state μ .

Qubit: **N**=2, **K**=4

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.
 - \Rightarrow unique invariant maximally mixed state μ .
 - \Rightarrow unique invariant inner product

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.

⇒ unique invariant maximally mixed state μ . ⇒ unique invariant inner product

To state ω , define Bloch vector $\hat{\omega} := \omega - \mu$.

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.

⇒ unique invariant maximally mixed state μ . ⇒ unique invariant inner product

To state ω , define Bloch vector $\hat{\omega} := \omega - \mu$.

Def.: Purity $\mathcal{P}(\omega)$ of a state ω is $\mathcal{P}(\omega) := \langle \hat{\omega}, \hat{\omega} \rangle = \|\hat{\omega}\|^2$, scaled such that pure states have purity 1.

Assumptions:

- Transitivity: All pure states connected by reversible transf.
- Irreducibility: No invariant subspaces.

 \Rightarrow unique invariant maximally mixed state μ . \Rightarrow unique invariant inner product

To state ω , define Bloch vector $\hat{\omega} := \omega - \mu$.

Def.: Purity $\mathcal{P}(\omega)$ of a state ω is $\mathcal{P}(\omega) := \langle \hat{\omega}, \hat{\omega} \rangle = \|\hat{\omega}\|^2,$

scaled such that pure states have purity I.

Properties: • $\mathcal{P}(T\omega) = \mathcal{P}(\omega)$ for all reversible transformations T,

- $0 \leq \mathcal{P}(\omega) \leq 1$, and $\sqrt{\mathcal{P}}$ is convex,
- $\mathcal{P}(\omega) = 0$ if and only if ω is maximally mixed,
- $\mathcal{P}(\omega) = 1$ if and only if ω is pure.

Qubit: **N**=2, **K**=4

To state ω , define Bloch vector $\hat{\omega} := \omega - \mu$.

Def.: Purity $\mathcal{P}(\omega)$ of a state ω is $\mathcal{P}(\omega) := \langle \hat{\omega}, \hat{\omega} \rangle = \|\hat{\omega}\|^2,$

scaled such that pure states have purity I.

Properties: • $\mathcal{P}(T\omega) = \mathcal{P}(\omega)$ for all reversible transformations T,

- $0 \leq \mathcal{P}(\omega) \leq 1$, and $\sqrt{\mathcal{P}}$ is convex,
- $\mathcal{P}(\omega) = 0$ if and only if ω is maximally mixed,

•
$$\mathcal{P}(\omega) = 1$$
 if and only if ω is pure.

Quantum states on
$$\mathbb{C}^n$$
: $\mathcal{P}(\rho) = \frac{n}{n-1} \operatorname{Tr}(\rho^2) - \frac{1}{n-1}$

Qubit: **N**=2, **K**=4

To state ω , define Bloch vector $\hat{\omega} := \omega - \mu$.

Def.: Purity $\mathcal{P}(\omega)$ of a state ω is $\mathcal{P}(\omega) := \langle \hat{\omega}, \hat{\omega} \rangle = \|\hat{\omega}\|^2,$

scaled such that pure states have purity I.

Properties: • $\mathcal{P}(T\omega) = \mathcal{P}(\omega)$ for all reversible transformations *T*,

- $0 \leq \mathcal{P}(\omega) \leq 1$, and $\sqrt{\mathcal{P}}$ is convex,
- $\mathcal{P}(\omega) = 0$ if and only if ω is maximally mixed,

•
$$\mathcal{P}(\omega) = 1$$
 if and only if ω is pure.

Qubit: **N**=2, **K**=4

How to draw a random state ω^{AB} with fixed purity $\mathcal{P}(\omega^{AB}) = \mathcal{P}_0$:

How to draw a random state ω^{AB} with fixed purity $\mathcal{P}(\omega^{AB}) = \mathcal{P}_0$: • Fix an arbitrary initial state φ^{AB} with $\mathcal{P}(\varphi^{AB}) = \mathcal{P}_0$.

How to draw a random state ω^{AB} with fixed purity $\mathcal{P}(\omega^{AB}) = \mathcal{P}_0$: • Fix an arbitrary initial state φ^{AB} with $\mathcal{P}(\varphi^{AB}) = \mathcal{P}_0$.

- apply a Haar-random reversible transformation T to it.

Qubit: **N**=2, **K**=4

How to draw a random state ω^{AB} with fixed purity $\mathcal{P}(\omega^{AB}) = \mathcal{P}_0$: • Fix an arbitrary initial state φ^{AB} with $\mathcal{P}(\varphi^{AB}) = \mathcal{P}_0$.

- apply a Haar-random reversible transformation T to it.
- the result is $\omega^{AB} := T \varphi^{AB}$.

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Qubit: **N**=2, **K**=4

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

 $\begin{array}{ll} \textbf{Random pure quantum states:} & K = N^2, \ \mathcal{P}(\omega^{AB}) = 1. \\ \mathbb{E}_{\omega}\mathcal{P}(\omega^A) = \frac{N_A + 1}{N_A N_B + 1} \approx \frac{1}{N_B} & \text{almost maximally entangled!} \end{array}$

Due to Markov's inequality, this is the typical behaviour.

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Qubit: **N**=2, **K**=4

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Random pure classical states: K = N, $\mathcal{P}(\omega^{AB}) = 1$.

 $\mathbb{E}_{\omega}\mathcal{P}(\omega^A) = 1.$ There are no entangled classical states.

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Qubit: **N**=2, **K**=4

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Classical coin tossing: N = K; initially, $\varphi^{AB} = \varphi^A \otimes \varphi^B$. Coin's state φ^A pure (fully known), environment state φ^B mixed. $\omega^{AB} = T\varphi^{AB}$, random permutation *T*. $\mathbb{E}_{\omega}\mathcal{P}(\omega^A) = \mathcal{P}(\omega^{AB}) = \mathcal{P}(\varphi^{AB})$

Ignorance about environment gets transferred to coin.

Qubit: **N**=2, **K**=4

Theorem: If AB is locally tomographic and contains a composite classical subsystem, then

$$\mathbb{E}_{\omega}\mathcal{P}(\omega^{A}) = \frac{K_{A} - 1}{K_{A}K_{B} - 1} \cdot \frac{N_{A}N_{B} - 1}{N_{A} - 1} \cdot \mathcal{P}(\omega^{AB}).$$

Classical coin tossing: N = K; initially, $\varphi^{AB} = \varphi^A \otimes \varphi^B$. Coin's state φ^A pure (fully known), environment state φ^B mixed. $\omega^{AB} = T\varphi^{AB}$, random permutation T. $\mathbb{E}_{\omega}\mathcal{P}(\omega^A) = \mathcal{P}(\omega^{AB}) = \mathcal{P}(\varphi^{AB})$

Analogous calculations with constraint $R \subseteq AB$ give new quantum results as by-products, e.g.:

Theorem. If ω_{\pm} is a random pure state on the symmetric $R_{+} = \mathbb{C}^{n} \vee \mathbb{C}^{n}$ or antisymmetric subspace $R_{-} = \mathbb{C}^{n} \wedge \mathbb{C}^{n}$ on $AB = \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, then $\mathbb{E}_{\omega_{\pm}} \operatorname{Tr} \left[\left(\omega_{\pm}^{A} \right)^{2} \right] = \frac{2(n \pm 1)}{n^{2} \pm n + 2}.$

If all is quantum, and B.H. formed from pure state: N qubits in Hawking radiation A can only be maximally mixed if B keeps N qubits for purification.

If B is post-quantum with $K_B \gg N_B^2$, typical pure states ω^{AB} have $\mathcal{P}(\omega^A) \approx N_B/K_B \ll 1/N_B$. Small B can purify large A.

If B is post-quantum with $K_B \gg N_B^2$, typical pure states ω^{AB} have $\mathcal{P}(\omega^A) \approx N_B/K_B \ll 1/N_B$. Small B can purify large A.

Post-quantum black holes may keep information much longer.

lifetime

(all emitted Hawking radiation)

P. Hayden and J. Preskill, Black holes as mirrors, J. HEP 09(120), 2007.

Conclusions

- Purity is a nice entropy measure in probabilistic theories.
- Unified view on typical entanglement and coin tossing: randomization depends basically on parameters **N** and **K**.
- New quantum results on typical entanglement, e.g. in (anti-)symmetric subspaces.
- Some speculation on post-quantum black hole physics: purification, general decoupling theorem.

Conclusions

- Purity is a nice entropy measure in probabilistic theories.
- Unified view on typical entanglement and coin tossing: randomization depends basically on parameters **N** and **K**.
- New quantum results on typical entanglement, e.g. in (anti-)symmetric subspaces.
- Some speculation on post-quantum black hole physics: purification, general decoupling theorem.

