

Prepare state ω or ϕ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

Prepare state ω or ϕ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Prepare state ω or ϕ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals *E* with $0 \leq E(\psi) \leq 1$ for all Ψ .

Prepare state ω or ϕ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals *E* with $0 \leq E(\psi) \leq 1$ for all Ψ .

 $\mathsf{Here}\ \mathsf{E}(\psi)$ =0.7 Measurements are (E_1,E_2,\ldots,E_k) with $\sum_i E_i(\psi) = 1$ for all ψ .

Transformations *T* map (unnormalized) states to states, and are linear.

Transformations *T* map (unnormalized) states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^\dagger$ They are symmetries of state space: $\ T(\Omega_A) = \Omega_A$

Transformations *T* map (unnormalized) states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^\dagger$ They are symmetries of state space: $\ T(\Omega_A) = \Omega_A$

Not all symmetries have to be in G_A .

Qubit: Ω_A is the 3D unit ball, $G_A = SO(3)$ (no reflections!)

Not all symmetries have to be in G_A .

Qubit: Ω_A is the 3D unit ball, $G_A = SO(3)$ (no reflections!)

Not all symmetries have to be in G_A .

Axiom II (Reversibility): If φ and ω are pure, then there is a reversible *T* with $T\phi = \omega$.

Qubit: Ω_A is the 3D unit ball, $\mathcal{G}_A = SO(3)$ (no reflections!)

 $\overline{\mathbf{Q}}$

 $\overline{\mathbf{Q}}$

 $\overline{\mathbf{P}}$

Enforces some symmetry in state space:

 \mathbf{Q}

 $\overline{\mathbf{Q}}$

Enforces some symmetry in state space:

 \mathbf{Q}

 $\overline{\mathbf{Q}}$

Enforces some symmetry in state space:

 Φ

 $\overline{\mathbf{w}}$

Enforces some symmetry in state space:

 Φ

 $\overline{\mathbf{Q}}$

If ϕ and ω are pure, then there is a reversible *T* with *T*φ=ω.

Enforces some symmetry in state space:

 Φ

 $\overline{\mathbf{w}}$

If ϕ and ω are pure, then there is a reversible *T* with *T*φ=ω.

Enforces some symmetry in state space:

DODD

state on AB: correlations

state on AB: correlations

state on AB: correlations

No-signalling condition: Alice's probabilities do not depend on Bob's choice of measurement.

 $\overline{\mathbf{Q}}$

 $\overline{\mathbf{Q}}$

Axiom I: States on AB are uniquely determined by correlations of local measurements on A,B.

 Φ

40

Axiom I: States on AB are uniquely determined by correlations of local measurements on A,B.

 $=$, Local tomography": No non-local measurements necessary.

 Φ

 Ω

Axiom I: States on AB are uniquely determined by correlations of local measurements on A,B.

 $=$, Local tomography": No non-local measurements necessary.

外

Axiom I: States on AB are uniquely determined by correlations of local measurements on A,B.

 $=$, Local tomography": No non-local measurements necessary.

Axiom I: States on AB are uniquely determined by correlations of local measurements on A,B.

 $=$, Local tomography": No non-local measurements necessary.

but not uniquely fixed! $\Omega_{AB}\subset A\otimes B$

*E*₃ Impossible to have system in 3rd level \Rightarrow find particle there with probab. 0

Impossible to have system in 3rd level \Rightarrow find particle there with probab. 0

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N -*I*. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega)=0$ is equivalent to Ω_{N-1} .

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N -*I*. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega)=0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $P(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$.

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N -*I*. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega)=0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $P(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$.

If $n = N$ then (E_1, \ldots, E_n) is complete.

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N -*I*. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega)=0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $P(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$. If $n = N$ then (E_1, \ldots, E_n) is complete. *L*

 L^{-1}

Equivalent $=$ same state spaces up to a linear map (physically the same!)

Why a bit is described by a ball:

capacity 2 (bit)

Why a bit is described by a ball:

capacity 2 (bit)

Why a bit is described by a ball:

 $\Rightarrow \{\omega : E(\omega) = 0\} = {\omega_0} \sim \Omega_1.$

Why a bit is described by a ball:

 $\Rightarrow \Omega_1$ contains a single state. \Rightarrow $\{\omega : E(\omega) = 0\} = \{\omega_0\} \sim \Omega_1.$

Why a bit is described by a ball:

Why a bit is described by a ball:

Why a bit is described by a ball:

Prove step by step (using the axioms):

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T ,
- $\mu_{AB} = \mu_A \otimes \mu_B$

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T ,
- $\mu_{AB} = \mu_A \otimes \mu_B$
- There are *N* pure distinguishable states $\omega_1, \ldots, \omega_N$ with

$$
\mu = \frac{1}{N} \sum_{i=1}^N \omega_i,
$$

• capacity $N_{AB} = N_A N_B$ and bit ball dimension

 $\dim(\Omega_2)=2^r-1 \in \{1,3,7,15,31,\ldots\}.$

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T ,
- $\mu_{AB} = \mu_A \otimes \mu_B$
- There are *N* pure distinguishable states $\omega_1, \ldots, \omega_N$ with

$$
\mu = \frac{1}{N} \sum_{i=1}^{N} \omega_i,
$$

• capacity $N_{AB} = N_A N_B$ and bit ball dimension

 $\dim(\Omega_2)=2^r-1 \in \{\mathbb{1},3,7,15,31,\ldots\}.$

By reversibility axiom, \mathcal{G}_2 is transitive on the sphere. *G*2

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if *d*=even, then many possibilities (like *SU(d/2)*),
- if *d*=odd and *d*≠*7*: only *SO(d)*,
- if $d=7$: $SO(7)$ and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if *d*=even, then many possibilities (like *SU(d/2)*),
- if *d*=odd and *d*≠*7*: only *SO(d)*,
- if $d=7$: $SO(7)$ and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if *d*=even, then many possibilities (like *SU(d/2)*),
- if *d*=odd and *d*≠*7*: only *SO(d)*,
- if $d=7$: $SO(7)$ and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1} :

• if *d*=even, then many possibilities (like *SU(d/2)*),

the sphere.

- if *d*=odd and *d*≠*7*: only *SO(d)*,
- if $d=7$: $SO(7)$ and Lie group G_2 .

contain $\mathcal{G}_2 \otimes \mathcal{G}_2$.

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1} :

- if *d*=even, then many possibilities (like *SU(d/2)*),
- if *d*=odd and *d*≠*7*: only *SO(d)*,
- if $d=7$: $SO(7)$ and Lie group G_2 .

Two bits: $\bigotimes_{\mathbb{R}} \bigotimes_{\mathbb{R}} \bigotimes_{\mathbb{R}} \mathbb{R}^2$ d≠7: Local transformations $\mathcal{SO}(d) \otimes \mathcal{SO}(d)$. contain $SO(d) \otimes SO(d)$.

contain $SO(d) \otimes SO(d)$.

d≠*7*: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,, subspace") generated by $\omega_0\otimes\omega_0$ and $\omega_1\otimes\omega_1$ (again, a bit!)

d≠*7*: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,, subspace") generated by $\omega_0\otimes\omega_0$ and $\omega_1\otimes\omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But *SO(d-1)* is complex-reducible iff d=3!

d≠*7*: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,, subspace") generated by $\omega_0\otimes\omega_0$ and $\omega_1\otimes\omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But *SO(d-1)* is complex-reducible iff d=3!

Take-home message: Bloch ball 3-dimensional because *SO(d-1)* is reducible only for d=3.

d≠*7*: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,, subspace") generated by $\omega_0\otimes\omega_0$ and $\omega_1\otimes\omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But *SO(d-1)* is complex-reducible iff d=3!

Take-home message: Bloch ball 3-dimensional because *SO(d-1)* is Abelian only for d=3.

Map 3-vectors to Hermitian matrices: $L(\omega) := \frac{1}{2}$ 2 $\sqrt{2}$ $1 + \sum_{i=1}^3 \omega_i \sigma_i$ \overline{a}

- Facts on universal quantum computation,
- •Wigner's theorem
- some other tricks

prove:

Map 3-vectors to Hermitian matrices: $L(\omega) := \frac{1}{2}$ 2 $\sqrt{2}$ $1 + \sum_{i=1}^3 \omega_i \sigma_i$ \overline{a}

- Facts on universal quantum computation,
- •Wigner's theorem
- some other tricks prove:

Theorem: Every theory satisfying Axioms I-V (rather than CPT) is equivalent to $(\Omega_N, \mathcal{G}_N)$, where

- Ω_N are the density matrices on \mathbb{C}^N ,
- \bullet G_N is the group of unitaries, acting by conjugation,
- the measurements are exactly the POVMs.