

Prepare state ω or φ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

Prepare state ω or φ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Prepare state ω or φ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals E with $0 \le E(\psi) \le 1$ for all Ψ .

Prepare state ω or φ with prob. $\frac{1}{2}$. Result: $\frac{1}{2}\omega + \frac{1}{2}\varphi$

(Normalized) state spaces are convex sets. Extremal points are pure states, others mixed.

Outcome probabilities are linear functionals E with $0 \le E(\psi) \le 1$ for all ψ .

here E(ψ)=0.7 Measurements are (E_1, E_2, \dots, E_k) with $\sum_i E_i(\psi) = 1$ for all ψ .

Transformations T map (unnormalized) states to states, and are linear.

Transformations T map (unnormalized) states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T(\Omega_A) = \Omega_A$

Transformations T map (unnormalized) states to states, and are linear.

Reversible transformations form a group \mathcal{G}_A . In quantum theory: $\rho \mapsto U \rho U^{\dagger}$ They are symmetries of state space: $T(\Omega_A) = \Omega_A$

Not all symmetries have to be in \mathcal{G}_A .

Qubit: Ω_A is the 3D unit ball, $\mathcal{G}_A = SO(3)$ (no reflections!)

Not all symmetries have to be in \mathcal{G}_A .

Qubit: Ω_A is the 3D unit ball, $\mathcal{G}_A = SO(3)$ (no reflections!)

Not all symmetries have to be in \mathcal{G}_A .

Axiom II (Reversibility): If ϕ and ω are pure, then there is a reversible *T* with $T\phi=\omega$.

Qubit: Ω_A is the 3D unit ball, $\mathcal{G}_A = SO(3)$ (no reflections!)

(1)

(1)

Enforces some symmetry in state space:

Enforces some symmetry in state space:

Enforces some symmetry in state space:

Enforces some symmetry in state space:

Enforces some symmetry in state space:

Enforces some symmetry in state space:

Qalo^Q

state on AB: correlations

state on AB: correlations

state on AB: correlations No-signalling condition: Alice's probabilities do not depend on Bob's choice of measurement.

(1)

Axiom I: States on AB are uniquely determined by <u>correlations of local</u> <u>measurements</u> on A,B.

Axiom I: States on AB are uniquely determined by <u>correlations of local</u> <u>measurements</u> on A,B.

= "Local tomography":
No non-local measurements necessary.

16

Axiom I: States on AB are uniquely determined by <u>correlations of local</u> <u>measurements</u> on A,B.

= "Local tomography": No non-local measurements necessary.

Axiom I: States on AB are uniquely determined by <u>correlations of local</u> <u>measurements</u> on A,B.

= "Local tomography": No non-local measurements necessary.

Axiom I: States on AB are uniquely determined by <u>correlations of local</u> <u>measurements</u> on A,B.

= "Local tomography": No non-local measurements necessary.

Global state space $\Omega_{AB} \subset A \otimes B$ but not uniquely fixed!

Impossible to have system in 3rd level \Rightarrow find particle there with probab. 0

Impossible to have system in 3rd level \Rightarrow find particle there with probab. 0

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N-I. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega) = 0$ is equivalent to Ω_{N-1} .

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N-I. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega) = 0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$.

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N-I. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega) = 0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$.

If n = N then (E_1, \ldots, E_n) is complete.

Axiom III: Let Ω_N and Ω_{N-1} be systems with capacities N and N-I. If (E_1, \ldots, E_N) is a complete measurement on Ω_N , then the set of states ω with $E_N(\omega) = 0$ is equivalent to Ω_{N-1} .

Capacity N of Ω = maximal # of perfectly distinguishable states. $(\omega_1, \ldots, \omega_n)$ perfectly distinguishable, if there is a measurement (E_1, \ldots, E_n) such that $E_i(\omega_j) = \delta_{ij}$. If n = N then (E_1, \ldots, E_n) is complete. Equivalent = same state spaces up to

a linear map (physically the same!)

Why a bit is described by a ball:

capacity 2 (bit)

capacity 2 (bit)

Why a bit is described by a ball:

(I-E, E) is complete measurement. $\Rightarrow \{\omega : E(\omega) = 0\} = \{\omega_0\} \sim \Omega_1.$

Why a bit is described by a ball:

(I-E, E) is complete measurement. $\Rightarrow \{\omega : E(\omega) = 0\} = \{\omega_0\} \sim \Omega_1.$ $\Rightarrow \Omega_1 \text{ contains a single state.}$

Prove step by step (using the axioms):

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T,
- $\mu_{AB} = \mu_A \otimes \mu_B$,

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T,
- $\mu_{AB} = \mu_A \otimes \mu_B$,
- There are N pure distinguishable states $\,\omega_1,\ldots,\omega_N$ with

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \omega_i,$$

• capacity $N_{AB} = N_A N_B$ and bit ball dimension

 $\dim(\Omega_2) = 2^r - 1 \in \{1, 3, 7, 15, 31, \ldots\}.$

Prove step by step (using the axioms):

- There is maximally mixed state μ with $T\mu = \mu$ for all T,
- $\mu_{AB} = \mu_A \otimes \mu_B$,
- There are N pure distinguishable states $\,\omega_1,\ldots,\omega_N$ with

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \omega_i,$$

• capacity $N_{AB} = N_A N_B$ and bit ball dimension

 $\dim(\Omega_2) = 2^r - 1 \in \{1, 3, 7, 15, 31, \ldots\}.$ $= \begin{bmatrix} \mathbf{0} & \text{If } \dim(\Omega_2) = 1 \text{ then the theory is CPT (easy):} \\ \Omega_N = & \mathcal{G}_N = \\ \mathbf{N}\text{-simplex} & \mathcal{G}_N = \text{permutation group.} \end{bmatrix}$

By reversibility axiom, \mathcal{G}_2 is transitive on the sphere.

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1}

- if d=even, then many possibilities (like SU(d/2)),
- if d = odd and $d \neq 7$: only SO(d),
- if d=7: SO(7) and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1}

- If d-even, then many possibilities (like SU(d/2)),
- if d = odd and $d \neq 7$: only SO(d),
- if d=7: SO(7) and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1}

- If d-even, then many possibilities (like SU(d/2)),
- if d = odd and $d \neq 7$: only SO(d),
- if d=7: SO(7) and Lie group G_2 .

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1}

- If d-even, then many possibilities (like SU(d/2)),
- if d = odd and $d \neq 7$: only SO(d),
- if d=7: SO(7) and Lie group G_2 .

Two bits:

Local transformations contain $\mathcal{G}_2 \otimes \mathcal{G}_2$.

Generalized bit Ω_2

Onishchik `63: Compact connected transitive groups on S^{d-1}

- If d-even, then many possibilities (like SU(d/2)).
- if d = odd and $d \neq 7$: only SO(d),
- if d=7: SO(7) and Lie group G_2 .

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,,subspace") generated by $\omega_0 \otimes \omega_0$ and $\omega_1 \otimes \omega_1$ (again, a bit!)

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,,subspace") generated by $\omega_0 \otimes \omega_0$ and $\omega_1 \otimes \omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But SO(d-1) is complex-reducible iff d=3 !

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,,subspace") generated by $\omega_0 \otimes \omega_0$ and $\omega_1 \otimes \omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional because SO(d-1) is reducible only for d=3.

d≠7: Local transformations contain $SO(d) \otimes SO(d)$.

Consider face (,,subspace") generated by $\omega_0 \otimes \omega_0$ and $\omega_1 \otimes \omega_1$ (again, a bit!)

- Stabilized by $SO(d-1) \otimes SO(d-1)$.
- Counting dimensions with group rep. theory: if local transformations irreducible then orbit too large.
- But SO(d-1) is complex-reducible iff d=3 !

Take-home message: Bloch ball 3-dimensional because SO(d-1) is Abelian only for d=3.

Map 3-vectors to Hermitian matrices: $L(\omega) := \frac{1}{2} \left(1 + \sum_{i=1}^{3} \omega_i \sigma_i \right)$

- Facts on universal quantum computation,
- Wigner's theorem
- some other tricks

prove:

Map 3-vectors to Hermitian matrices: $L(\omega) := \frac{1}{2} \left(1 + \sum_{i=1}^{3} \omega_i \sigma_i \right)$

- Facts on universal quantum computation,
- Wigner's theorem
- some other tricks prove:

Theorem: Every theory satisfying Axioms I-V (rather than CPT) is equivalent to (Ω_N, G_N), where
Ω_N are the density matrices on C^N,
G_N is the group of unitaries, acting by conjugation,
the measurements are exactly the POVMs.