1. Show that the maximal number of perf. distinguishable states satisfies

$$N_{AB} = N_A N_B$$
.

Note that  $N_{AB} \ge N_A N_B$  is always true (homework).

1. Show that the maximal number of perf. distinguishable states satisfies

$$N_{AB} = N_A N_B$$
.

Note that  $N_{AB} \ge N_A N_B$  is always true (homework).

2. Due to local tomography, the dimension of the state spaces satisfy

$$K_{AB} = K_A K_B$$
, where  $K_A = \dim \Omega_A + 1$ .

1. Show that the maximal number of perf. distinguishable states satisfies

$$N_{AB} = N_A N_B$$
.

Note that  $N_{AB} \ge N_A N_B$  is always true (homework).

2. Due to local tomography, the dimension of the state spaces satisfy

$$K_{AB} = K_A K_B$$
, where  $K_A = \dim \Omega_A + 1$ .

For every  $N \in \mathbb{N}$ , we have a corresponding GPT system  $S_N$ , and a state space dimension  $K_N = \dim \Omega_N + 1$ . The above implies  $K_{MN} = K_M K_N$ , and since  $N \mapsto K_N$  is a strictly increasing multiplicative function over the natural numbers, we have

$$K_N = N^r$$
 for some  $r \in \mathbb{N}$ .

1. Show that the maximal number of perf. distinguishable states satisfies

$$N_{AB} = N_A N_B$$
.

Note that  $N_{AB} \ge N_A N_B$  is always true (homework).

2. Due to local tomography, the dimension of the state spaces satisfy

$$K_{AB} = K_A K_B$$
, where  $K_A = \dim \Omega_A + 1$ .

For every  $N\in\mathbb{N}$ , we have a corresponding GPT system  $S_N$ , and a state space dimension  $K_N=\dim\Omega_N+1$ . The above implies  $K_{MN}=K_MK_N$ , and since  $N\mapsto K_N$  is a strictly increasing multiplicative function over the natural numbers, we have

$$K_N = N^r$$
 for some  $r \in \mathbb{N}$ .

Bit ball:  $d = K_2 - 1 \in \{1, 3, 7, 15, 31, \ldots\}$ .

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

In general, there are **many** compact connected subgroups of SO(d) that act transitively on  $\partial B^d$ , for example for d=6:

$$\mathcal{T}_2 = \left\{ \begin{pmatrix} \operatorname{Re} U & \operatorname{Im} U \\ -\operatorname{Im} U & \operatorname{Re} U \end{pmatrix} \mid U \in \operatorname{SU}(3) \right\}.$$

See: A. L. Onishchik, Mat. Sb. (N.S.) 60(102), 447-485 (1963) (Russian).

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

In general, there are **many** compact connected subgroups of SO(d) that act transitively on  $\partial B^d$ , for example for d=6:

$$\mathcal{T}_2 = \left\{ \begin{pmatrix} \operatorname{Re} U & \operatorname{Im} U \\ -\operatorname{Im} U & \operatorname{Re} U \end{pmatrix} \mid U \in \operatorname{SU}(3) \right\}.$$

See: A. L. Onishchik, Mat. Sb. (N.S.) 60(102), 447-485 (1963) (Russian).

Fortunately, we know that  $d \in \{1, 3, 7, 15, 31, \ldots\}$ , which simplifies things:

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

Since  $d \in \{1, 3, 7, 15, 31, \ldots\}$ , the following turns out to be true for d>1:

- If  $d \neq 7$  then we must have  $\mathcal{T}_2 = SO(d)$ .
- If d = 7 then we either have  $\mathcal{T}_2 = SO(7)$  or  $\mathcal{T}_2 = G_2$ , the exceptional Lie group.

3. By the reversibility / transitivity principle, the group  $G_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

Since  $d \in \{1, 3, 7, 15, 31, \ldots\}$ , the following turns out to be true for d>1:

- If  $d \neq 7$  then we must have  $\mathcal{T}_2 = SO(d)$ .
- If d = 7 then we either have  $\mathcal{T}_2 = SO(7)$  or  $\mathcal{T}_2 = G_2$ , the exceptional Lie group.

automorphism group of the Octonions

3. By the reversibility / transitivity principle, the group  $\mathcal{G}_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

Since  $d \in \{1, 3, 7, 15, 31, \ldots\}$ , the following turns out to be true for d>1:

- If  $d \neq 7$  then we must have  $\mathcal{T}_2 = SO(d)$ .
- If d = 7 then we either have  $\mathcal{T}_2 = SO(7)$  or  $\mathcal{T}_2 = G_2$ , the exceptional Lie group.

automorphism group of the Octonions

3. By the reversibility / transitivity principle, the group  $\mathcal{G}_2$  of reversible transformation of the bit acts transitively on the surface of the d-ball.



Show that this implies that the connected component at the identity,  $\mathcal{T}_2 \subseteq \mathcal{G}_2$ , is also transitive on the surface of the d-ball.

**Example:** the case  $\mathcal{G}_2 = O(d) \Rightarrow \mathcal{T}_2 = SO(d)$ .

This is an exercise in topology which we consider, for here, as settled.

Since  $d \in \{1, 3, 7, 15, 31, \ldots\}$ , the following turns out to be true for d>1:

- If  $d \neq 7$  then we must have  $\mathcal{T}_2 = SO(d)$ .
- If d = 7 then we either have  $\mathcal{T}_2 = SO(7)$  or  $\mathcal{T}_2 = G_2$ , the exceptional Lie group.
- 4. On *two* such bits with perfectly distinguishable states  $\omega_{ij}=\omega_i\otimes\omega_j$  (i,j=0,1), the interplay of local independent transformations and global transformations on the "sub-bit"  $\{\omega_{00},\omega_{11}\}$  leads to contradiction if d>3.

#### "Why" is QT's Bloch ball three-dimensional?

Group representation theory:  $SO(d-1)\otimes SO(d-1)$  acts irreducibly on  $\mathbb{R}^{d-1}\otimes \mathbb{R}^{d-1}$  if  $d\geq 4$ .

This follows from the fact (via character theory) that

$$SO(d-1)$$
 acts irreducibly on  $\mathbb{C}^{d-1}$  if  $d \ge 4$ .

However, for d=3, the group SO(d-1) = SO(2) is **Abelian**, and so all its irreducible representations are one-dimensional. Hence, it cannot act irreducibly on  $\mathbb{C}^{d-1} = \mathbb{C}^2$ . In fact,

$$\left( \begin{array}{c} 1 \\ \pm i \end{array} \right)$$
 are eigenvectors of  $\left( \begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array} \right)$  .

Thus, the above contradiction does not occur. Hence, in some sense:

The Bloch ball is three-dimensional "because" SO(d-1) is non-trivial and Abelian only for d=3.