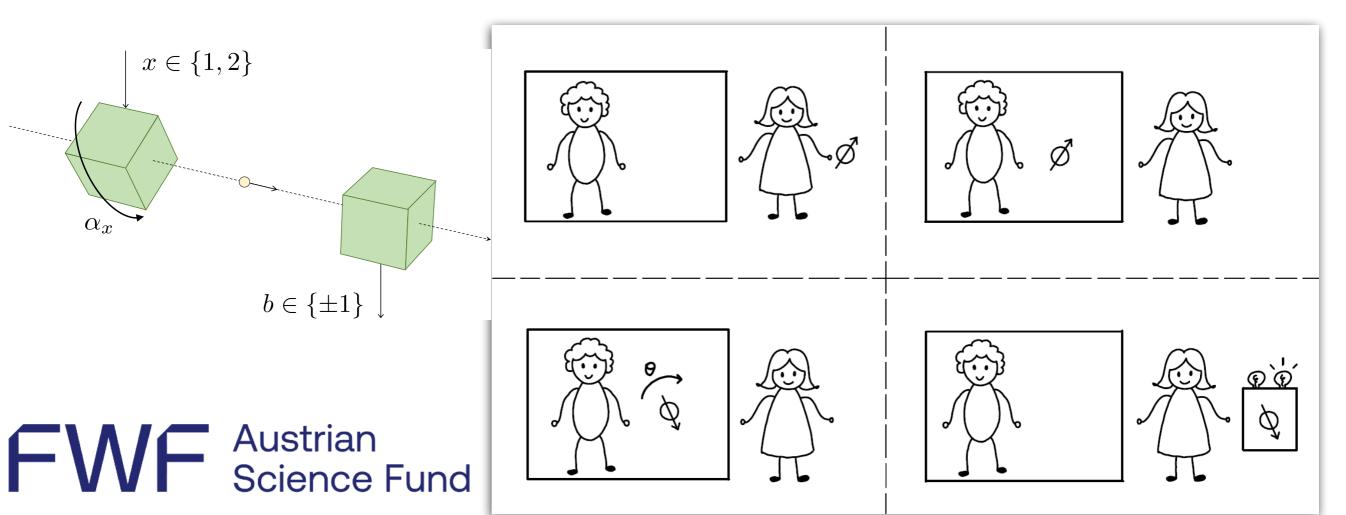


IQOQI - INSTITUTE FOR QUANTUM OPTICS AND QUANTUM INFORMATION VIENNA

Space, time and quantum probabilities: from fundamental insights to protocols

Markus P. Müller

IQOQI Vienna & Perimeter Institute



- 1. Motivation (and some history)
- 2. "Rotation boxes" within and beyond QT
- 3. A metrological game and the (sub)optimality of QT
- 4. A theory-independent SDI randomness generator
- 5. Conclusions

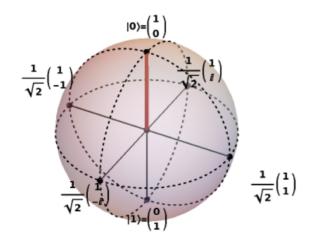
1. Motivation (and some history)

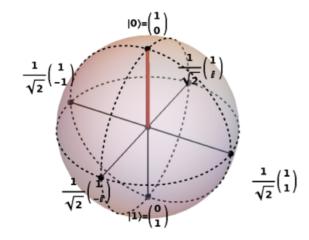
2. "Rotation boxes" within and beyond QT

3. A metrological game and the (sub)optimality of QT

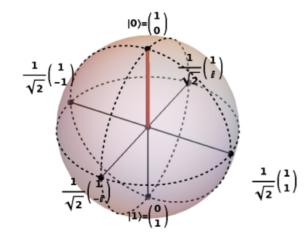
4. A theory-independent SDI randomness generator

5. Conclusions



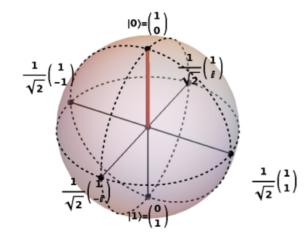


$$\begin{split} \rho &= \frac{1}{2} \mathbf{1} + \vec{r} \cdot \vec{\sigma} = \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} \\ \mathrm{tr}(\rho) &= 1, \quad \rho \geq 0 \Leftrightarrow |\vec{r}| \leq 1. \end{split}$$

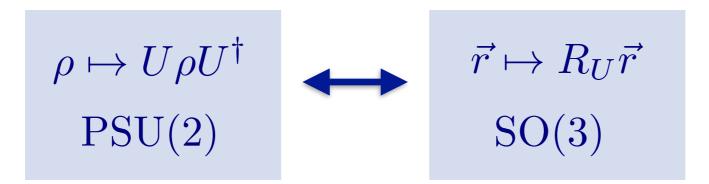


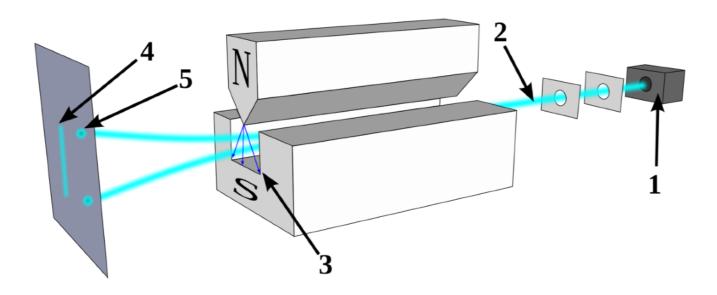
$$\begin{split} \rho &= \frac{1}{2} \mathbf{1} + \vec{r} \cdot \vec{\sigma} = \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} \\ \mathrm{tr}(\rho) &= 1, \quad \rho \geq 0 \Leftrightarrow |\vec{r}| \leq 1. \end{split}$$

$$\rho \mapsto U \rho U^{\dagger} \qquad \longleftrightarrow \qquad \vec{r} \mapsto R_U \vec{r}$$
$$\mathrm{PSU}(2) \qquad \mathrm{SO}(3)$$



$$\begin{split} \rho &= \frac{1}{2} \mathbf{1} + \vec{r} \cdot \vec{\sigma} = \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} \\ \mathrm{tr}(\rho) &= 1, \quad \rho \geq 0 \Leftrightarrow |\vec{r}| \leq 1. \end{split}$$





Von Weizsäcker's theory of "ur alternatives" (1955-58)

Carl-Friedrich von Weizsäcker (1912-2007) Carl Friedrich vonWeizsäcker Aufbau der Physik

Hanser

Holger Lyre

Von Weizsäcker's theory of "ur alternatives" (1955-58)

Carl-Friedrich von Weizsäcker (1912-2007)

Carl Friedrich vonWeizsäcker Aufbau der Physik

Hanser

Holger Lyre

Summary via lyre.de/urinfo.htm (imperfect English translation is mine):

Von Weizsäcker gives the following definition of the central notion of "ur-alternative": The binary alternative, out of which the state spaces of quantum theory can be built, is called ur-alternative. The subobject associated with an ur-alternative is called "ur".

Von Weizsäcker's theory of "ur alternatives" (1955-58)

Carl-Friedrich von Weizsäcker (1912-2007)

Carl Friedrich vonWeizsäcker Aufbau der Physik

Hanser

Holger Lyre

Summary via lyre.de/urinfo.htm (imperfect English translation is mine):

Von Weizsäcker gives the following definition of the central notion of "ur-alternative": The binary alternative, out of which the state spaces of quantum theory can be built, is called ur-alternative. The subobject associated with an ur-alternative is called "ur".

An ur's essential symmetry group is SU(2). A world built of urs should be essentially invariant under this group. The central **fundamental assumption of ur theory** is, that space itself it a consequence of the ur-hypothesis and the symmetry group of the ur.

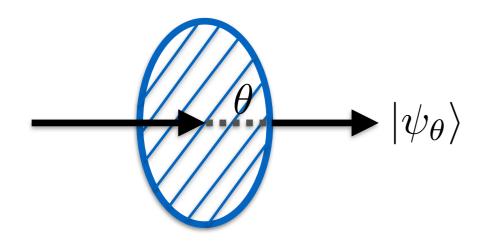
No-cloning theorem, Page-Wootters mechanism...

No-cloning theorem, Page-Wootters mechanism...

PhD thesis, 1980: "The Acquisition of Information from Quantum Measurements".

No-cloning theorem, Page-Wootters mechanism...

PhD thesis, 1980: "The Acquisition of Information from Quantum Measurements".



No-cloning theorem, Page-Wootters mechanism...

PhD thesis, 1980: "The Acquisition of Information from Quantum Measurements".

Shown **without** assuming QM:

$$\underbrace{d(\psi_{\theta},\psi_{\theta'})} = c \cdot [\theta - \theta']$$

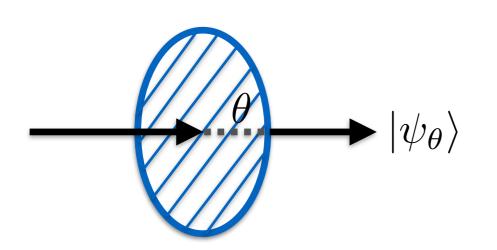
statistical distance for yes-no measurement

"actual" distance of

angles

$$\Leftrightarrow p(\theta) = \cos^2 \frac{n}{2} (\theta - \theta_0)$$

characteristic of spin-*n* particles in QM



No-cloning theorem, Page-Wootters mechanism...

PhD thesis, 1980: "The Acquisition of Information from Quantum Measurements".

$$d(\theta_1, \theta_2) = \frac{1}{\sqrt{n}} \int_{\theta_1}^{\theta_2} \frac{d\theta}{2\Delta\theta} = \int_{\theta_1}^{\theta_2} d\theta \frac{|dp/d\theta|}{2[p(1-p)]^{1/2}}$$

Shown without assuming QM:

$$\underbrace{d(\psi_{\theta},\psi_{\theta'})} = c \cdot \left[\theta - \theta'\right]$$

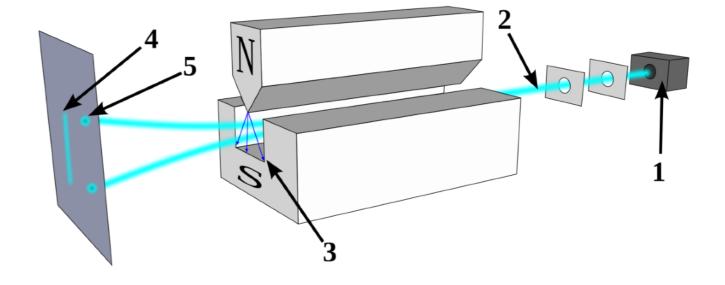
statistical distance for yes-no measurement "actual" distance of angles

$$\Rightarrow p(\theta) = \cos^2 \frac{n}{2} (\theta - \theta_0)$$

characteristic of spin-n particles in QM

Motivation

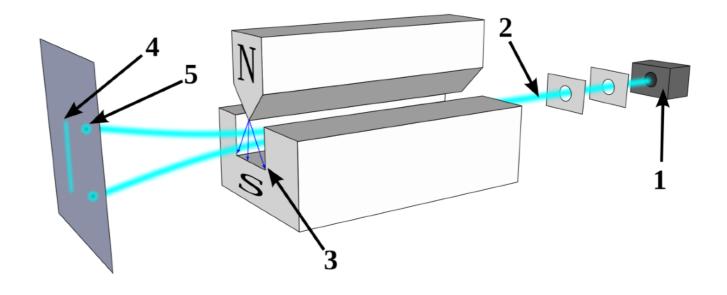
Study the fundamental interplay between space, time and probabilities.



Motivation

Study the fundamental interplay between space, time and probabilities.

Does the structure of spacetime constrain the structure of our world's probabilistic theory, i.e. does it **imply some of the structure of QT?**

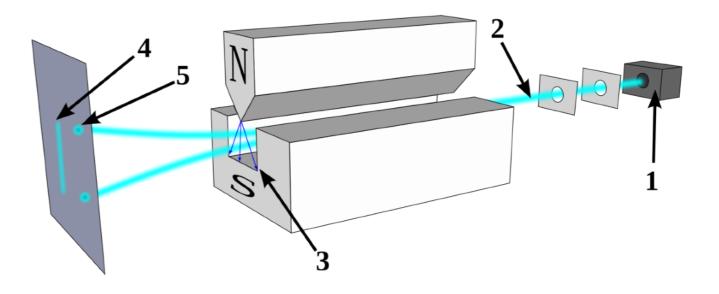


Study the fundamental interplay between space, time and probabilities.

Does the structure of spacetime constrain the structure of our world's probabilistic theory, i.e. does it **imply some of the structure of QT?**

Earlier work from our group:

- Relativity of simultaneity ⇒ Bloch ball dimension must be 1, 2, 3 or 5.
 A. J. P. Garner, MPM, and O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).
- Quantum (2,2,2) Bell correlations from local rotational symmetry A. J. P. Garner, MPM, and O. C. O. Dahlsten, Proc. R. Soc. A **473**, 20170596 (2017).



Study the fundamental interplay between space, time and probabilities.

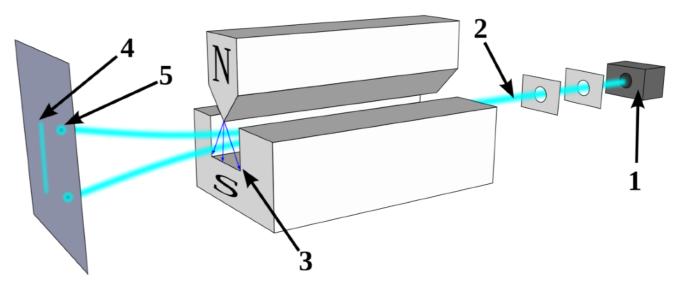
Does the structure of spacetime constrain the structure of our world's probabilistic theory, i.e. does it **imply some of the structure of QT?**

Earlier work from our group:

- Relativity of simultaneity ⇒ Bloch ball dimension must be 1, 2, 3 or 5.
 A. J. P. Garner, MPM, and O. C. O. Dahlsten, Proc. R. Soc. A 473, 20170596 (2017).
- Quantum (2,2,2) Bell correlations from local rotational symmetry A. J. P. Garner, MPM, and O. C. O. Dahlsten, Proc. R. Soc. A **473**, 20170596 (2017).

Now:

Systematic study of rotational prepare-and-measure correlations, within QT and more generally.



1. Motivation (and some history)

2. "Rotation boxes" within and beyond QT

3. A metrological game and the (sub)optimality of QT

4. A theory-independent SDI randomness generator

5. Conclusions

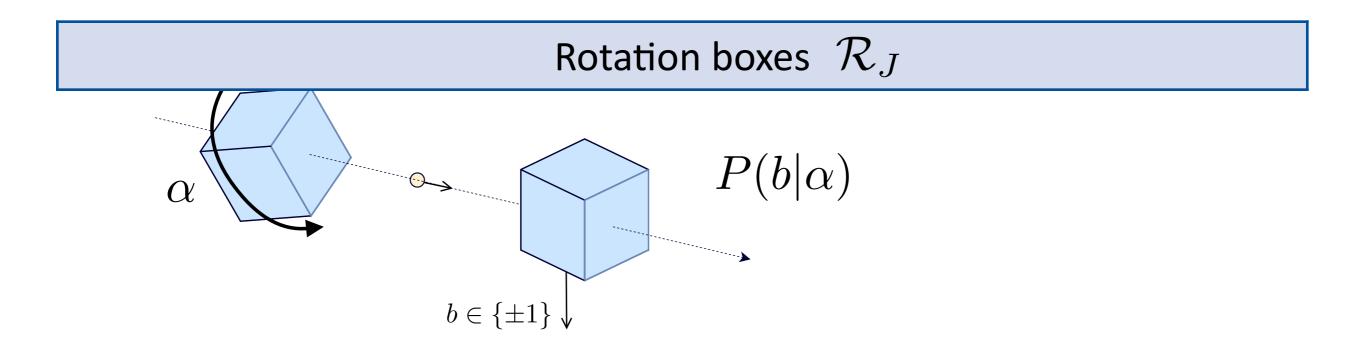
1. Motivation (and some history)

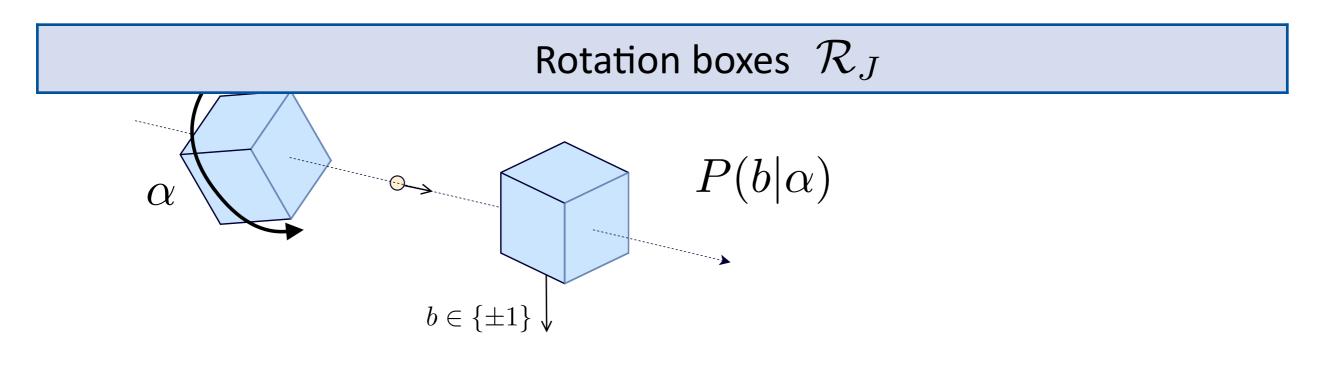
2. "Rotation boxes" within and beyond QT

3. A metrological game and the (sub)optimality of QT

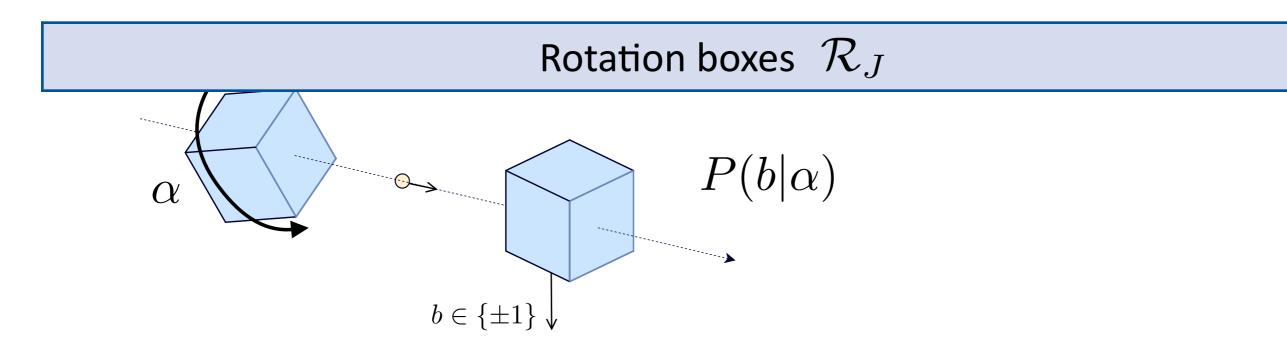
4. A theory-independent SDI randomness generator

5. Conclusions





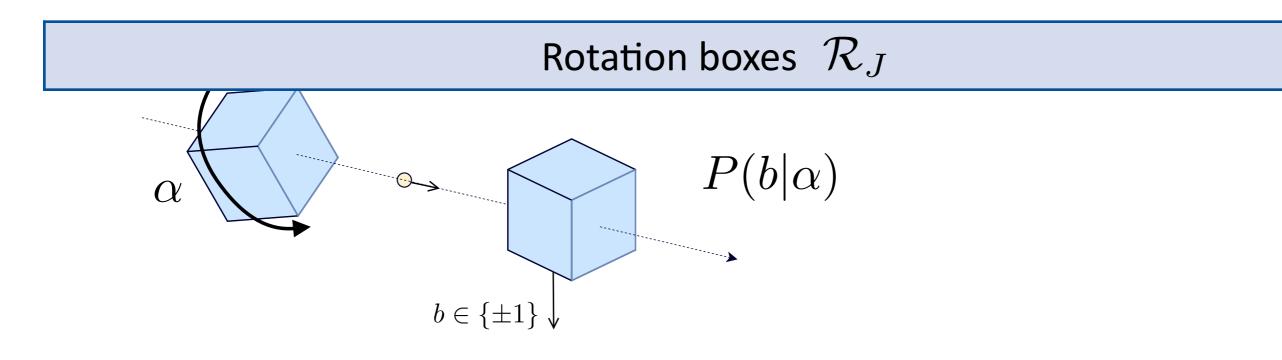
- Input: Preparation device is rotated by angle $\, lpha \,$ around a fixed axis.
- Some output $b \in \mathcal{B}$ is obtained. Here for simplicity $\mathcal{B} = \{-1, +1\}$.



- Input: Preparation device is rotated by angle $\, lpha \,$ around a fixed axis.
- Some output $b \in \mathcal{B}$ is obtained. Here for simplicity $\mathcal{B} = \{-1, +1\}$.

To the space of ensembles of preparation devices, we can associate a real-linear space of possible states $\{\omega\}$. From standard arguments, rotational covariance implies that it carries a representation of SO(2), and

$$P(b|\alpha) = (e_b, T_\alpha \omega).$$



- Input: Preparation device is rotated by angle $\, lpha \,$ around a fixed axis.
- Some output $b \in \mathcal{B}$ is obtained. Here for simplicity $\mathcal{B} = \{-1, +1\}$.

To the space of ensembles of preparation devices, we can associate a real-linear space of possible states $\{\omega\}$. From standard arguments, rotational covariance implies that it carries a representation of SO(2), and

$$P(b|\alpha) = (e_b, T_\alpha \omega).$$

If $\{\omega\}$ is finite-dimensional, then there is some $J \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...\}$ (which we call the "spin" of the system) such that

$$P(b|\alpha) = c_0 + \sum_{j=1}^{2J} \left(c_j \cos(j\alpha) + s_j \sin(j\alpha) \right).$$

$$P(b|\alpha) = c_0 + \sum_{j=1}^{2J} \left(c_j \cos(j\alpha) + s_j \sin(j\alpha) \right).$$

$$P(b|\alpha) = c_0 + \sum_{j=1}^{2J} \left(c_j \cos(j\alpha) + s_j \sin(j\alpha) \right).$$

with $P(b|\alpha) \ge 0$ and $\sum_{b} P(b|\alpha) = 1$, we can find a hypothetical probabilistic system yielding this under rotational covariance.

$$P(b|\alpha) = c_0 + \sum_{j=1}^{2J} \left(c_j \cos(j\alpha) + s_j \sin(j\alpha) \right).$$

with $P(b|\alpha) \ge 0$ and $\sum_{b} P(b|\alpha) = 1$, we can find a hypothetical probabilistic system yielding this under rotational covariance.

We define the spin-J rotation boxes \mathcal{R}_J as the set of all such $P(+1|\alpha)$, i.e. the probability-valued trigonometric polynomials of degree $\leq 2J$.

$$P(b|\alpha) = c_0 + \sum_{j=1}^{2J} \left(c_j \cos(j\alpha) + s_j \sin(j\alpha) \right).$$

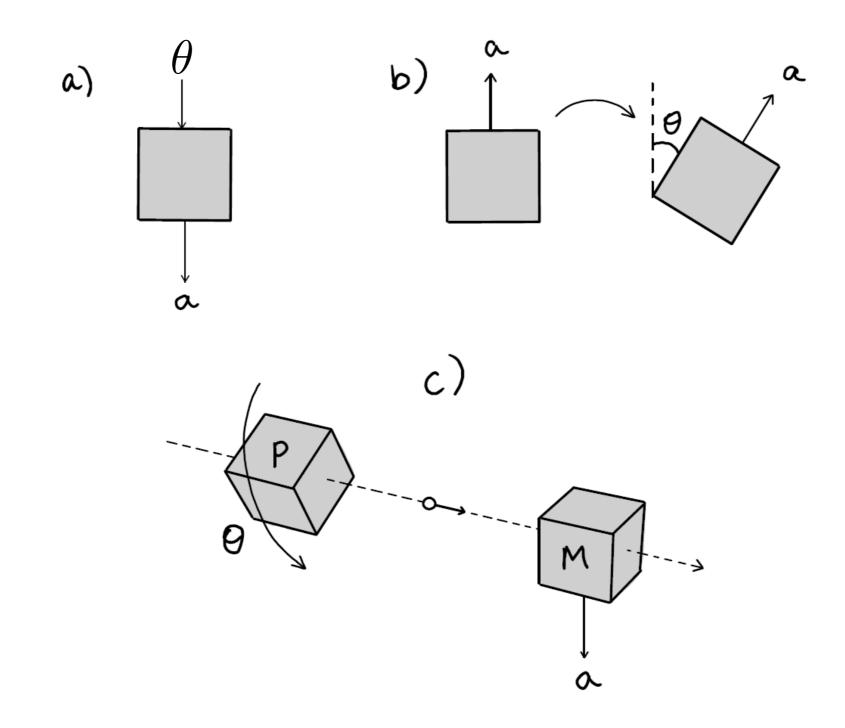
with $P(b|\alpha) \ge 0$ and $\sum_{b} P(b|\alpha) = 1$, we can find a hypothetical probabilistic system yielding this under rotational covariance.

We define the spin-J rotation boxes \mathcal{R}_J as the set of all such $P(+1|\alpha)$, i.e. the probability-valued trigonometric polynomials of degree $\leq 2J$.

These are exactly the probability rules arising from GPT systems that carry a representation of SO(2) where the "block of highest charge" is

$$\left(\begin{array}{cc}\cos(2J\alpha) & -\sin(2J\alpha)\\\sin(2J\alpha) & \cos(2J\alpha)\end{array}\right).$$

Rotation boxes \mathcal{R}_J



Quantum spin-J boxes \mathcal{Q}_J

$$U_{\alpha} = \bigoplus_{j=-J}^{J} \mathbb{I}_{n_{j}} e^{ij\alpha}.$$

$$U_{\alpha} = \bigoplus_{j=-J}^{J} \mathbb{I}_{n_j} e^{ij\alpha}$$

Definition. The quantum spin-J correlations \mathcal{Q}_J are the set of functions

$$P(+1|\alpha) = \operatorname{tr}(U_{\alpha}\rho U_{\alpha}^{\dagger}E),$$

where ρ is some quantum state, E some POVM element, and U_{α} is a projective representation of SO(2) of the form above.

$$U_{\alpha} = \bigoplus_{j=-J}^{J} \mathbb{I}_{n_j} e^{ij\alpha}$$

Definition. The quantum spin-J correlations \mathcal{Q}_J are the set of functions

$$P(+1|\alpha) = \operatorname{tr}(U_{\alpha}\rho U_{\alpha}^{\dagger}E),$$

where ρ is some quantum state, E some POVM element, and U_{α} is a projective representation of SO(2) of the form above.

The sets \mathcal{Q}_J are convex and compact, and they satisfy $\mathcal{Q}_J \subseteq \mathcal{R}_J$ (i.e. each function $\alpha \mapsto P(+1|\alpha) \in \mathcal{Q}_J$ is a trig. poly of degree $\leq 2J$).

$$U_{\alpha} = \bigoplus_{j=-J}^{J} \mathbb{I}_{n_j} e^{ij\alpha}$$

Definition. The quantum spin-J correlations \mathcal{Q}_J are the set of functions

$$P(+1|\alpha) = \operatorname{tr}(U_{\alpha}\rho U_{\alpha}^{\dagger}E),$$

where ρ is some quantum state, E some POVM element, and U_{α} is a projective representation of SO(2) of the form above.

The sets \mathcal{Q}_J are convex and compact, and they satisfy $\mathcal{Q}_J \subseteq \mathcal{R}_J$ (i.e. each function $\alpha \mapsto P(+1|\alpha) \in \mathcal{Q}_J$ is a trig. poly of degree $\leq 2J$).

Lemma. For every $P \in Q_J$, there is a pure state $|\psi\rangle \in \mathbb{C}^{2J+1}$ and a POVM $\{E_b\}_{b\in\{+1,-1\}}$ such that $P(b|\alpha) = \langle \psi | U_{\alpha}^{\dagger} E_b U_{\alpha} | \psi \rangle$, where $U_{\alpha} := \exp(i\alpha Z), Z + \operatorname{diag}(J, J - 1, \dots, -J).$

Quantum vs. general rotation boxes

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $Q_J \subseteq \mathcal{R}_J$.

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $Q_J \subseteq \mathcal{R}_J$.

For J = 0, we obtain the constant probability functions:

$$Q_0 = \mathcal{R}_0 = \{ P(+1|\alpha) = c \mid 0 \le c \le 1 \}.$$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $\mathcal{Q}_J \subseteq \mathcal{R}_J$. $\mathcal{Q}_0 = \mathcal{R}_0$

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},\,$$

• Definition of (general) **spin-J rotation boxes**:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\},\,$$

Clearly $\mathcal{Q}_J \subseteq \mathcal{R}_J$. $\mathcal{Q}_0 = \mathcal{R}_0$

For $J = \frac{1}{2}$, all rotation boxes can be realized on a qubit, hence $Q_{1/2} = \mathcal{R}_{1/2}$.

$$\mathcal{Q}_J := \left\{ \alpha \mapsto p(+1|\alpha) \mid p(b|\alpha) = \operatorname{tr}(M_b U_\alpha \rho U_\alpha^{\dagger}) \right\},$$

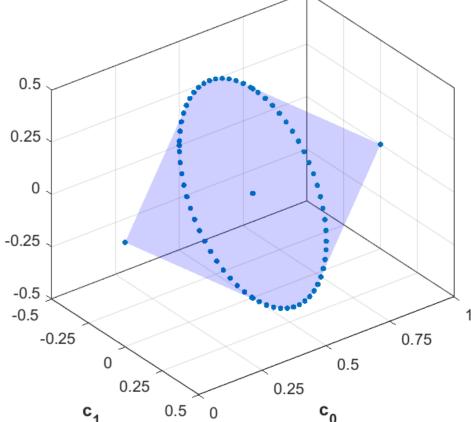
• Definition of (general) spin-J rotation boxes:

$$\mathcal{R}_J := \left\{ \alpha \mapsto p(+1|\alpha) = c_0 + \sum_{j=1}^{2J} c_j \cos(j\alpha) + s_j \sin(j\alpha) \right\}$$

Clearly
$$Q_J \subseteq \mathcal{R}_J$$
. $Q_0 = \mathcal{R}_0$

For $J = \frac{1}{2}$, all rotation boxes can be realized on a qubit, hence $Q_{1/2} = \mathcal{R}_{1/2}$.

FIG. 4. The binary quantum spin-1/2 correlations $Q_{1/2}$, which happens to be the set of trigonometric polynomials $P(+|\theta) = c_0 + c_1 \cos \theta + s_1 \sin \theta$ with $0 \leq P(+|\theta) \leq 1$ for all θ . The two endpoints are the constant zero and one functions, and the other extremal points on the circle correspond to functions $\theta \mapsto \frac{1}{2} + \frac{1}{2} \cos(\theta - \varphi)$, with φ some fixed angle.



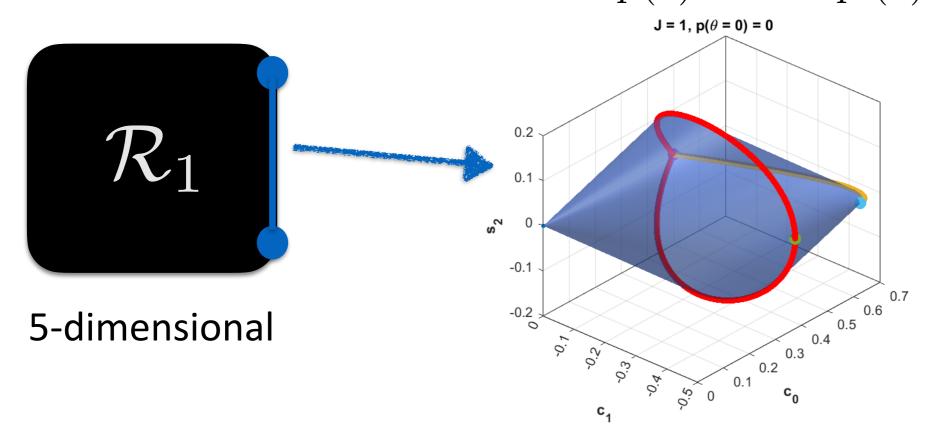
J=1/2

Classification of the spin-1 correlations

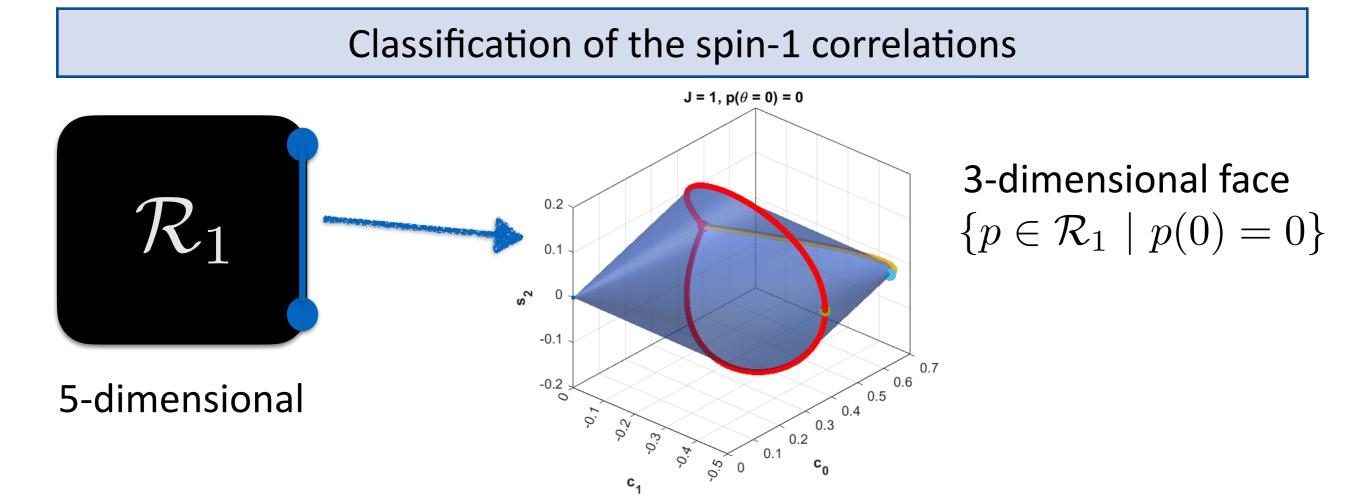
The spin-1 rotation boxes are the trigonometric polynomials with $0 \le c_0 + c_1 \cos \alpha + s_1 \sin \alpha + c_2 \cos(2\alpha) + s_2 \sin(2\alpha) \le 1,$ with coefficients $(c_0, c_1, s_1, c_2, s_2) \in \mathbb{R}^5.$ The spin-1 rotation boxes are the trigonometric polynomials with $0 \le c_0 + c_1 \cos \alpha + s_1 \sin \alpha + c_2 \cos(2\alpha) + s_2 \sin(2\alpha) \le 1,$ with coefficients $(c_0, c_1, s_1, c_2, s_2) \in \mathbb{R}^5.$

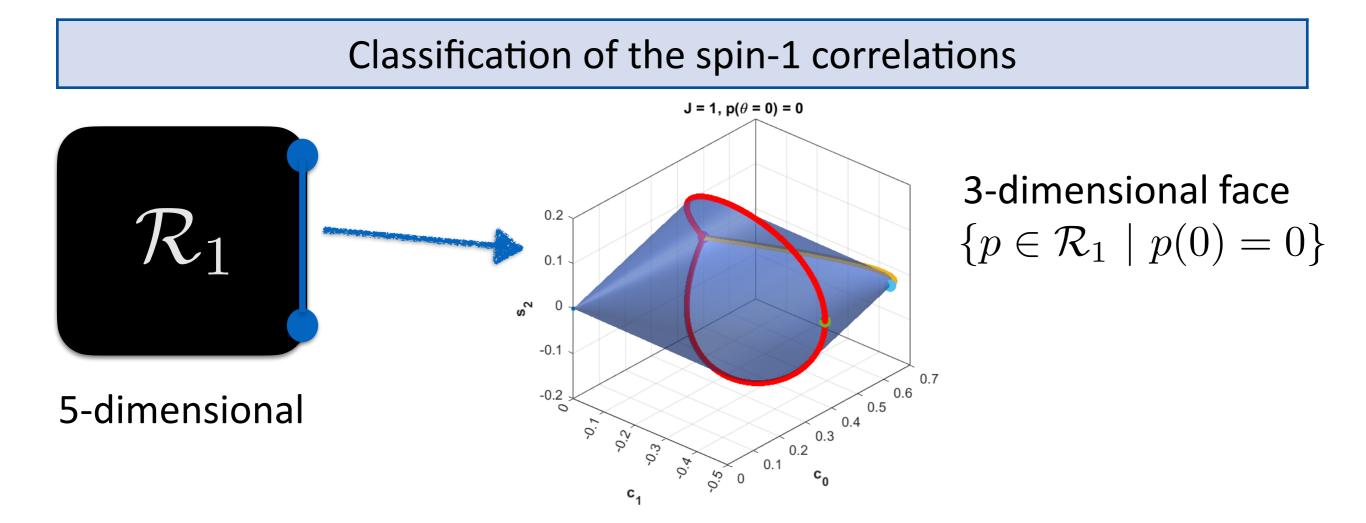
Task: classify the **extremal points** $p(\alpha)$ of the compact convex set \mathcal{R}_1 . Each one attains the value zero somewhere. Shifting the angle, we can restrict our attention to those with $p(0) = 0 \Rightarrow p'(0) = 0$. The spin-1 rotation boxes are the trigonometric polynomials with $0 \le c_0 + c_1 \cos \alpha + s_1 \sin \alpha + c_2 \cos(2\alpha) + s_2 \sin(2\alpha) \le 1,$ with coefficients $(c_0, c_1, s_1, c_2, s_2) \in \mathbb{R}^5.$

Task: classify the **extremal points** $p(\alpha)$ of the compact convex set \mathcal{R}_1 . Each one attains the value zero somewhere. Shifting the angle, we can restrict our attention to those with $p(0) = 0 \Rightarrow p'(0) = 0$.



3-dimensional face $\{p \in \mathcal{R}_1 \mid p(0) = 0\}$

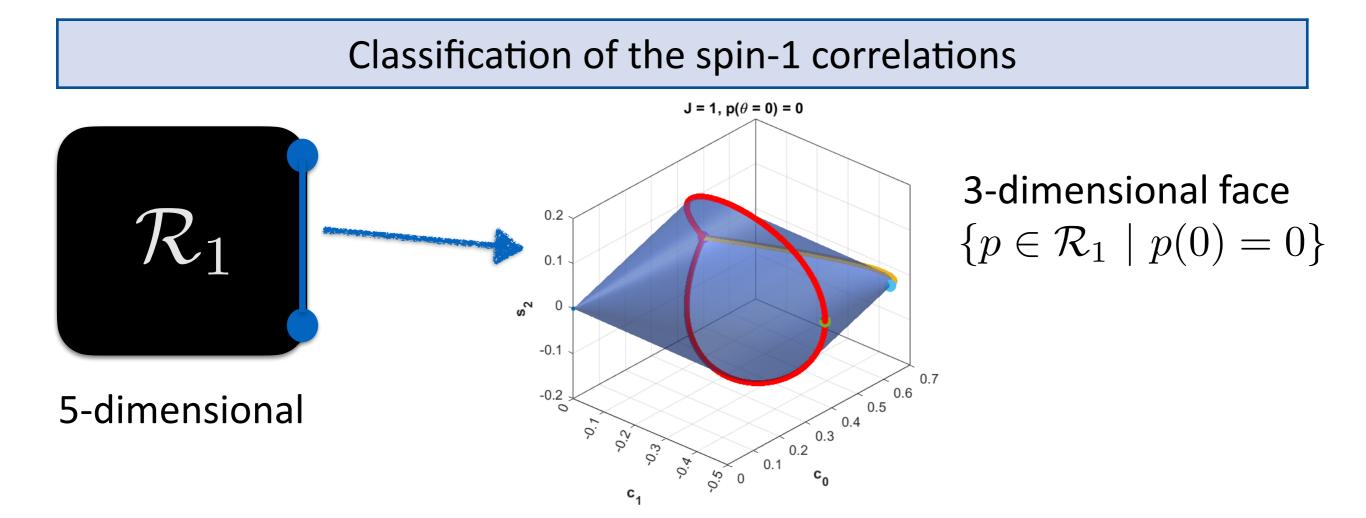




We can give the extremal points explicitly:

 $p_{0}(\alpha) = 0$ $p_{1}(\alpha) = \sin^{2} \alpha$ $p_{2}(\alpha) = \sin^{4} \frac{\alpha}{2}$ $p_{3}(\alpha) = \frac{1}{4}(1 - \cos \alpha)(3 + \cos \alpha)$ $p_{4}(\alpha) = c(1 - \cos \alpha)(1 - \cos(\alpha - \alpha_{0}))$ $p_{5}(\alpha) = 1 - p_{4}(\alpha_{1} - \alpha).$

Main math. tool: Fejér-Riesz theorem.



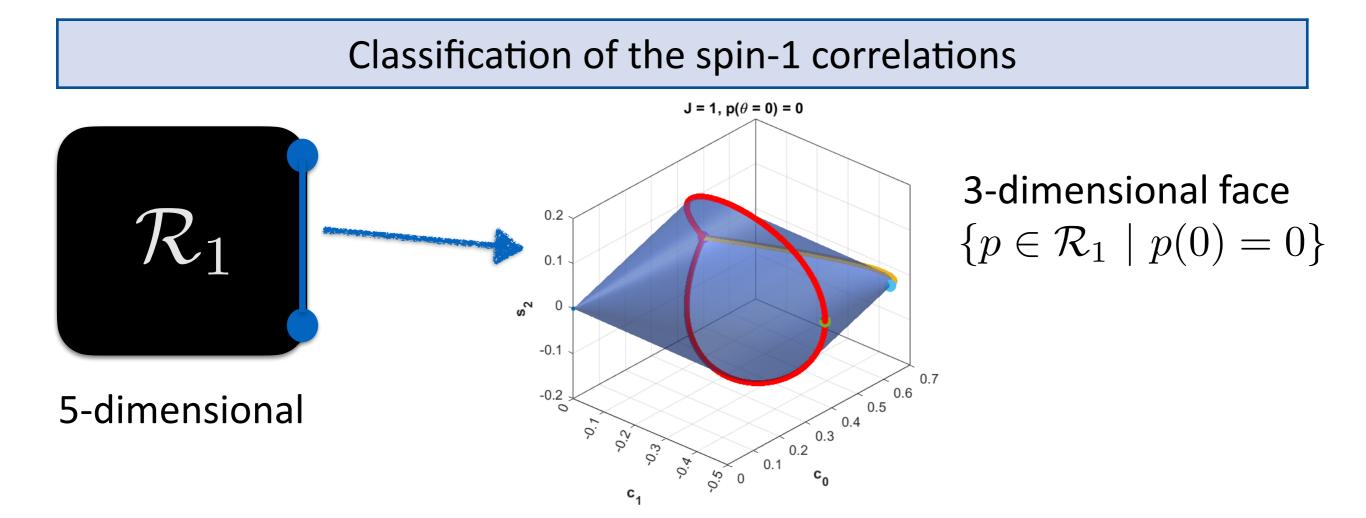
We can give the extremal points explicitly:

 $p_{0}(\alpha) = 0$ $p_{1}(\alpha) = \sin^{2} \alpha$ $p_{2}(\alpha) = \sin^{4} \frac{\alpha}{2}$ $p_{3}(\alpha) = \frac{1}{4}(1 - \cos \alpha)(3 + \cos \alpha)$ $p_{4}(\alpha) = c(1 - \cos \alpha)(1 - \cos(\alpha - \alpha_{0}))$ $p_{5}(\alpha) = 1 - p_{4}(\alpha_{1} - \alpha).$

Main math. tool: Fejér-Riesz theorem.

For all of these, we can construct spin-1 quantum realizations! This proves

$$\mathcal{Q}_1 = \mathcal{R}_1.$$



We can give the extremal points explicitly:

 $p_{0}(\alpha) = 0$ $p_{1}(\alpha) = \sin^{2} \alpha$ $p_{2}(\alpha) = \sin^{4} \frac{\alpha}{2}$ $p_{3}(\alpha) = \frac{1}{4}(1 - \cos \alpha)(3 + \cos \alpha)$ $p_{4}(\alpha) = c(1 - \cos \alpha)(1 - \cos(\alpha - \alpha_{0}))$ $p_{5}(\alpha) = 1 - p_{4}(\alpha_{1} - \alpha).$

Main math. tool: Fejér-Riesz theorem.

For all of these, we can construct spin-1 quantum realizations! This proves

 $\mathcal{Q}_1 = \mathcal{R}_1.$

What about $J \geq 3/2$? Soon...

1. Motivation (and some history)

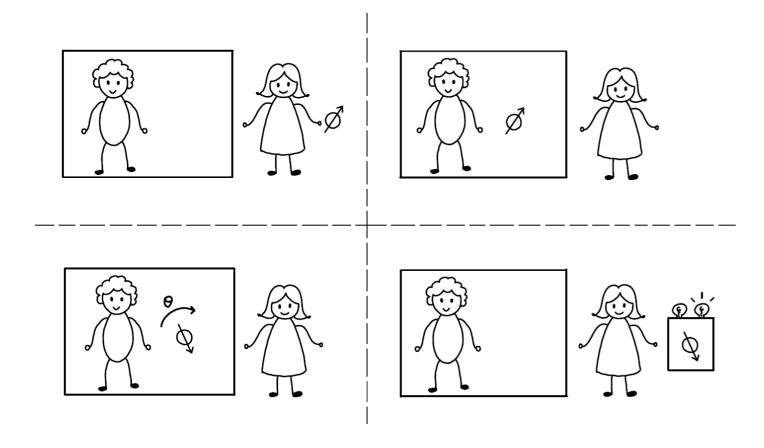
2. "Rotation boxes" within and beyond QT

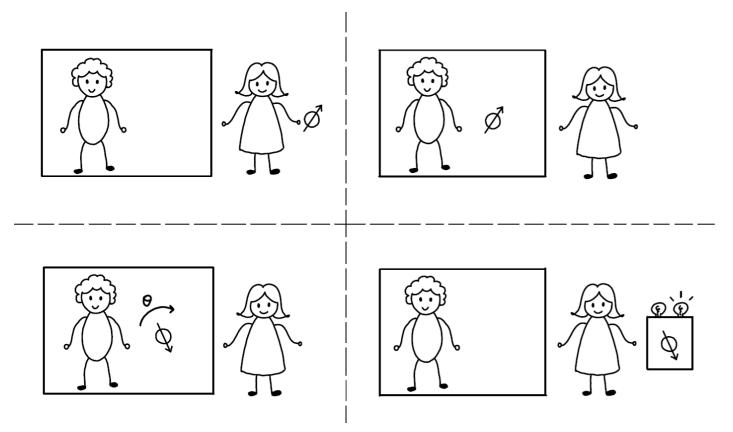
3. A metrological game and the (sub)optimality of QT

4. A theory-independent SDI randomness generator

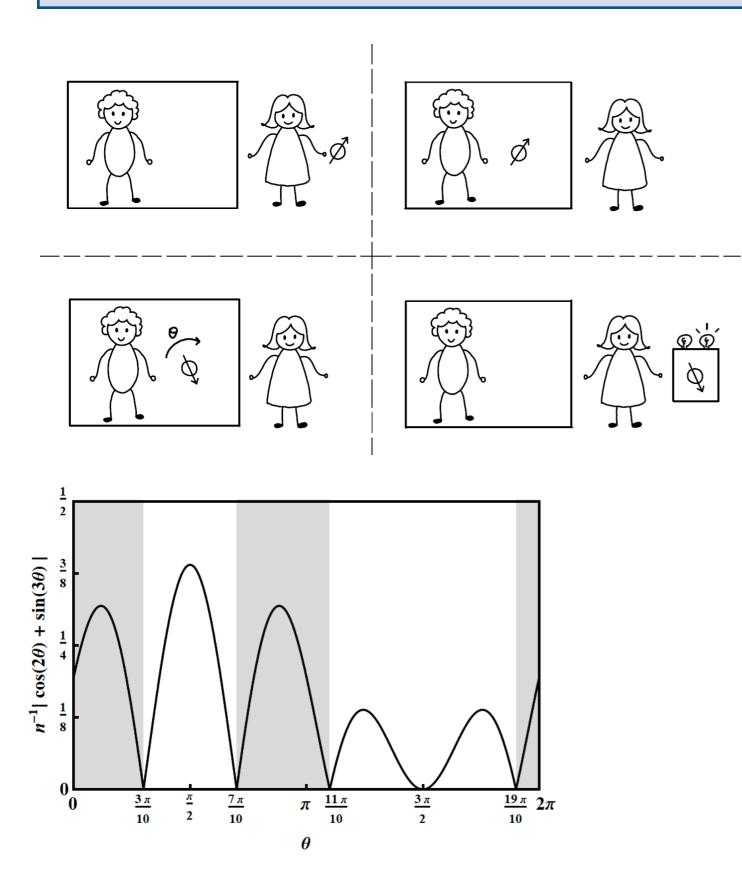
5. Conclusions

- 1. Motivation (and some history)
- 2. "Rotation boxes" within and beyond QT
- 3. A metrological game and the (sub)optimality of QT
- 4. A theory-independent SDI randomness generator
- 5. Conclusions

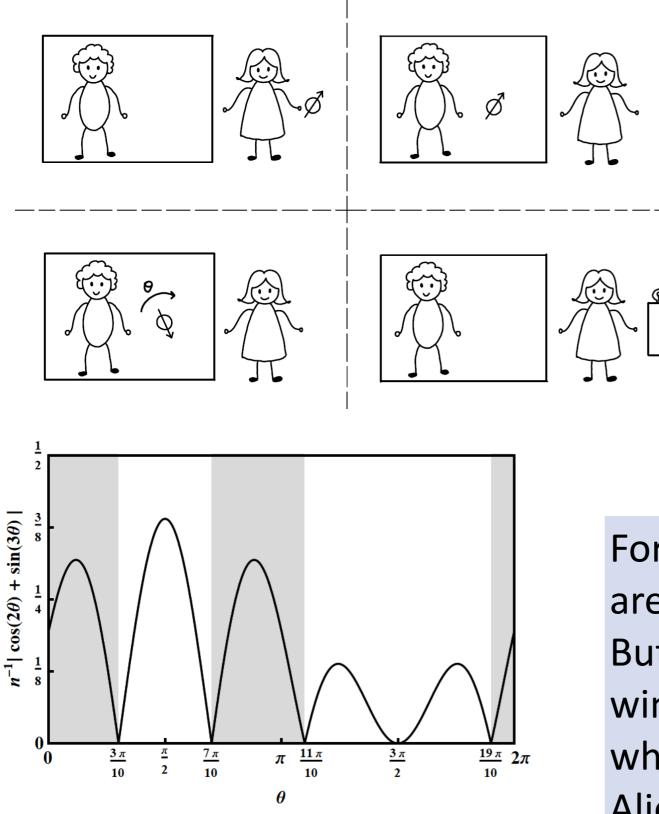




- Alice prepares a spin-J system of her probabilistic theory.
- She hands it over to Bob, who performs a rotation by θ . His angle is chosen at random with $\mu(\theta) := n^{-1} |\cos(2\theta) + \sin(3\theta)|.$



- Alice prepares a spin-J system of her probabilistic theory.
- She hands it over to Bob, who performs a rotation by θ . His angle is chosen at random with $\mu(\theta) := n^{-1} |\cos(2\theta) + \sin(3\theta)|.$
- Alice's task: decide whether θ is in the gray or the white set of angles (has prob. 1/2 each).



- Alice prepares a spin-J system of her probabilistic theory.
- She hands it over to Bob, who performs a rotation by θ . His angle is chosen at random with $\mu(\theta) := n^{-1} |\cos(2\theta) + \sin(3\theta)|.$
- Alice's task: decide whether θ is in the gray or the white set of angles (has prob. 1/2 each).

For spin $J \in \{0, \frac{1}{2}, 1\}$, quantum systems are optimal for winning such games. But for $J = \frac{3}{2}$, the maximal quantum winning probability is $P_{\text{succ}}^{\text{Q}} \approx 85\%$, whereas some rotation boxes allow Alice to win it with $P_{\text{succ}}^{\text{R}} \approx 88\%$.

This is because $\mathcal{Q}_{3/2} \subsetneq \mathcal{R}_{3/2}$:

$$p(\theta) = c_0 + c_1 \cos \theta + s_1 \sin \theta + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta), \qquad (31)$$

$$p(\theta) = c_0 + c_1 \cos \theta + s_1 \sin \theta + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta), \qquad (31)$$

Theorem 6. If $p \in Q_{3/2}$, then its trigonometric coefficients, as taken from representation (31), satisfy

$$c_2 + s_3 \le \frac{1}{\sqrt{3}} \lesssim 0.5774.$$

On the other hand, the trigonometric polynomial

$$p^{\star}(\theta) := \frac{2}{5} + \frac{1}{4}\sin\theta + \frac{7}{20}\cos(2\theta) + \frac{1}{4}\sin(3\theta)$$

satisfies $0 \leq p^{\star}(\theta) \leq 1$ for all θ , hence $p^{\star} \in \mathcal{R}_{3/2}$, but $c_2 + s_3 = 0.6$, i.e. $p^{\star} \notin \mathcal{Q}_{3/2}$. In particular, $\mathcal{Q}_{3/2} \subsetneq \mathcal{R}_{3/2}$.

$$p(\theta) = c_0 + c_1 \cos \theta + s_1 \sin \theta + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta), \qquad (31)$$

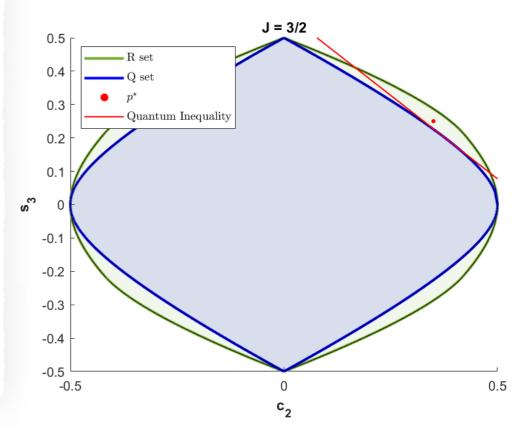
Theorem 6. If $p \in Q_{3/2}$, then its trigonometric coefficients, as taken from representation (31), satisfy

$$c_2 + s_3 \le \frac{1}{\sqrt{3}} \lesssim 0.5774.$$

On the other hand, the trigonometric polynomial

$$p^{\star}(\theta) := \frac{2}{5} + \frac{1}{4}\sin\theta + \frac{7}{20}\cos(2\theta) + \frac{1}{4}\sin(3\theta)$$

satisfies $0 \leq p^{\star}(\theta) \leq 1$ for all θ , hence $p^{\star} \in \mathcal{R}_{3/2}$, but $c_2 + s_3 = 0.6$, i.e. $p^{\star} \notin \mathcal{Q}_{3/2}$. In particular, $\mathcal{Q}_{3/2} \subsetneq \mathcal{R}_{3/2}$.



$$p(\theta) = c_0 + c_1 \cos \theta + s_1 \sin \theta + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta), \qquad (31)$$

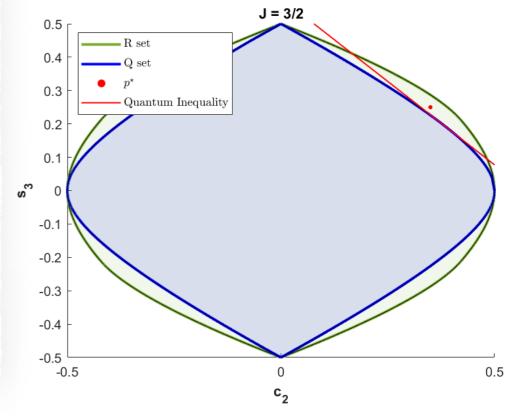
Theorem 6. If $p \in Q_{3/2}$, then its trigonometric coefficients, as taken from representation (31), satisfy

$$c_2 + s_3 \le \frac{1}{\sqrt{3}} \lesssim 0.5774.$$

On the other hand, the trigonometric polynomial

$$p^{\star}(\theta) := \frac{2}{5} + \frac{1}{4}\sin\theta + \frac{7}{20}\cos(2\theta) + \frac{1}{4}\sin(3\theta)$$

satisfies $0 \leq p^{\star}(\theta) \leq 1$ for all θ , hence $p^{\star} \in \mathcal{R}_{3/2}$, but $c_2 + s_3 = 0.6$, i.e. $p^{\star} \notin \mathcal{Q}_{3/2}$. In particular, $\mathcal{Q}_{3/2} \subsetneq \mathcal{R}_{3/2}$.



A similar gap can be demonstrated for all $J \ge 2$.

- 1. Motivation (and some history)
- 2. "Rotation boxes" within and beyond QT
- 3. A metrological game and the (sub)optimality of QT
- 4. A theory-independent SDI randomness generator
- 5. Conclusions

1. Motivation (and some history)

2. "Rotation boxes" within and beyond QT

3. A metrological game and the (sub)optimality of QT

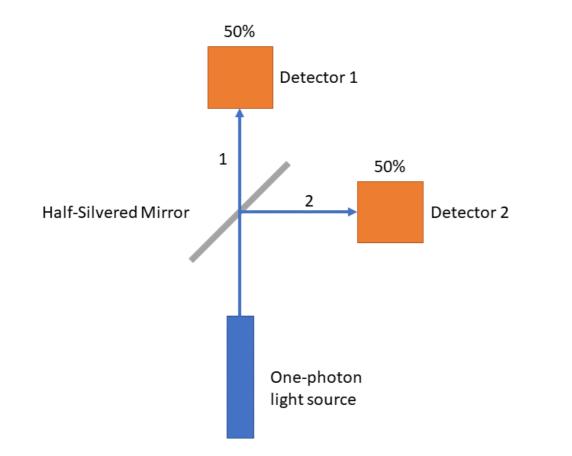
4. A theory-independent SDI randomness generator

5. Conclusions

Goal: Generate certified random bits.

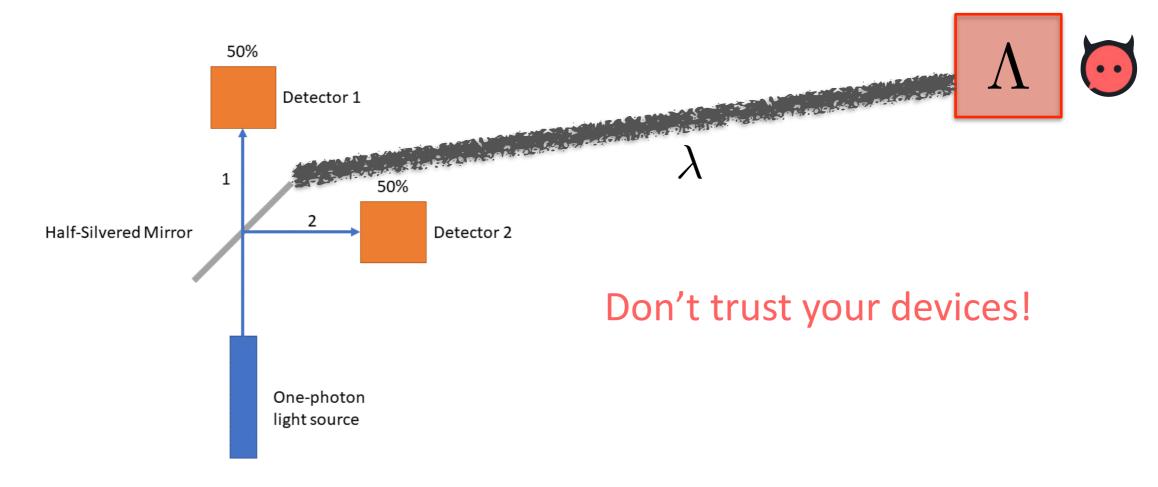
Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



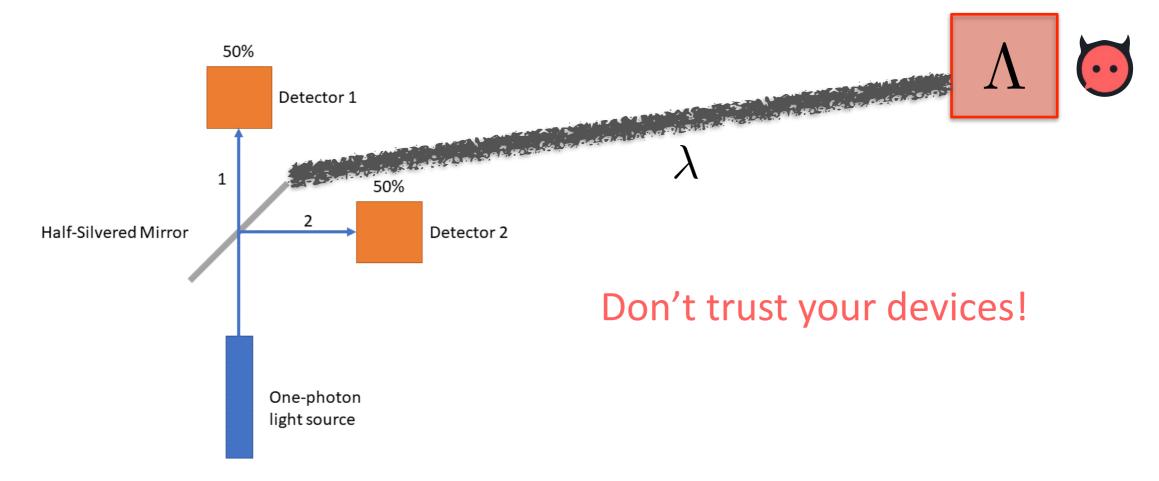
Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



Goal: Generate certified random bits.

Why not just send single photons on a half-silvered mirror?



Device-independent randomness expansion:

Violation of Bell inequality \Rightarrow outcomes uncorrelated with rest of the world

See e.g.: A. Acín, *Randomness and quantum non-locality*, QCRYPT 2012 talk. V. Scarani, *Bell nonlocality*, Oxford Graduate Texts (2019).

Semi-device-independent (SDI): allow communication, add assumption.

Semi-device-independent (SDI): allow communication, add assumption.

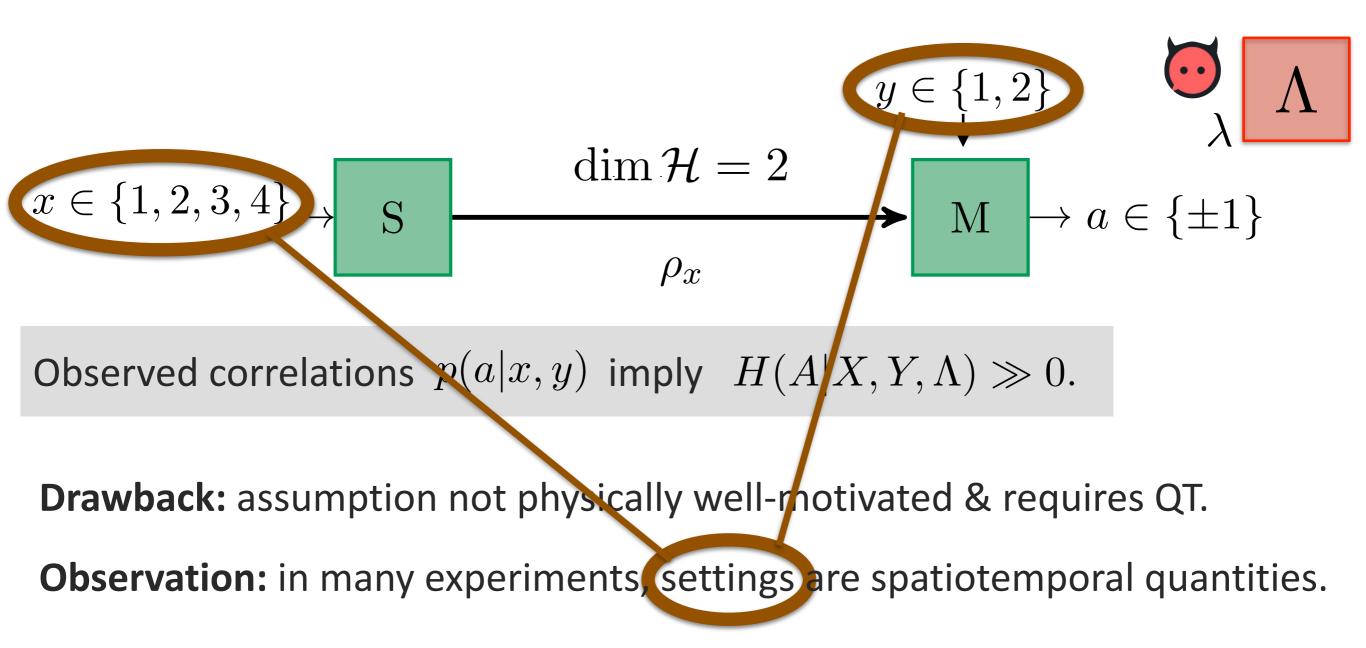
$$x \in \{1, 2, 3, 4\} \longrightarrow S \xrightarrow{\rho_x} M \xrightarrow{\rho_x} x \in \{1, 2\}$$

Semi-device-independent (SDI): allow communication, add assumption.

Semi-device-independent (SDI): allow communication, add assumption.

$$x \in \{1, 2, 3, 4\}$$
 \longrightarrow S \longrightarrow M \longrightarrow $a \in \{\pm 1\}$
Observed correlations $p(c|x, y)$ imply $H(A|X, Y, \Lambda) \gg 0$.
Drawback, assumption not physically well-motivated & requires QT.

Semi-device-independent (SDI): allow communication, add assumption.



Semi-device-independent (SDI): allow communication, add assumption.

$$x \in \{1, 2, 3, 4\} \longrightarrow \mathbf{S} \xrightarrow{\qquad \text{dim } \mathcal{H} = 2} \xrightarrow{\qquad \text{w} \in \{1, 2\}} \mathbf{M} \xrightarrow{\qquad \text{h} \in \{\pm 1\}} \mathbf{M}$$

$$p_x \xrightarrow{\qquad \text{observed correlations } p(a|x, y) \text{ imply } H(A|X, Y, \Lambda) \gg 0.$$

Drawback: assumption not physically well-motivated & requires QT.

Observation: in many experiments, settings are spatiotemporal quantities.

Idea: use the formalism of rotation boxes; replace dim bound by spin bound. Slightly more physical; does not assume the validity of quantum theory.

Suppose we only have **two possible** choices of **angles** — say, 0 and α .

Equivalently characterized by the correlations $E_x = P(+1|x) - P(-1|x)$

Equivalently characterized by the correlations $E_x = P(+1|x) - P(-1|x)$

"Two settings" quantum and rotation box correlations:

$$\mathcal{Q}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{Q}_J \}$$

$$\mathcal{R}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{R}_J \}$$
(Recall $\mathcal{Q}_J \subsetneq \mathcal{R}_J$ for $J \ge 3/2$)

Equivalently characterized by the correlations $E_x = P(+1|x) - P(-1|x)$

"Two settings" quantum and rotation box correlations:

$$\mathcal{Q}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{Q}_J \}$$

$$\mathcal{R}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{R}_J \}$$
 (Recall $\mathcal{Q}_J \subsetneq \mathcal{R}_J$ for $J \ge 3/2$)

Theorem: $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$ for all J, α .

Equivalently characterized by the correlations $E_x = P(+1|x) - P(-1|x)$

"Two settings" quantum and rotation box correlations:

$$Q_{J,\alpha} = \{ (E_1, E_2) \mid P \in Q_J \}$$

$$\mathcal{R}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{R}_J \}$$
(Recall $Q_J \subsetneq \mathcal{R}_J$ for $J \ge 3/2$)
$$\mathcal{R}_{J,\alpha} = \{ (E_1, E_2) \mid P \in \mathcal{R}_J \}$$
(recall $Q_J \subsetneq \mathcal{R}_J$ for $J \ge 3/2$)
$$(-1,+1)$$

$$Q_{J,\alpha}$$

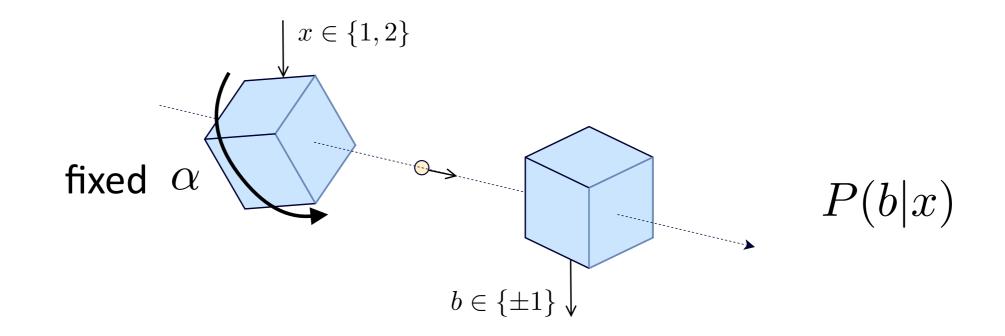
$$E_2$$

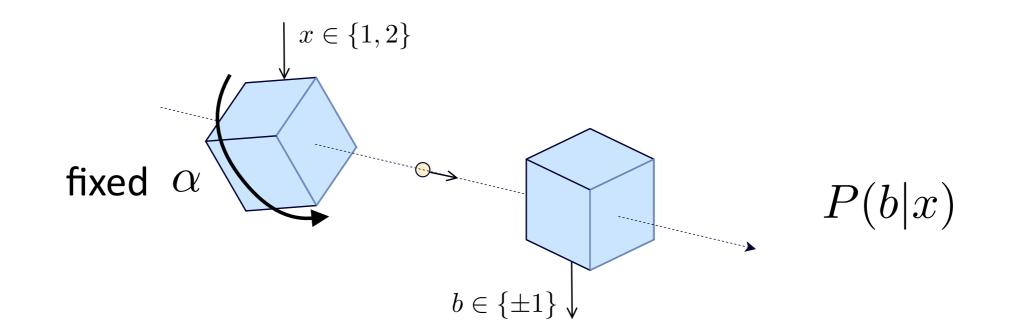
$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$
(-1,-1)

Equivalently characterized by the correlations $E_x = P(+1|x) - P(-1|x)$

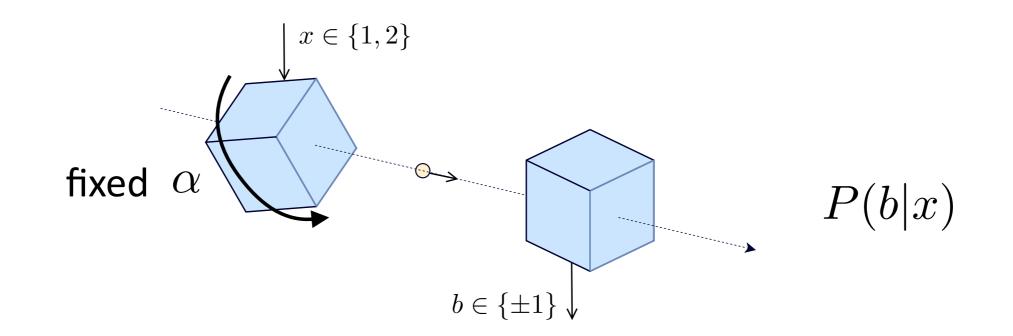
"Two settings" quantum and rotation box correlations:

$$\begin{aligned} \mathcal{Q}_{J,\alpha} &= \{ (E_1, E_2) \mid P \in \mathcal{Q}_J \} \\ \mathcal{R}_{J,\alpha} &= \{ (E_1, E_2) \mid P \in \mathcal{R}_J \} \end{aligned} \text{ (Recall } \mathcal{Q}_J \subsetneq \mathcal{R}_J \text{ for } J \ge 3/2 \text{)} \\ \textbf{Theorem: } \mathcal{Q}_{J,\alpha} &= \mathcal{R}_{J,\alpha} \text{ for all } J, \alpha. \end{aligned}$$
$$\begin{aligned} \begin{array}{c} (-1,+1) \\ \mathcal{Q}_{J,\alpha} \\ E_2 \\ \frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases} \end{aligned}$$
$$\begin{aligned} \textbf{Correlations characterized by rotational symmetry!} (-1,-1) \end{aligned}$$





If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

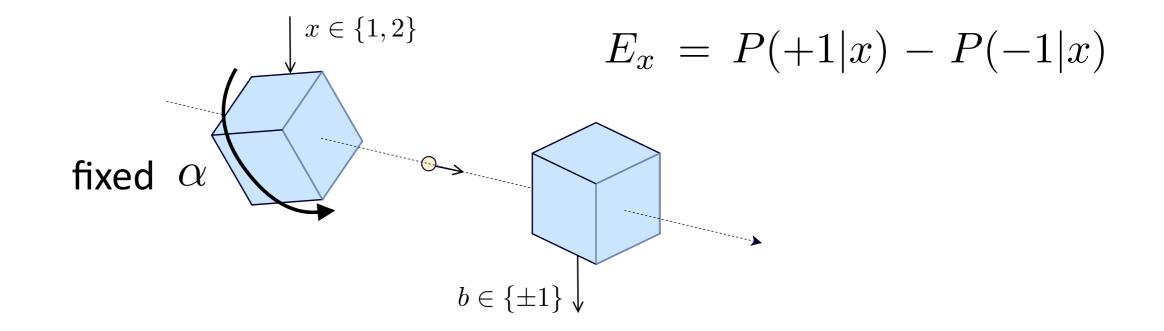


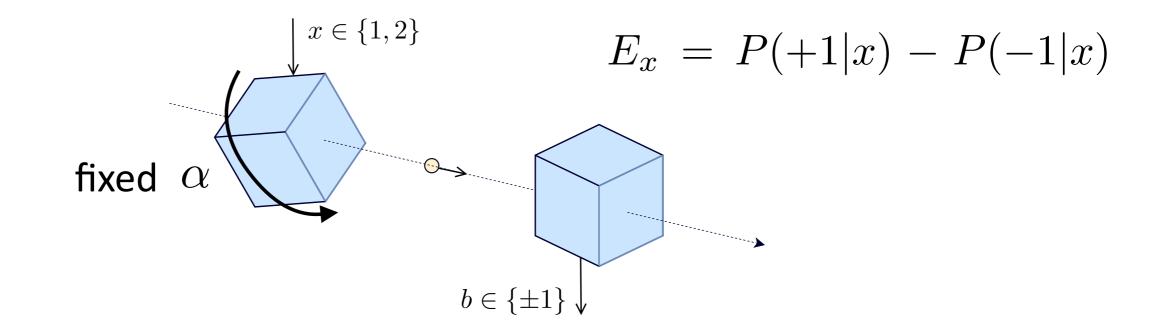
If input is x=1: do nothing to preparation device; if x=2: **rotate it** (relative to measurement device) **by angle** α.

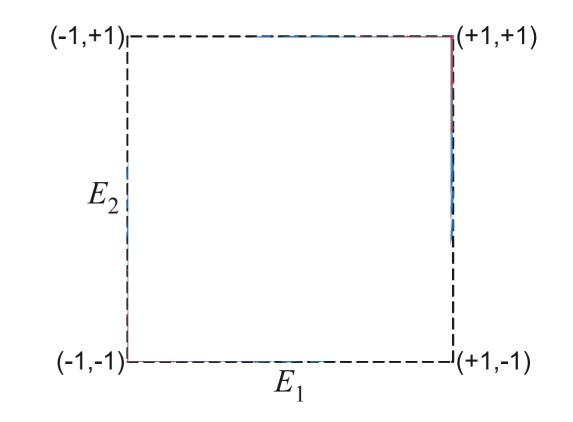
SDI assumption: "spin" of system $\leq J$

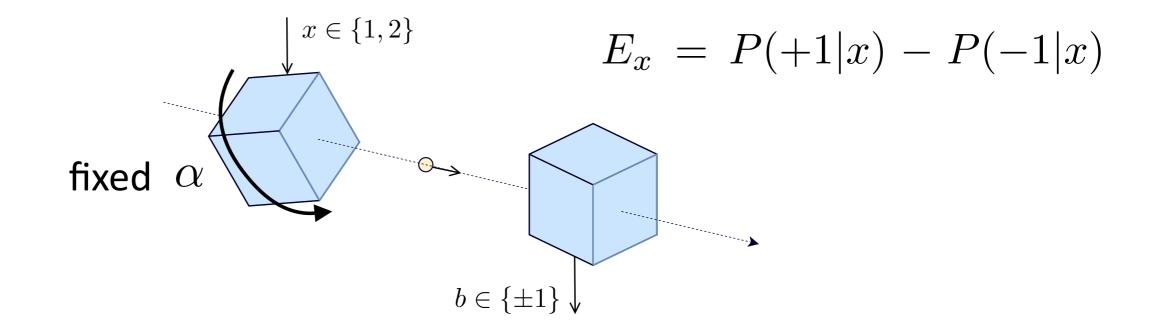
No further assumptions on devices / system.

Do not even assume the validity of quantum theory!

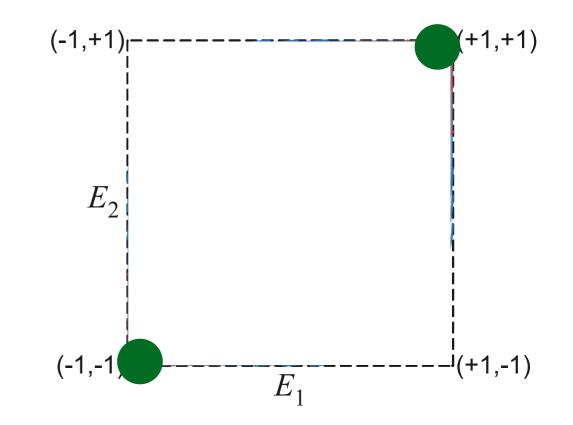


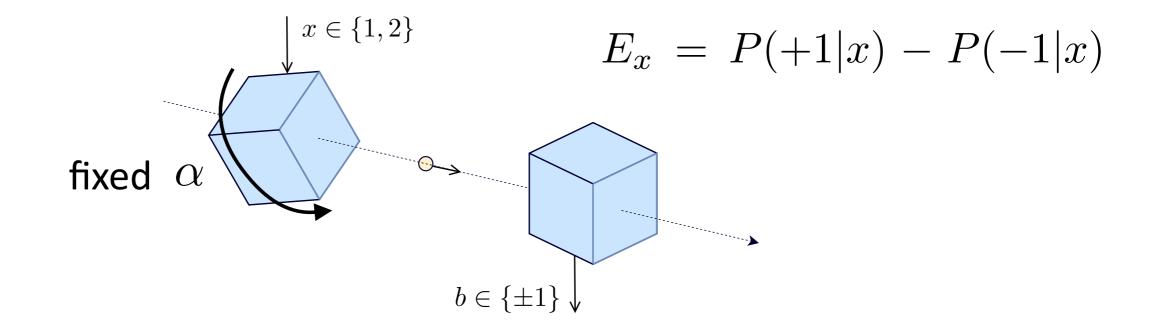






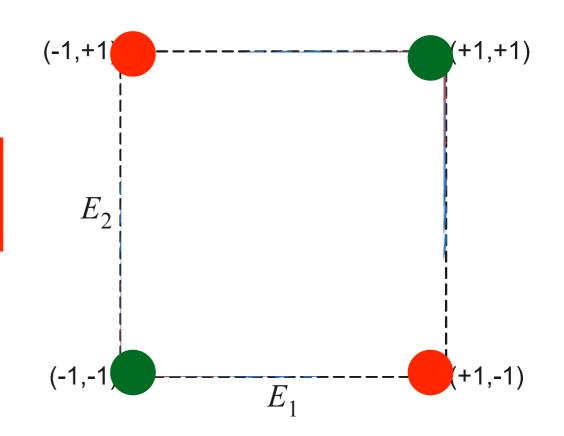
 "Boring" deterministic correlations: outcome b independent of x

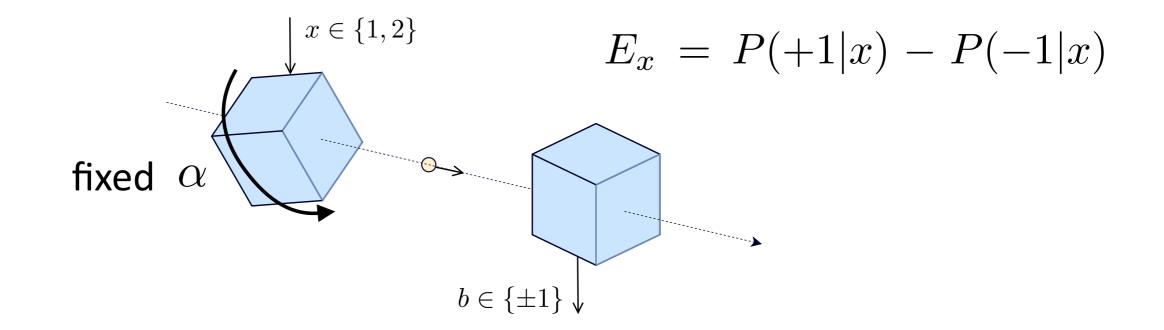




• "Boring" deterministic correlations: outcome *b* independent of *x*

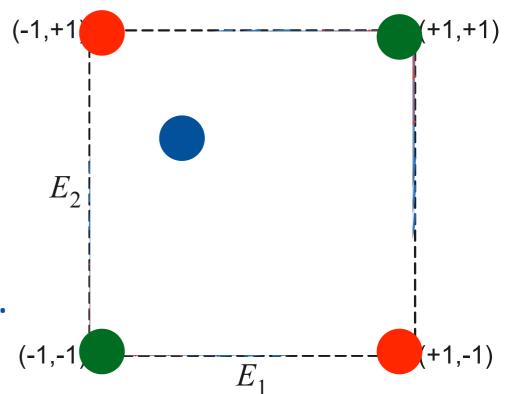
 "Interesting" deterministic correlations: outcome b is a function of x

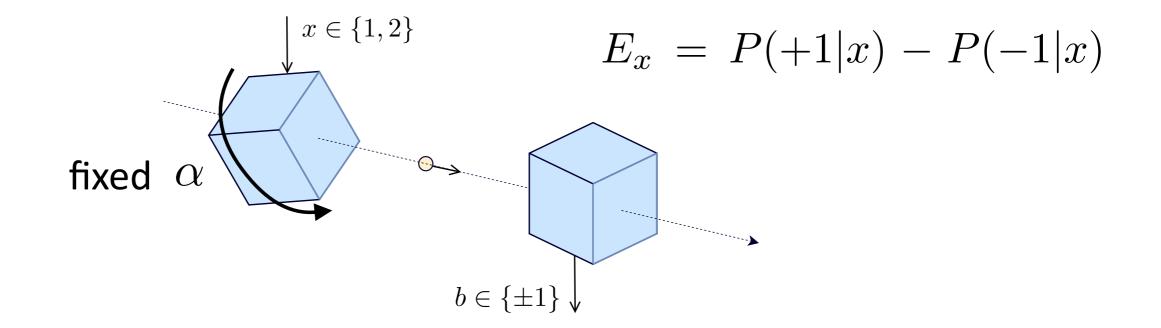




- "Boring" deterministic correlations: outcome b independent of x
- "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But:

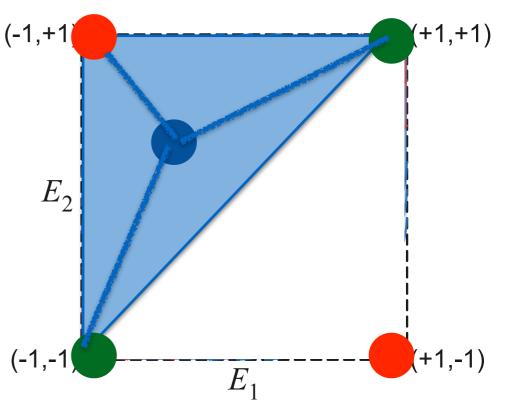


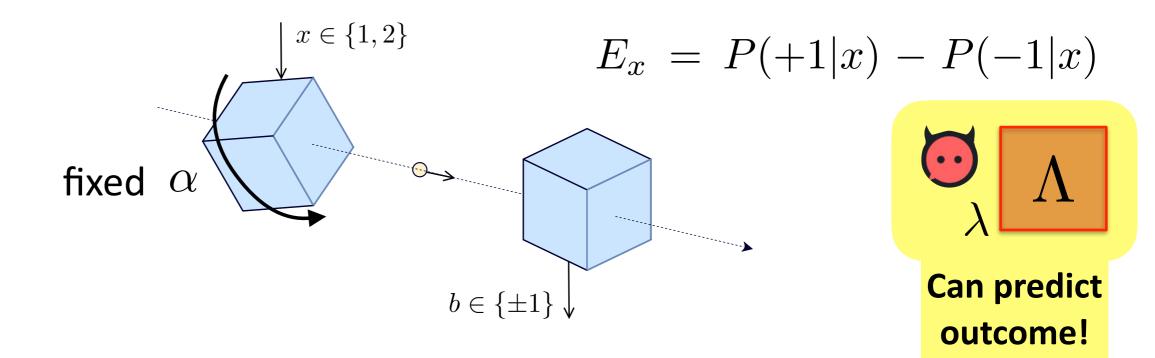


 "Boring" deterministic correlations: outcome b independent of x

 "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But: $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$

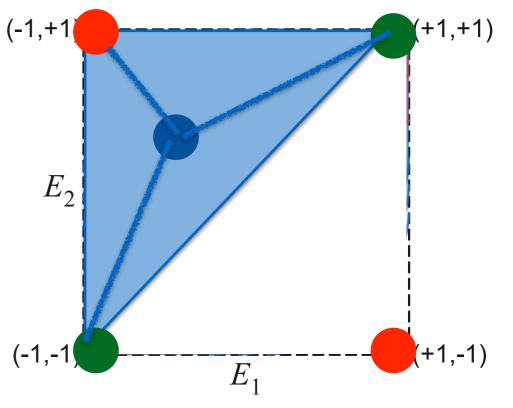


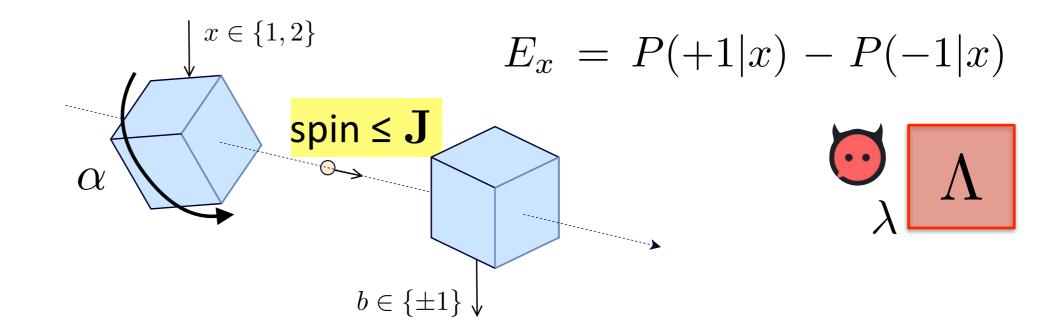


 "Boring" deterministic correlations: outcome b independent of x

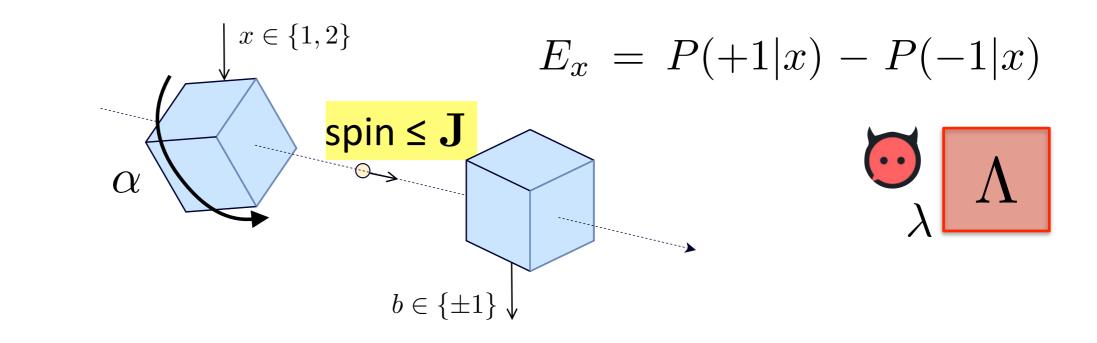
 "Interesting" deterministic correlations: outcome b is a function of x

Suppose (E_1, E_2) observed. Looks random. But: $(E_1, E_2) = \sum_{\lambda} p(\lambda) (E_1^{(\lambda)}, E_2^{(\lambda)})_{det}$





Which correlations are possible?

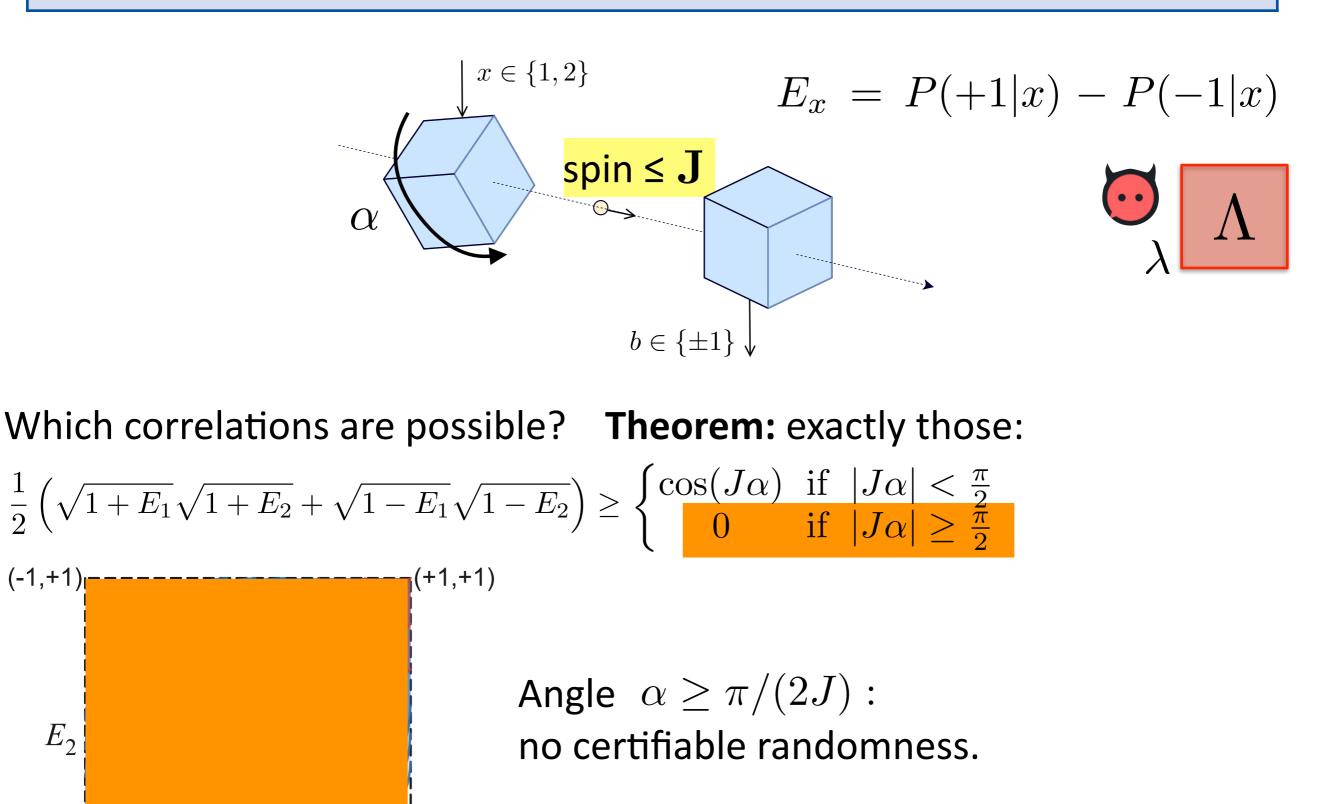


Which correlations are possible? Theorem: exactly those: $\frac{1}{2} \left(\sqrt{1+E_1} \sqrt{1+E_2} + \sqrt{1-E_1} \sqrt{1-E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| > \frac{\pi}{2} \end{cases}$

C. L. Jones, S. L. Ludescher, A. Aloy, MM, arXiv:2210.14811

using results of

T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, S. Pironio, Quantum 1, 33 (2017).



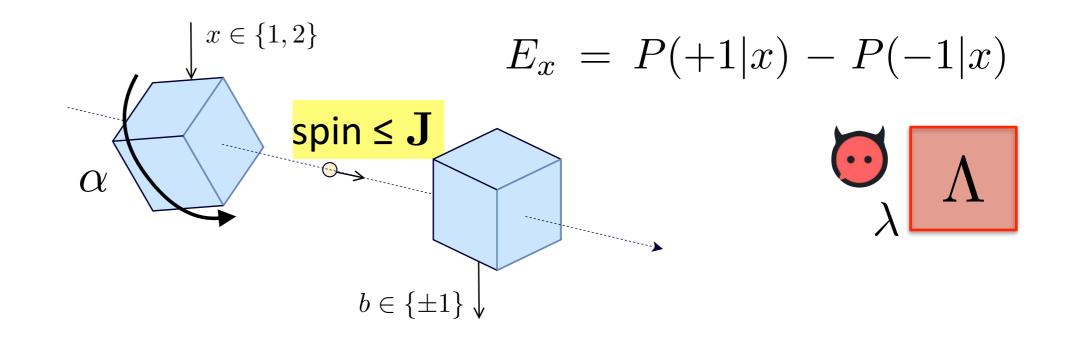
(+1,-1)

(-1,+1)

 E_2

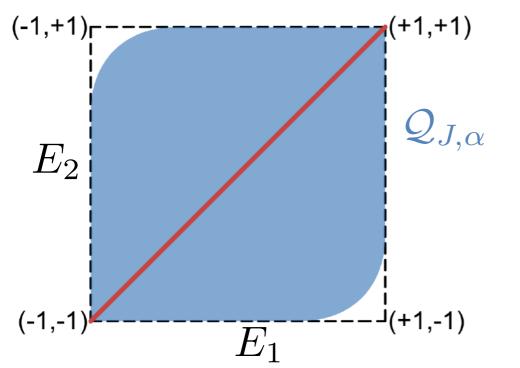
(-1, -1)

 $\boldsymbol{\Gamma}$

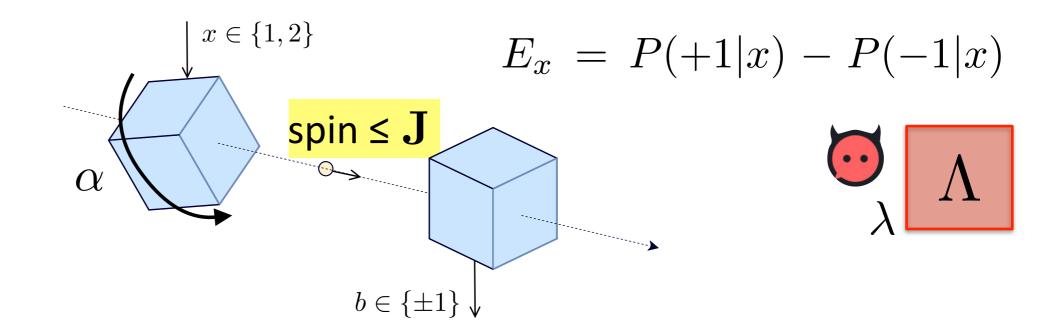


Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2} \left(\sqrt{1 + E_1} \sqrt{1 + E_2} + \sqrt{1 - E_1} \sqrt{1 - E_2} \right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

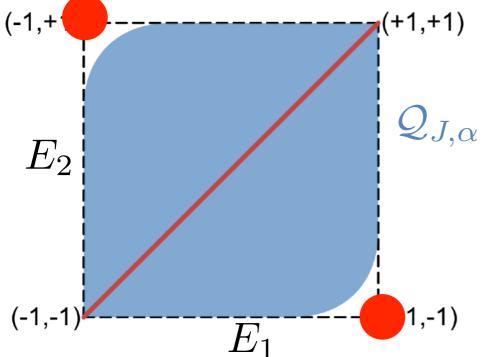


Blue curved set of correlations.



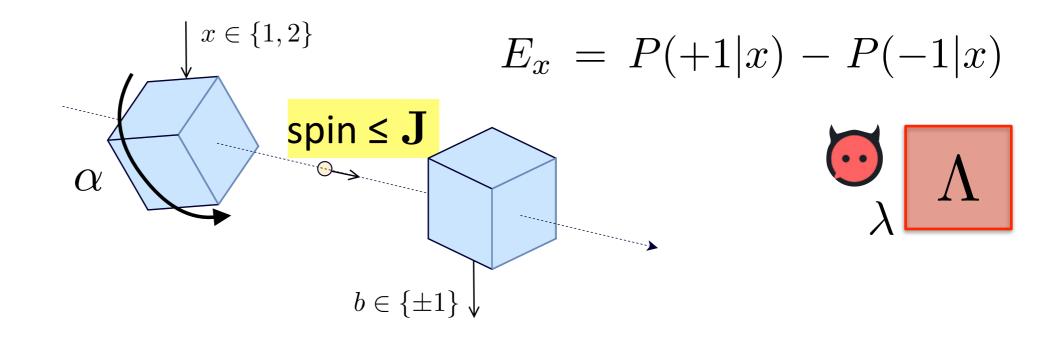
Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



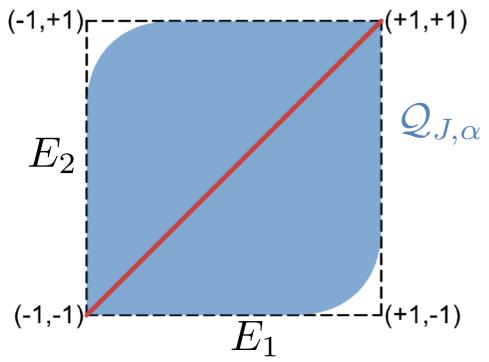
Blue curved set of correlations.

If $|\alpha| < \pi/(2J)$, then the "interesting deterministic correlations" are forbidden...



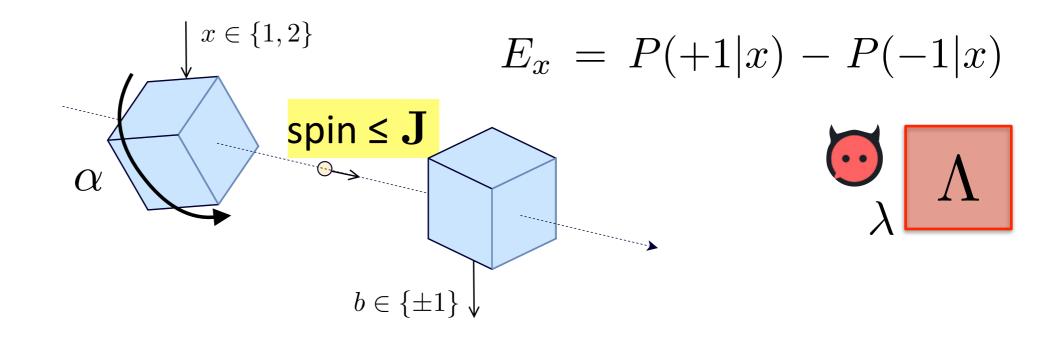
Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



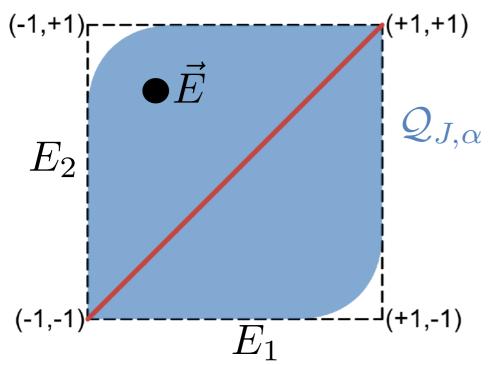
Blue curved set of correlations.

If $|\alpha| < \pi/(2J)$, then the "interesting deterministic correlations" are forbidden... ... and only correlations on the red line admit perfect outcome prediction by eavesdropper.

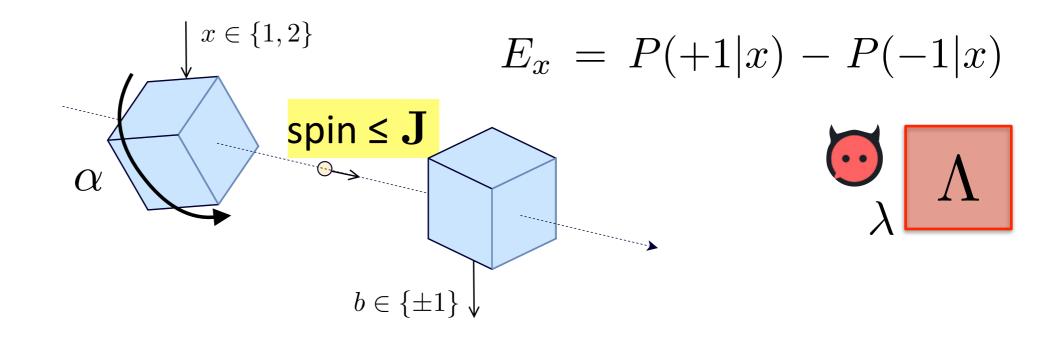


Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$

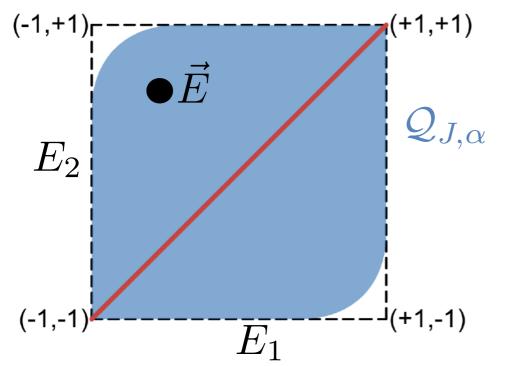


Observing some correlation $\vec{E} = (E_1, E_2)$ outside the red line thus allows us to certify randomness against the eavesdropper.



Which correlations are possible? **Theorem:** exactly those:

$$\frac{1}{2}\left(\sqrt{1+E_1}\sqrt{1+E_2} + \sqrt{1-E_1}\sqrt{1-E_2}\right) \ge \begin{cases} \cos(J\alpha) & \text{if } |J\alpha| < \frac{\pi}{2} \\ 0 & \text{if } |J\alpha| \ge \frac{\pi}{2} \end{cases}$$



Observing some correlation $\vec{E} = (E_1, E_2)$ outside the red line thus allows us to certify randomness against the eavesdropper.

This fact, *and* the amount of random bits, is **independent of the probabilistic theory**.

1. Motivation (and some history)

2. "Rotation boxes" within and beyond QT

3. A metrological game and the (sub)optimality of QT

4. A theory-independent SDI randomness generator

5. Conclusions

- 1. Motivation (and some history)
- 2. "Rotation boxes" within and beyond QT
- 3. A metrological game and the (sub)optimality of QT
- 4. A theory-independent SDI randomness generator
- 5. Conclusions

• **Motivated** the foundational study of how spacetime constrains probabilities (quantum or more general).

- Motivated the foundational study of how spacetime constrains probabilities (quantum or more general).
- Studied rotation boxes for spin-J. Fundamental results: $Q_0 = \mathcal{R}_0$, $Q_{1/2} = \mathcal{R}_{1/2}$, $Q_1 = \mathcal{R}_1$. Exact characterization of these sets. But $Q_{3/2} \subsetneq \mathcal{R}_{3/2}$.

- Motivated the foundational study of how spacetime constrains probabilities (quantum or more general).
- Studied rotation boxes for spin-J.
 Fundamental results: Q₀ = R₀, Q_{1/2} = R_{1/2}, Q₁ = R₁.
 Exact characterization of these sets. But Q_{3/2} ⊊ R_{3/2}.
- Application: (sub)optimality of QT in metrological games.

- Motivated the foundational study of how spacetime constrains probabilities (quantum or more general).
- Studied rotation boxes for spin-J.
 Fundamental results: Q₀ = R₀, Q_{1/2} = R_{1/2}, Q₁ = R₁.
 Exact characterization of these sets. But Q_{3/2} ⊊ R_{3/2}.
- Application: (sub)optimality of QT in metrological games.
- "Application": theory-independent SDI randomness. $Q_{J,\alpha} = \mathcal{R}_{J,\alpha}$. Correlations exactly determined by covariance $\downarrow x \in \{1,2\}$ $\downarrow b \in \{\pm 1\}$

 E_1

Thank you!

- A. Aloy, T. D. Galley, C. L. Jones, S. L. Ludescher, and M. P. Müller, Spinbounded correlations: rotation boxes within and beyond quantum theory, Commun. Math. Phys. 405, 292 (2024).
- C. L. Jones, S. L. Ludescher, A. Aloy, and M. P. Müller, *Theory-independent* randomness generation from spatial symmetries, arXiv:2210.14811.