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φ
1
2! + 1

2'

Outcome probabilities are linear functionals E
with                          for all ψ.

here E(ψ)=0

0  E(�)  1

here E(ψ)=1

Measurements are 
with                          for all ψ.

(E1, E2, . . . , Ek)P
i Ei(�) = 1

here E(ψ)=0.7
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⌦A

A

Reversible transformations form a group         In quantum theory:
They are symmetries of state space: 

GA. � 7! U�U†

Normalized state space

T (�A) = �A

Tω

Tφ
T‘ω

T‘φ
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state on AB:
correlations

No-signalling condition:
Alice‘s probabilities do not depend on 
Bob‘s choice of measurement.
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= „Local tomography“:
No non-local measurements
necessary.
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by correlations of local 
measurements on A,B.
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⇢(3) =

0
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A �⇥ ⇢(2) =

✓
· ·
· ·

◆

QT:

CPT: P (3) = (P1, P2, 0) �! P (2) = (P1, P2)

Otherwise, physics would be affected
by impossible potentialities.

2-level system.

Impossible to have system in 3rd level
⇒ find particle there with probab. 0
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Axiom III: Let       and           be systems with capacities        
N and N-1. If                       is a complete measurement 
on      , then the set of states     with                   is 
equivalent to          

SN

(E1, . . . , EN )
! EN (�) = 0

  Capacity N of Ω = maximal # of perfectly distinguishable states.

⌦N

⌦N

⌦N�1

⌦N�1.

                  perfectly distinguishable, if there is a measurement
                   such that 
(�1, . . . ,�n)
(E1, . . . , En) Ei(⇥j) = �ij .

If            then                     is complete.n = N (E1, . . . , En)

Equivalent = same state spaces up to
a linear map (physically the same!)

L

L�1
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Why a bit is described by a ball:

⌦2

capacity 2 (bit)

!0

here E(ω)=0

E(ω)=1
(1-E, E) is complete measurement.

contains a single state.) ⌦1

⌦2
here E‘(ω)=0

E‘(ω)=1

If there is a face, similar reasoning:
    contains ∞ many states.⌦1

⇒no faces: Reversibility axiom ⇒       is a ball.⌦2

⇥ {� : E(�) = 0} = {�0} � �1.

⌦2⌦2
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• There is maximally mixed state     with             for all 
• 
• There are N pure distinguishable states                  with 
 
 

• capacity                        and bit ball dimension

µAB = µA ⌦ µB ,
�1, . . . ,�N

µ =
1

N

NX

i=1

�i,

µ Tµ = µ T,

NAB = NANB

If                    then the theory is CPT (easy):dim(�2) = 1

                               =permutation group.�N =

dim(�2) = 2r � 1 ⇥ {1, 3, 7, 15, 31, . . .}.
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0
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Map 3-vectors to Hermitian matrices:
• Facts on universal quantum computation,
• Wigner‘s theorem
• some other tricks
prove:

L(⇥) := 1
2

⇣
1+

P3
i=1 ⇥i�i

⌘

Theorem: Every theory satisfying Axioms I-V (rather than CPT)
               is equivalent to              , where
•       are the density matrices on 
•      is the group of unitaries, acting by conjugation,
• the measurements are exactly the POVMs.

(�N ,GN )
⌦N CN ,
GN


