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Prepare state w or @ with prob. /2. Result: %w + %gﬁ

here E()=1 (Normalized) state spaces are convex sets.

Extremal points are pure states, others mixed.
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here E({)=0.7  Measurements are (F1, Fs,..., E})
here E(y)=0 with ZZ E;(v) =1 forall .

Outcome probabilities are linear functionals E

with 0 < F(¢) <1 forall .
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5/ Axiom |: States on AB
are uniquely determined
Y Ol* / by correlations of local

measurements on A,B.

= ,,Local tomography*:
No non-local measurements
necessary.

X iV

Global state space (yp C A® B
Y "/ but not uniquely fixed!
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Axiom II: Let Qxand Qx_; be systems with capacities
Nand N-1.If (E1,..., Ex) is a complete measurement

on (), then the set of states w with En(w) = 0is
equivalent to 2 _ 1.

Capacity N of (2 = maximal # of perfectly distinguishable states.

(w1, ...,wn,) perfectly distinguishable, if there is a measurement
(El, . ,En) such that Ei(wj) — 523

If n= Nthen (E1,...,E,) is complete.

.
i

Equivalent = same state spaces up to
a linear map (physically the same!)
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Why a bit is described by a ball:

}E(w)= I N

W (1-E, E) is complete measurement.
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=no faces: ( 23 Reversibility axiom = (), is a ball.
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Prove step by step (using the axioms):

* There is maximally mixed state ¢ with Ty = p forall T,
®* UAB = A & UB,

* There are N pure distinguishable states wq,...,wy with
N
1
K= N le’ia

® capacity N = N4Np and bit ball dimension

dim() =2" —1€ {1 3,7,15,31,...}.

If dim(Q),) = 1 then the theory is CPT (easy):

4} Gn=permutation group.
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Consider face (,,subspace™) generated by wy ® wy
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e Counting dimensions with group rep. theory:
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® But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional

because SO(d-1) is Abelian only for d=3.
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Map 3-vectors to Hermitian matrices: L(w) := < (1 +30 w,,;(fi)
* Facts on universal quantum computation,

* Wigner'‘s theorem

* some other tricks

prove:

Theorem: Every theory satisfying Axioms |-V (rather than CPT)
is equivalent to (2, Gy ), Where

e () are the density matrices on CV
* G is the group of unitaries, acting by conjugation,
* the measurements are exactly the POVMs.




