
Space,	time	and	quantum	probabilities:	
from	fundamental	insights	to	protocols

Markus	P.	Müller	
IQOQI	Vienna	&	Perimeter	Institute

3

theory (or a more general theory) admits. The
paradigmatic example is the study of quantum
speed limits [20–23]: upper-bounding the (expec-
tation value or variance of the) energy constrains
how quickly quantum states can become orthogo-
nal. Replacing time-translation symmetry by ro-
tational symmetry leads to the formalism of this
paper.

Our article is organized as follows. In Section II, we
consider a metrological game to illustrate a gap between
the predictions of quantum theory and those of hypo-
thetical, more general theories consistent with rotational
symmetry. In Section III, we introduce the conceptual
framework and discuss the background assumptions of
rotation boxes. More specifically, in Subsection IIIA, we
define and analyze the structure of the sets of quantum
correlations, when the spin is constrained. In Subsec-
tion III B, we do so for the corresponding sets of general
“rotational correlations”, when boxes are characterized
only by their response to rotations (but need not neces-
sarily be quantum). In Subsection III C, we discuss how,
although defined independently, the rotation set can be
interpreted as a relaxation of the quantum set of correla-
tions, and show how this leads to an e!cient semidefinite
programming (SDP) characterization.

Next, in Section IV, we outline our main results, which
concern rotation boxes in prepare-and-measure scenarios,
and the relation between the quantum and general sets.
In Subsection IVA, we start by analyzing the scenario
for the cases J → {0, 1/2}, for which we show that every
rotation box correlation can be generated by a quantum
system of the same J . In Subsection IVB, we consider
the J = 1 case, and show the equivalence of the rota-
tion and quantum sets of correlations specifically for 2
outputs, based on an exact convex characterization of
this set. In Subsection IVC, we demonstrate that a gap
between the sets appears for J ↑ 3/2. We construct a
Tsirelson-like inequality for J = 3/2 and provide an ex-
plicit correlation of rotation box form that violates the
quantum bound. Using the same methodology, we fur-
ther show that the gap exists for all finite J ↑ 3/2. In
Subsection IVD, we examine the case where J is uncon-
strained (i.e. J ↓ ↔), in which every rotation correlation
can be approximated arbitrarily well by finite-J quantum
systems. In Subsection IVE, we then review our pre-
vious results [19], concerning two input rotation boxes,
in which we have applied the framework to describe a
theory-independent protocol for randomness generation.
Finally, in Subsection IVF, we address how one should
understand a “classical” rotation box.

In Section V, we consolidate earlier results concern-
ing Bell setups using our framework. First, in Subsec-
tion VA, we review and shed some new light on the
results of [11], which yield an exact characterization of
the (2, 2, 2)-quantum Bell correlations; second, in Sub-
section VB, we clarify the additional assumption of [24]
allowing for indirect witnesses of multipartite Bell non-
locality. Next, in Section VI, we outline connections to

L(V ) Space of linear operators on the vector space V
LH(Cn) Space of Hermitian operators on Cn

LS(Rn) Space of symmetric operators on Rn

D(H) Set of density operators on Hilbert space H

E(H) Set of POVM elements on H

LSH(Cn) Space of symmetric Hermitian operators on Cn

Symd(V ) Symmetric subspace of V →d

N Natural numbers {1, 2, 3, 4, . . .}
N0 Non-negative integers {0, 1, 2, 3, 4 . . .}

TABLE I. Notation used in the paper.

other known results. In particular, in Subsection VIA,
we discuss the conceptual similarity to “almost quantum”
Bell correlations [25] in more depth; in Subsection VIB,
we show that the state spaces of rotation boxes are iso-
morphic to Carathéodory orbitopes [26]; and in Subsec-
tion VIC, we make a connection between the e”ect space
of the rotation GPT system and a family of rebit entan-
glement witnesses. Finally, we conclude in Section VII.
Table I gives a brief overview on our notation.

II. INVITATION: A SPIN-BOUNDED
METROLOGICAL TASK

Consider the following situation, which resembles
a typical scenario in quantum metrology. A referee
promises to perform a spatial rotation by some angle ω.
Before this, we may prepare a physical system in some
state, submit it to the rotation, and subsequently mea-
sure it to estimate ω. How well can we do this?

FIG. 1. Schematic sketch of the metrological task. An agent
holds a physical system of spin J = 3/2, in an initial state ω.
She gives it to a referee, who, in a black box with respect to the
agent, performs some spatial rotation of angle ε on the system,
where ε is chosen according to the distribution function µ(ε)
(defined in the main text and shown in Figure 2). The referee
then passes the system back to the agent, who measures it
using a two-outcome box in order to determine whether the
angle ε is in the range R+ or R↑ (see also Figure 2).

If our physical system is a classical gyroscope, we can
certainly determine ω perfectly — the challenge lies in the

Theory-independent randomness generation from
spatial symmetries
Caroline L. Jones1,2, Stefan L. Ludescher1,2, Albert Aloy1,2, and Markus P. Müller1,2,3

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria

3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

December 12, 2024

We characterize how the response of physical
systems to spatial rotations constrains the prob-
abilities of events that may be observed. From a
foundational point of view, we show that the set
of quantum correlations in our scenarios can be
derived from rotational symmetry alone, with-
out assuming quantum physics. This shows that
important predictions of quantum theory can
be derived from the structure of space, demon-
strating that semi-device-independent scenarios
can be utilized to shed light on the founda-
tions of physics. From a practical perspective,
these results allow us to introduce semi-device-
independent protocols for the generation of se-
cure random numbers based on the breaking of
spatial symmetries. While experimental imple-
mentations will rely on quantum physics, the se-
curity analysis and the amount of extracted ran-
domness is theory-independent and certified by
the observed correlations only. That is, our pro-
tocols rely on a physically meaningful assump-
tion: a bound on a theory-independent notion
of spin.

1 Introduction
Quantum field theory and general relativity, as they cur-
rently stand, describe two distinct classes of physical
phenomena: probabilities of events on the one hand,
and spacetime geometry on the other. Large e!orts are
currently underway to construct a theory of quantum
gravity that would describe both classes of phenomena
and their interaction in a unified way. Given the dif-
ficulties in this endeavour, one may start with a more
modest, but nonetheless illuminating approach: ana-
lyze how probabilities of detector clicks and properties
of spacetime interact, and what constraints they impose
on one another. Here, we propose to use semi-device-
independent (semi-DI) quantum information protocols
to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
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Figure 1: Setup. A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ωx → {0, ω}
relative to the measurement device M according to an input
setting x → {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b → {±1}.

experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings
of the devices, and the analysis relies on the observed
input-output statistics alone. While Bell and other DI
black-box scenarios have previously been used to study
the foundations of quantum theory [10,11], here we sug-
gest to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure
scenario sketched in Fig. 1, which can be used to gener-
ate random numbers that are secure against eavesdrop-
pers with additional classical information [9,12–16]. We
define a class of semi-DI quantum random number gen-
erators based on an assumption about how the transmit-
ted system may respond to spatial rotations. Crucially,
this semi-DI assumption does not rely on the validity
of quantum theory, since it is representation-theoretic
in nature and hence applies to all possible probabilistic
theories. We show that the exact shape of the set of
quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
which also entails the security of our protocol against
post-quantum eavesdroppers.

2 The setup
We consider a semi-DI random number generator simi-
lar to the one described in [9,17], given by the prepare-
and-measure scenario depicted in Fig. 1. The goal is to
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dP ~p dP P( —P)
6 Id

Thus, we can associate with each value of 6I a
region of uncertainty, extending from 0 —Ag to
8+ LH, whose size could in principle depend on 8
since both p and dp/d8 on the right-hand side of
Eq. (1) depend on 8. Let us call two neighboring

~8 —8 ~-~8+t 8 . (2)

We now define the statistical distance d(8„8,)
between any two orientations 9, and 9, to be

orientations 8 and 8' distinguiskgblein n trials
if their regions of uncertainty do not overlap, that
is, if

I

d(8„8,) = lim x[maximum number of intermediate orientations each of which is
tl

distinguishable (in n trials) from its neighbors].

In other words, the statistical distance is obtained
essentially by counting the number of distinguish-
able orientations between 0, and 9,. The factor
n ' ' is included so that the limit will exist, the
number of distinguishable orientations going as
n' '. The statistical distance is intended to be a
measure of how far apart 8, and e, are in a statis-
tical sense. It does not have anything to do,
a priori, with the, usual notion of distance (or
angle) between 8, and 8„which is

~ 8, —8, ~
. We

now show, however, that these two kinds of dis-
tance are in fact the same.
From Eqs. (1)-(3) we obtain the following ex-

pression for statistical distance in terms of the
function p(8) (aseuming that 8, ~ 8,):" d8 " Idpld81

2~8 2[p(1-p)]»2 '

Upon substituting the actual form of the probability
law p(8) = cos'8 into this expression, we find that
the statistical distance is

d(8„82)= 82 —8j;
that is, it is equal to the angle between the two
orientations. This equality expresses the main re-
sult of this paper as it applies to the simple case
of linear polarization of photons.
The fact that the proportionality constant be-

tween statistical distance and "actual distance" is
unity is not particularly significant; it is due to
our decision to divide by Mn in Eq. (3) rather than
by some multiple of ~n. However, the propor-
tionality itself is nontrivial and depends on the
fact that

something which would typically not be true if
the probability law were different from p(8)
= cos'8. In fact, the only periodic functions (with
period 2v) satisfying Eq. (4) are those of the form

P(8) = cos' —(8 —8,)
where m is an integer and 90 is a constant. Thus,

I

if one were to demand of nature that the statistical
distance be proportional to ~8, —82 ~, the cos
shape of the probability function would follow ne-
cessarily.
Another way of stating the above result is as

follows. In the sequence of orientations given by
(8=0, 8=q, 8=2g, .. .), all the orientations are
equally distinguishable from their respective
neighbors. This would follow trivially from rota-
tional invariance if the nicol prism were allowed
to be rotated. But w'e have assumed that the
prism is fixed, and this is why the result is not
empty.
In the above discussion, we defined statistical

distance directly on the set of orientations of the
polarizing filter. In the more general case—in-
cluding measurements with more than two possible
outcomes, also including elliptical polarizations in
the case of photons —we must use a more round-
about approach. We first define in Sec. II the
concept of statistical distance on probability
space, a concept which applies to any probabilistic
experiment, such as the throwing of dice. We then
adapt this idea to quantum measurements in Sec.
III. Finally, in Sec. IV we discuss the possible
significance of the equivalence between statistical
distance and angle in Hilbert space.

II. STATISTICAL DISTANCE ON PROBABILITY
SPACE

The concept of statistical distance is quite in-
dependent of quantum mechanics and can be de-
fined on any probability space. To emphasize
this point, we now define the statistical distance
between two differently weighted coins.
In a case such as this where there are exactly

two possible outcomes, the probability space is
one-dimensional, every coin being characterized
by its probability of heads. The statistical dis-
tance d(p„p2) between two coins with probabil-
ities p, and p, of heads is defined in a way anal-
ogous to that of the preceding section:
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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P (b|ω)

• Input:	PreparaPon	device	is	rotated	by	angle							around	a	fixed	axis.		
• Some	output															is	obtained.	Here	for	simplicity	
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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P (b|ω)

• Input:	PreparaPon	device	is	rotated	by	angle							around	a	fixed	axis.		
• Some	output															is	obtained.	Here	for	simplicity	
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B = {→1,+1}.
To	the	space	of	ensembles	of	preparaPon	devices,	we	can	associate	a	
real-linear	space	of	possible	states													From	standard	arguments,	
rota=onal	covariance	implies	that	it	carries	a	representa=on	of	SO(2),	and
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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P (b|ω)

• Input:	PreparaPon	device	is	rotated	by	angle							around	a	fixed	axis.		
• Some	output															is	obtained.	Here	for	simplicity	
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b → B
<latexit sha1_base64="g+MkLQvWTisn9a70e4vE7vBjIKY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARBDUkItWNUOrGZQX7gCaUyXRSh04mYWYilJiFv+LGhSJu/Q13/o2TNgttPTBwOOde7pnjx4xKZdvfRmlhcWl5pbxaWVvf2Nwyt3faMkoEJi0csUh0fSQJo5y0FFWMdGNBUOgz0vFH17nfeSBC0ojfqXFMvBANOQ0oRkpLfXPPDZG6x4iljezKTU+dk2PHzay+WbUtewI4T5yCVEGBZt/8cgcRTkLCFWZIyp5jx8pLkVAUM5JV3ESSGOERGpKephyFRHrpJH8GD7UygEEk9OMKTtTfGykKpRyHvp7M08pZLxf/83qJCi69lPI4UYTj6aEgYVBFMC8DDqggWLGxJggLqrNCfI8EwkpXVtElOLNfniftM8upWbXb82q9UdRRBvvgABwBB1yAOrgBTdACGDyCZ/AK3own48V4Nz6moyWj2NkFf2B8/gBS7ZUD</latexit>

B = {→1,+1}.
To	the	space	of	ensembles	of	preparaPon	devices,	we	can	associate	a	
real-linear	space	of	possible	states													From	standard	arguments,	
rota=onal	covariance	implies	that	it	carries	a	representa=on	of	SO(2),	and

<latexit sha1_base64="A84xsOFJ68w+pd8p8XtfS5NY6x4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwFRKR6rLoxmUF+4AklMl00g6dR5iZCCX0M9y4UMStX+POv3HaZqHVAxcO59zLvfckGaPa+P6XU1lb39jcqm7Xdnb39g/qh0ddLXOFSQdLJlU/QZowKkjHUMNIP1ME8YSRXjK5nfu9R6I0leLBTDMSczQSNKUYGSuFURFJTkYomnmDesP3/AXcvyQoSQNKtAf1z2gocc6JMJghrcPAz0xcIGUoZmRWi3JNMoQnaERCSwXiRMfF4uSZe2aVoZtKZUsYd6H+nCgQ13rKE9vJkRnrVW8u/ueFuUmv44KKLDdE4OWiNGeuke78f3dIFcGGTS1BWFF7q4vHSCFsbEo1G0Kw+vJf0r3wgqbXvL9stG7KOKpwAqdwDgFcQQvuoA0dwCDhCV7g1THOs/PmvC9bK045cwy/4Hx8AzGAkTY=</latexit>

{ω}.
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P (b|ω) = (eb, Tωε).

If												is	finite-dimensional,	then	there	is	some	
(which	we	call	the	“spin”	of	the	system)	such	that

<latexit sha1_base64="KYfY/nSTTUp4J8A+Lt5Kq+kMK/k="></latexit>

P (b|ω) = c0 +
2J∑

j=1

(
cj cos(jω) + sj sin(jω)

)
.
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{ω}
<latexit sha1_base64="0kPKKa5JSVUIel19eo36G2XvTAw="></latexit>

J → {0, 1
2 , 1,

3
2 , 2, . . .}

RotaPon	boxes
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P (b|ω) = c0 +
2J∑

j=1

(
cj cos(jω) + sj sin(jω)

)
.

Indeed,	for	every	probability	law

RotaPon	boxes
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P (b|ω) = c0 +
2J∑

j=1

(
cj cos(jω) + sj sin(jω)

)
.

Indeed,	for	every	probability	law

with																												and																																				we	can	find	a	hypothePcal	
probabilisPc	system	yielding	this	under	rotaPonal	covariance.
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b P (b|ω) = 1,
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P (b|ω) = c0 +
2J∑

j=1

(
cj cos(jω) + sj sin(jω)

)
.

Indeed,	for	every	probability	law

with																												and																																				we	can	find	a	hypothePcal	
probabilisPc	system	yielding	this	under	rotaPonal	covariance.
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We	define	the	spin-J	rota=on	boxes										as	the	set	of	all	such																							
i.e.	the	probability-valued	trigonometric	polynomials	of	degree	
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<latexit sha1_base64="Gs8UqfW813lxi8eiXveL1zOwSwo=">AAAB73icbZDJSgNBEIZrXGPc4nLz0hgET8NMDtFj0IuIhwhmgWQIPZ2apEnPku4eIQx5CS8eFPHqa/gI3nwbO8tBE39o+Pj/Krqq/ERwpR3n21pZXVvf2Mxt5bd3dvf2CweHdRWnkmGNxSKWTZ8qFDzCmuZaYDORSENfYMMfXE/yxiNKxePoQY8S9ELai3jAGdXGarYFDknp1u4Uio7tTEWWwZ1DsXJ891mVuVa1U/hqd2OWhhhpJqhSLddJtJdRqTkTOM63U4UJZQPaw5bBiIaovGw675icGadLgliaF2kydX93ZDRUahT6pjKkuq8Ws4n5X9ZKdXDpZTxKUo0Rm30UpILomEyWJ10ukWkxMkCZ5GZWwvpUUqbNifLmCO7iystQL9lu2S7fu8XKFcyUgxM4hXNw4QIqcANVqAEDAU/wAq/W0Hq23qz3WemKNe85gj+yPn4AS7uRwQ==</latexit>

→ 2J.

<latexit sha1_base64="sx37X7Fyal/LCSWq5iJNKezioTo=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrMPJIYENmh1mYMDu7zsySkA3fYWOhMZb6FX6BnY3f4ixQKHiSSU7OuTf3zPEizpS27S8rs7K6tr6R3cxtbe/s7uX3DxoqjCWhdRLyULY8rChngtY105y2Iklx4HHa9IZXqd8cUalYKO70OKJugPuC+YxgbSS3E2A9IJgnt5PuTTdfsIv2FGiZOHNSKB/Vvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOsl1YkUjTIa4T9uGChxQ5SbT0BN0apQe8kNpntBoqv7eSHCg1DjwzGQaUi16qfif1461f+kmTESxpoLMDvkxRzpEaQOoxyQlmo8NwUQykxWRAZaYaNNTzpTgLH55mTTOi06pWKo5hXIFZsjCMZzAGThwAWW4hirUgcA9PMATPFsj69F6sV5noxlrvnMIf2C9/wDAMZXO</latexit>

RJ

RotaPon	boxes
<latexit sha1_base64="sx37X7Fyal/LCSWq5iJNKezioTo=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrMPJIYENmh1mYMDu7zsySkA3fYWOhMZb6FX6BnY3f4ixQKHiSSU7OuTf3zPEizpS27S8rs7K6tr6R3cxtbe/s7uX3DxoqjCWhdRLyULY8rChngtY105y2Iklx4HHa9IZXqd8cUalYKO70OKJugPuC+YxgbSS3E2A9IJgnt5PuTTdfsIv2FGiZOHNSKB/Vvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOsl1YkUjTIa4T9uGChxQ5SbT0BN0apQe8kNpntBoqv7eSHCg1DjwzGQaUi16qfif1461f+kmTESxpoLMDvkxRzpEaQOoxyQlmo8NwUQykxWRAZaYaNNTzpTgLH55mTTOi06pWKo5hXIFZsjCMZzAGThwAWW4hirUgcA9PMATPFsj69F6sV5noxlrvnMIf2C9/wDAMZXO</latexit>

RJ



<latexit sha1_base64="KYfY/nSTTUp4J8A+Lt5Kq+kMK/k="></latexit>

P (b|ω) = c0 +
2J∑

j=1

(
cj cos(jω) + sj sin(jω)

)
.

Indeed,	for	every	probability	law

with																												and																																				we	can	find	a	hypothePcal	
probabilisPc	system	yielding	this	under	rotaPonal	covariance.

<latexit sha1_base64="KA3rYkZlTnvld4wazJCGDOprqqM=">AAAB+nicbVDJSgNBEK1xjXGb6NFLkyBEhDDjIXoc9OIxglkgM4SeTidp0rPY3aMMk/yFVy8eFPHql3jL39hZDpr4oODxXhVV9fyYM6ksa2KsrW9sbm3ndvK7e/sHh2bhqCGjRBBaJxGPRMvHknIW0rpiitNWLCgOfE6b/vBm6jcfqZAsCu9VGlMvwP2Q9RjBSksds1Ar+yMX83iAz9w+fUBWxyxZFWsGtErsBSk5Rff8eeKktY757XYjkgQ0VIRjKdu2FSsvw0Ixwuk47yaSxpgMcZ+2NQ1xQKWXzU4fo1OtdFEvErpChWbq74kMB1Kmga87A6wGctmbiv957UT1rryMhXGiaEjmi3oJRypC0xxQlwlKFE81wUQwfSsiAywwUTqtvA7BXn55lTQuKna1Ur2zS841zJGDEyhCGWy4BAduoQZ1IPAEL/AG78bIeDU+jM9565qxmDmGPzC+fgAM/JY2</latexit>

P (b|ω) → 0
<latexit sha1_base64="lNeuAWT1u8QwkofOjkuryZ1E00s=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gKFaQkLqoboejGZQX7gCaEyXTSDp1MwsxEKLHgj7hw40IRt36HG/VD3Dt9LLT1wIXDOfdy7z1BwqhUtv1l5BYWl5ZX8qvm2vrG5pa1vdOQcSowqeOYxaIVIEkY5aSuqGKklQiCooCRZtC/GPnNGyIkjfm1GiTEi1CX05BipLTkW3uuTCM/gLVScOsilvTQ4Zlz5FsFu2yPAeeJMyWFavH78+Pe7NZ8693txDiNCFeYISnbjp0oL0NCUczI0HRTSRKE+6hL2ppyFBHpZePzh7ColQ4MY6GLKzhWf09kKJJyEAW6M0KqJ2e9kfif105VeOpllCepIhxPFoUpgyqGoyxghwqCFRtogrCg+laIe0ggrHRipg7BmX15njSOy06lXLlyCtVzMEEe7IMDUAIOOAFVcAlqoA4wyMADeALPxp3xaLwYr5PWnDGd2QV/YLz9AAzvmKk=</latexit>∑

b P (b|ω) = 1,

We	define	the	spin-J	rota=on	boxes										as	the	set	of	all	such																							
i.e.	the	probability-valued	trigonometric	polynomials	of	degree	

<latexit sha1_base64="VQM9SLyLA/XP2xVkmpXgrs/etDA=">AAAB9HicbVDJSgNBEK1xjXGLevTSJAiRSJjxED0OevEYwSyQGUJPpydp0rPY3RMYxvyF4MWDIl79GG/5GzvLQRMfFDzeq6KqnhdzJpVpToy19Y3Nre3cTn53b//gsHB03JRRIghtkIhHou1hSTkLaUMxxWk7FhQHHqctb3g79VsjKiSLwgeVxtQNcD9kPiNYacmtlyvWk4N5PMDnF91CyayaM6BVYi1IyS46leeJnda7hW+nF5EkoKEiHEvZscxYuRkWihFOx3knkTTGZIj7tKNpiAMq3Wx29BidaaWH/EjoChWaqb8nMhxImQae7gywGshlbyr+53US5V+7GQvjRNGQzBf5CUcqQtMEUI8JShRPNcFEMH0rIgMsMFE6p7wOwVp+eZU0L6tWrVq7t0r2DcyRg1MoQhksuAIb7qAODSDwCC/wBu/GyHg1PozPeeuasZg5gT8wvn4APLSUGg==</latexit>

P (+1|ω),
<latexit sha1_base64="Gs8UqfW813lxi8eiXveL1zOwSwo=">AAAB73icbZDJSgNBEIZrXGPc4nLz0hgET8NMDtFj0IuIhwhmgWQIPZ2apEnPku4eIQx5CS8eFPHqa/gI3nwbO8tBE39o+Pj/Krqq/ERwpR3n21pZXVvf2Mxt5bd3dvf2CweHdRWnkmGNxSKWTZ8qFDzCmuZaYDORSENfYMMfXE/yxiNKxePoQY8S9ELai3jAGdXGarYFDknp1u4Uio7tTEWWwZ1DsXJ891mVuVa1U/hqd2OWhhhpJqhSLddJtJdRqTkTOM63U4UJZQPaw5bBiIaovGw675icGadLgliaF2kydX93ZDRUahT6pjKkuq8Ws4n5X9ZKdXDpZTxKUo0Rm30UpILomEyWJ10ukWkxMkCZ5GZWwvpUUqbNifLmCO7iystQL9lu2S7fu8XKFcyUgxM4hXNw4QIqcANVqAEDAU/wAq/W0Hq23qz3WemKNe85gj+yPn4AS7uRwQ==</latexit>

→ 2J.

<latexit sha1_base64="sx37X7Fyal/LCSWq5iJNKezioTo=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrMPJIYENmh1mYMDu7zsySkA3fYWOhMZb6FX6BnY3f4ixQKHiSSU7OuTf3zPEizpS27S8rs7K6tr6R3cxtbe/s7uX3DxoqjCWhdRLyULY8rChngtY105y2Iklx4HHa9IZXqd8cUalYKO70OKJugPuC+YxgbSS3E2A9IJgnt5PuTTdfsIv2FGiZOHNSKB/Vvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOsl1YkUjTIa4T9uGChxQ5SbT0BN0apQe8kNpntBoqv7eSHCg1DjwzGQaUi16qfif1461f+kmTESxpoLMDvkxRzpEaQOoxyQlmo8NwUQykxWRAZaYaNNTzpTgLH55mTTOi06pWKo5hXIFZsjCMZzAGThwAWW4hirUgcA9PMATPFsj69F6sV5noxlrvnMIf2C9/wDAMZXO</latexit>

RJ

These	are	exactly	the	probability	rules	arising	from	GPT	systems	that	carry	
a	representaPon	of	SO(2)	where	the	“block	of	highest	charge”	is

<latexit sha1_base64="G2PEqH+D1FrAHRC09znPlNB9Xbc="></latexit>(
cos(2Jω) → sin(2Jω)
sin(2Jω) cos(2Jω)

)
.

RotaPon	boxes
<latexit sha1_base64="sx37X7Fyal/LCSWq5iJNKezioTo=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrMPJIYENmh1mYMDu7zsySkA3fYWOhMZb6FX6BnY3f4ixQKHiSSU7OuTf3zPEizpS27S8rs7K6tr6R3cxtbe/s7uX3DxoqjCWhdRLyULY8rChngtY105y2Iklx4HHa9IZXqd8cUalYKO70OKJugPuC+YxgbSS3E2A9IJgnt5PuTTdfsIv2FGiZOHNSKB/Vvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOsl1YkUjTIa4T9uGChxQ5SbT0BN0apQe8kNpntBoqv7eSHCg1DjwzGQaUi16qfif1461f+kmTESxpoLMDvkxRzpEaQOoxyQlmo8NwUQykxWRAZaYaNNTzpTgLH55mTTOi06pWKo5hXIFZsjCMZzAGThwAWW4hirUgcA9PMATPFsj69F6sV5noxlrvnMIf2C9/wDAMZXO</latexit>

RJ



5

Note that we do not allow the system to start out entan-
gled with another system that is involved in the task. In
particular, we are not considering the situation that we
keep half of an entangled state and send the other half
to the referee that performs the rotation. We leave an
analysis of this more general situation for future work.

Now suppose that we drop the assumption that quan-
tum theory applies to the scenario. What if we use a
spin-3/2 system for sensing that is not described by quan-
tum physics? In the following sections, we will discuss in
detail how such generalized “rotation boxes” can be un-
derstood, by considering arbitrary state spaces on which
SO(2) acts. In summary, a generalized spin-3/2 corre-
lation (an element of what we denote by R3/2) will be
any probability function P (±|ω) that is a trigonometric
polynomial of degree three (as the second line of Eq. (1)),
but without assuming that it comes from a quantum state
and measurement (as in the first line of Eq. (1)).

It turns out that c2 + s3 can take larger values for
such more general spin→3/2 correlations, and we give an
example in Theorem 7. The maximum value turns out
to be 5/8. Thus, when allowing more general spin-3/2
rotation boxes, the maximal success probability is

PR

succ
= max

P→R3/2

ε

n
(c+

2
+ s+

3
) +

1

2
=

1

2
+

3ε

8
√

5 + 2
↑
5

↓ 0.8828.

Hence, general rotation boxes allow us to succeed in this
metrological task with about 3% higher probability.

From a foundational point of view, tasks like the above
can be used to analyze the interplay of quantum theory
with spacetime structure. For example, we will see that
for spins J = 0, 1/2, 1, a gap like the above does not
appear, and quantum theory is thus optimal for metro-
logical tasks like the above. From a more practical per-
spective, the correlation sets RJ are outer approxima-
tion to the quantum setsQJ which have characterizations
in terms of semidefinite program constraints (in mathe-
matics terminology, the RJ are projected spectrahedra).
This allows us to optimize linear functionals (such as
the quantity c2 + s3 above) over RJ in a computation-
ally e!cient way, yielding useful bounds on the possible
quantum correlations that are achievable in these scenar-
ios. We will see that general spin-J correlations stand to
quantum spin-J correlations in a similar relation as “al-
most quantum” Bell correlations stand to quantum Bell
correlations [25].

In the following section, we will introduce the notions
of rotation boxes and spin-J correlation functions in a
conceptually and mathematically rigorous way, corrobo-
rating the above analysis.

III. ROTATION BOXES FRAMEWORK

In DI approaches, one often considers quantum net-
works (such as Bell scenarios) where several black boxes

FIG. 3. Boxes, rotation boxes, and the di!erent ways to think
about their physical realization. See the main text for details.

are wired together. As sketched in Figure 3a, a black box
of this kind is typically thought of accepting an abstract
input x (for example, a bit, x ↔ {0, 1}) and yielding an
abstract output (for example, a ↔ {→1,+1}). In QT,
this could describe a measurement, where x denotes the
choice of measurement and a its outcome.
In this paper, we consider boxes whose input is given

by a spatial rotation around a fixed axis. The input is
therefore an angle 0 ↗ ω < 2ε. However, we do not just
aim at describing generic boxes that accept continuous
inputs. The intuition is not that we input a classical de-
scription of ω into the box (say, written on a piece of pa-
per or typed on a keyboard), but rather that we physically
rotate the box in space (Figure 3b). That is, we assume
that we have a notion of a physical rotation that we can
apply to the box, and that this notion is a clear primitive
of spatiotemporal physics. This is comparable to a Bell
experiment, where we believe that we understand, in a
theory-independent way, what it means to “spatially sep-
arate two boxes” (say, to transport one of them far away),
such that the assumption that no information can travel
faster than light enforces the no-signalling condition.
To unpack this idea further, we have to be more spe-

cific. A more detailed way to describe black boxes is
in terms of a prepare-and-measure scenario: we have a
preparation device which generates a physical system in
some state, and a measurement device that subsequently
receives the physical system and generates a classical out-
come. The input x is thought of being supplied to the
preparation device such that the resulting state can de-
pend on x. Here, instead, we think of a physical operation
being applied to the preparation device:
The input to the rotation box consists of rotating the

preparation device by angle ω around a fixed axis, relative
to the measurement device, see Figure 3c.
Assuming that physics is covariant under rotations

about this fixed axis leads to a representation of the

RotaPon	boxes
<latexit sha1_base64="sx37X7Fyal/LCSWq5iJNKezioTo=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrMPJIYENmh1mYMDu7zsySkA3fYWOhMZb6FX6BnY3f4ixQKHiSSU7OuTf3zPEizpS27S8rs7K6tr6R3cxtbe/s7uX3DxoqjCWhdRLyULY8rChngtY105y2Iklx4HHa9IZXqd8cUalYKO70OKJugPuC+YxgbSS3E2A9IJgnt5PuTTdfsIv2FGiZOHNSKB/Vvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOsl1YkUjTIa4T9uGChxQ5SbT0BN0apQe8kNpntBoqv7eSHCg1DjwzGQaUi16qfif1461f+kmTESxpoLMDvkxRzpEaQOoxyQlmo8NwUQykxWRAZaYaNNTzpTgLH55mTTOi06pWKo5hXIFZsjCMZzAGThwAWW4hirUgcA9PMATPFsj69F6sV5noxlrvnMIf2C9/wDAMZXO</latexit>

RJ

<latexit sha1_base64="5bCyd0gYv8CeZMXZW/avxKBuZUk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gPaUDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4dua3n5g2XMkHnCQsiMlQ8ohTglZq9XDEkPTLFa/qzeGuEj8nFcjR6Je/egNF05hJpIIY0/W9BIOMaORUsGmplxqWEDomQ9a1VJKYmSCbXzt1z6wycCOlbUl05+rviYzExkzi0HbGBEdm2ZuJ/3ndFKPrIOMySZFJulgUpcJF5c5edwdcM4piYgmhmttbXToimlC0AZVsCP7yy6ukdVH1a9Xa/WWlfpPHUYQTOIVz8OEK6nAHDWgChUd4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/p4mPMw==</latexit>

ω



Quantum	spin-J	boxes
<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ



Quantum	spin-J	boxes

Finite-dimensional	Hilbert	space	with	a	projecPve	rep.	of	SO(2).	Can	
always	be	brought	into	the	form

<latexit sha1_base64="UNon/TQyV/hdP2NtQYpUYIpIyIw="></latexit>

Uω =
⊕J

j=→J Inje
ijω.

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ



Quantum	spin-J	boxes

Finite-dimensional	Hilbert	space	with	a	projecPve	rep.	of	SO(2).	Can	
always	be	brought	into	the	form

<latexit sha1_base64="UNon/TQyV/hdP2NtQYpUYIpIyIw="></latexit>

Uω =
⊕J

j=→J Inje
ijω.

Defini=on.	The	quantum	spin-J	correlaPons									are	the	set	of	funcPons
<latexit sha1_base64="h0nolecwghxiXGmGCbgtozpyrLc="></latexit>

P (+1|ω) = tr(UωεU †
ωE),

where					is	some	quantum	state,							some	POVM	element,		and	
is	a	projecPve	representaPon	of	SO(2)	of	the	form	above.

<latexit sha1_base64="iOfP7GiW5/PC3/iuUcbqgMJ4kKk=">AAAB63icbZDLSgMxFIbPeK31VnWpSLAIrsqMi+qy6MZlC/YC7VAyaaYNTTJDkhHK0KVbNy4Uces79Dnc+Qy+hJm2C239IfDx/+eQc04Qc6aN6345K6tr6xubua389s7u3n7h4LCho0QRWicRj1QrwJpyJmndMMNpK1YUi4DTZjC8zfLmA1WaRfLejGLqC9yXLGQEm8zqqEHULRTdkjsVWgZvDsXKyaT2/Xg6qXYLn51eRBJBpSEca9323Nj4KVaGEU7H+U6iaYzJEPdp26LEgmo/nc46RufW6aEwUvZJg6bu744UC61HIrCVApuBXswy87+snZjw2k+ZjBNDJZl9FCYcmQhli6MeU5QYPrKAiWJ2VkQGWGFi7Hny9gje4srL0LgseeVSueYVKzcwUw6O4QwuwIMrqMAdVKEOBAbwBC/w6gjn2Xlz3melK8685wj+yPn4ARCNkfo=</latexit>ω
<latexit sha1_base64="ks7oYPd+iKNOUT7a+XCt22vk4Q4=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZD9GLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUDspuMVCseLmS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APxWkBI=</latexit>

E
<latexit sha1_base64="syhsEl6dniNMd7VC9sd7XtZSv44=">AAAB73icbZC7SgNBFIbPeo3xFhVsbAaDYBV2LaJliI1lAm4SSJZwdjKbDJm9ODMrhCUvYWOhiK2Fb+ET2Nn4LE4uhSb+MPDx/+cw5xw/EVxp2/6yVlbX1jc2c1v57Z3dvf3CwWFDxamkzKWxiGXLR8UEj5iruRaslUiGoS9Y0x9eT/LmPZOKx9GtHiXMC7Ef8YBT1MZqud0OimSA3ULRLtlTkWVw5lCsHNe/+Xv1o9YtfHZ6MU1DFmkqUKm2Yyfay1BqTgUb5zupYgnSIfZZ22CEIVNeNp13TM6M0yNBLM2LNJm6vzsyDJUahb6pDFEP1GI2Mf/L2qkOrryMR0mqWURnHwWpIDomk+VJj0tGtRgZQCq5mZXQAUqk2pwob47gLK68DI2LklMuletOsVKFmXJwAqdwDg5cQgVuoAYuUBDwAE/wbN1Zj9aL9TorXbHmPUfwR9bbD81Vk4k=</latexit>

Uω

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ



Quantum	spin-J	boxes

Finite-dimensional	Hilbert	space	with	a	projecPve	rep.	of	SO(2).	Can	
always	be	brought	into	the	form

<latexit sha1_base64="UNon/TQyV/hdP2NtQYpUYIpIyIw="></latexit>

Uω =
⊕J

j=→J Inje
ijω.

Defini=on.	The	quantum	spin-J	correlaPons									are	the	set	of	funcPons
<latexit sha1_base64="h0nolecwghxiXGmGCbgtozpyrLc="></latexit>

P (+1|ω) = tr(UωεU †
ωE),

where					is	some	quantum	state,							some	POVM	element,		and	
is	a	projecPve	representaPon	of	SO(2)	of	the	form	above.

<latexit sha1_base64="iOfP7GiW5/PC3/iuUcbqgMJ4kKk=">AAAB63icbZDLSgMxFIbPeK31VnWpSLAIrsqMi+qy6MZlC/YC7VAyaaYNTTJDkhHK0KVbNy4Uces79Dnc+Qy+hJm2C239IfDx/+eQc04Qc6aN6345K6tr6xubua389s7u3n7h4LCho0QRWicRj1QrwJpyJmndMMNpK1YUi4DTZjC8zfLmA1WaRfLejGLqC9yXLGQEm8zqqEHULRTdkjsVWgZvDsXKyaT2/Xg6qXYLn51eRBJBpSEca9323Nj4KVaGEU7H+U6iaYzJEPdp26LEgmo/nc46RufW6aEwUvZJg6bu744UC61HIrCVApuBXswy87+snZjw2k+ZjBNDJZl9FCYcmQhli6MeU5QYPrKAiWJ2VkQGWGFi7Hny9gje4srL0LgseeVSueYVKzcwUw6O4QwuwIMrqMAdVKEOBAbwBC/w6gjn2Xlz3melK8685wj+yPn4ARCNkfo=</latexit>ω
<latexit sha1_base64="ks7oYPd+iKNOUT7a+XCt22vk4Q4=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZD9GLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUDspuMVCseLmS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APxWkBI=</latexit>

E
<latexit sha1_base64="syhsEl6dniNMd7VC9sd7XtZSv44=">AAAB73icbZC7SgNBFIbPeo3xFhVsbAaDYBV2LaJliI1lAm4SSJZwdjKbDJm9ODMrhCUvYWOhiK2Fb+ET2Nn4LE4uhSb+MPDx/+cw5xw/EVxp2/6yVlbX1jc2c1v57Z3dvf3CwWFDxamkzKWxiGXLR8UEj5iruRaslUiGoS9Y0x9eT/LmPZOKx9GtHiXMC7Ef8YBT1MZqud0OimSA3ULRLtlTkWVw5lCsHNe/+Xv1o9YtfHZ6MU1DFmkqUKm2Yyfay1BqTgUb5zupYgnSIfZZ22CEIVNeNp13TM6M0yNBLM2LNJm6vzsyDJUahb6pDFEP1GI2Mf/L2qkOrryMR0mqWURnHwWpIDomk+VJj0tGtRgZQCq5mZXQAUqk2pwob47gLK68DI2LklMuletOsVKFmXJwAqdwDg5cQgVuoAYuUBDwAE/wbN1Zj9aL9TorXbHmPUfwR9bbD81Vk4k=</latexit>

Uω

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ

The	sets										are	convex	and	compact,	and	they	saPsfy	
(i.e.	each	funcPon																																															is	a	trig.	poly	of	degree												).

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ
<latexit sha1_base64="mb2HdvUWlR1r/kvbHrZU3ochv+E=">AAACDXicbZDLSsNAFIYnXmu9RV26GayCq5KIVJdFN+KqFXuBJpTJ9KQdOrk4MxFK6Au48VXcuFDErXt3vo2TNoi2/jDw851zmHN+L+ZMKsv6MhYWl5ZXVgtrxfWNza1tc2e3KaNEUGjQiEei7REJnIXQUExxaMcCSOBxaHnDy6zeugchWRTeqlEMbkD6IfMZJUqjrnnoBEQNKOFpfdy9dmTiSVBwh3/wjcZds2SVrYnwvLFzU0K5al3z0+lFNAkgVJQTKTu2FSs3JUIxymFcdBIJMaFD0oeOtiEJQLrp5JoxPtKkh/1I6BcqPKG/J1ISSDkKPN2ZLSlnaxn8r9ZJlH/upiyMEwUhnX7kJxyrCGfR4B4TQBUfaUOoYHpXTAdEEKp0gEUdgj178rxpnpTtSrlSPy1VL/I4CmgfHaBjZKMzVEVXqIYaiKIH9IRe0KvxaDwbb8b7tHXByGf20B8ZH99I/ZxX</latexit>

QJ → RJ
<latexit sha1_base64="9i7lYeibI95+Kq4mMEliP9aN/Yo=">AAACE3icbVDLSsNAFJ3UV62vqEs3wSJUhZKIVJdFN+KqBfuAJoSb6bQdOpmEmYlQYv/Bjb/ixoUibt2482+ctF1o64GBwzn3MvecIGZUKtv+NnJLyyura/n1wsbm1vaOubvXlFEiMGngiEWiHYAkjHLSUFQx0o4FgTBgpBUMrzO/dU+EpBG/U6OYeCH0Oe1RDEpLvnniAosH4IYQSxVZtdKp8zCVjl3KtawGGFhaH/u3vlm0y/YE1iJxZqSIZqj55pfbjXASEq4wAyk7jh0rLwWhKGZkXHATSWLAQ+iTjqYcQiK9dJJpbB1ppWv1IqEfV9ZE/b2RQijlKAz0ZHaknPcy8T+vk6jepZdSHieKcDz9qJcwS6fPCrK6VBCs2EgTwILqWy08AAFY6RoLugRnPvIiaZ6VnUq5Uj8vVq9mdeTRATpEJeSgC1RFN6iGGgijR/SMXtGb8WS8GO/Gx3Q0Z8x29tEfGJ8/mI6eAg==</latexit>

ω →↑ P (+1|ω) ↓ QJ
<latexit sha1_base64="120ViAnG5XrqM393dJO2UT0Z2KI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKewGiR6DXsRTBPOAZAmzk95kyOzsOjMrhJCP8OJBEa9+jzf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5YMYJ+hEdSB5yRo2VWl2Bj6Ry1yuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+7pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrzyJ1wmqUHJFovCVBATk9nvpM8VMiPGllCmuL2VsCFVlBmbUMGG4C2/vEqalbJXLVfvL0q16yyOPJzAKZyDB5dQg1uoQwMYjOAZXuHNSZwX5935WLTmnGzmGP7A+fwBeSKPBQ==</latexit>→ 2J



Quantum	spin-J	boxes

Finite-dimensional	Hilbert	space	with	a	projecPve	rep.	of	SO(2).	Can	
always	be	brought	into	the	form

<latexit sha1_base64="UNon/TQyV/hdP2NtQYpUYIpIyIw="></latexit>

Uω =
⊕J

j=→J Inje
ijω.

Defini=on.	The	quantum	spin-J	correlaPons									are	the	set	of	funcPons
<latexit sha1_base64="h0nolecwghxiXGmGCbgtozpyrLc="></latexit>

P (+1|ω) = tr(UωεU †
ωE),

where					is	some	quantum	state,							some	POVM	element,		and	
is	a	projecPve	representaPon	of	SO(2)	of	the	form	above.

<latexit sha1_base64="iOfP7GiW5/PC3/iuUcbqgMJ4kKk=">AAAB63icbZDLSgMxFIbPeK31VnWpSLAIrsqMi+qy6MZlC/YC7VAyaaYNTTJDkhHK0KVbNy4Uces79Dnc+Qy+hJm2C239IfDx/+eQc04Qc6aN6345K6tr6xubua389s7u3n7h4LCho0QRWicRj1QrwJpyJmndMMNpK1YUi4DTZjC8zfLmA1WaRfLejGLqC9yXLGQEm8zqqEHULRTdkjsVWgZvDsXKyaT2/Xg6qXYLn51eRBJBpSEca9323Nj4KVaGEU7H+U6iaYzJEPdp26LEgmo/nc46RufW6aEwUvZJg6bu744UC61HIrCVApuBXswy87+snZjw2k+ZjBNDJZl9FCYcmQhli6MeU5QYPrKAiWJ2VkQGWGFi7Hny9gje4srL0LgseeVSueYVKzcwUw6O4QwuwIMrqMAdVKEOBAbwBC/w6gjn2Xlz3melK8685wj+yPn4ARCNkfo=</latexit>ω
<latexit sha1_base64="ks7oYPd+iKNOUT7a+XCt22vk4Q4=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZD9GLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUDspuMVCseLmS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APxWkBI=</latexit>

E
<latexit sha1_base64="syhsEl6dniNMd7VC9sd7XtZSv44=">AAAB73icbZC7SgNBFIbPeo3xFhVsbAaDYBV2LaJliI1lAm4SSJZwdjKbDJm9ODMrhCUvYWOhiK2Fb+ET2Nn4LE4uhSb+MPDx/+cw5xw/EVxp2/6yVlbX1jc2c1v57Z3dvf3CwWFDxamkzKWxiGXLR8UEj5iruRaslUiGoS9Y0x9eT/LmPZOKx9GtHiXMC7Ef8YBT1MZqud0OimSA3ULRLtlTkWVw5lCsHNe/+Xv1o9YtfHZ6MU1DFmkqUKm2Yyfay1BqTgUb5zupYgnSIfZZ22CEIVNeNp13TM6M0yNBLM2LNJm6vzsyDJUahb6pDFEP1GI2Mf/L2qkOrryMR0mqWURnHwWpIDomk+VJj0tGtRgZQCq5mZXQAUqk2pwob47gLK68DI2LklMuletOsVKFmXJwAqdwDg5cQgVuoAYuUBDwAE/wbN1Zj9aL9TorXbHmPUfwR9bbD81Vk4k=</latexit>

Uω

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ

The	sets										are	convex	and	compact,	and	they	saPsfy	
(i.e.	each	funcPon																																															is	a	trig.	poly	of	degree												).

<latexit sha1_base64="rv8R0bvn8w2027nij/kEkeUIFR0=">AAAB9HicbVC7TgJBFL2LL8QXamJjM5GYWJFdC7Qk2BgrSOSRwIbMDrMwYXZ2mZklIRu+w8ZCYyz1K/wCOxu/xVmgUPAkk5ycc2/umeNFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q1vUr85plKxUNzrSUTdAPcF8xnB2khuJ8B6QDBPatPuXTdfsIv2DGiVOAtSKJ/Uvtlb5aPazX92eiGJAyo04ViptmNH2k2w1IxwOs11YkUjTIa4T9uGChxQ5Saz0FN0bpQe8kNpntBopv7eSHCg1CTwzGQaUi17qfif1461f+0mTESxpoLMD/kxRzpEaQOoxyQlmk8MwUQykxWRAZaYaNNTzpTgLH95lTQui06pWKo5hXIF5sjCKZzBBThwBWW4hSrUgcAIHuAJnq2x9Wi9WK/z0Yy12DmGP7DefwC+qpXN</latexit>

QJ
<latexit sha1_base64="mb2HdvUWlR1r/kvbHrZU3ochv+E=">AAACDXicbZDLSsNAFIYnXmu9RV26GayCq5KIVJdFN+KqFXuBJpTJ9KQdOrk4MxFK6Au48VXcuFDErXt3vo2TNoi2/jDw851zmHN+L+ZMKsv6MhYWl5ZXVgtrxfWNza1tc2e3KaNEUGjQiEei7REJnIXQUExxaMcCSOBxaHnDy6zeugchWRTeqlEMbkD6IfMZJUqjrnnoBEQNKOFpfdy9dmTiSVBwh3/wjcZds2SVrYnwvLFzU0K5al3z0+lFNAkgVJQTKTu2FSs3JUIxymFcdBIJMaFD0oeOtiEJQLrp5JoxPtKkh/1I6BcqPKG/J1ISSDkKPN2ZLSlnaxn8r9ZJlH/upiyMEwUhnX7kJxyrCGfR4B4TQBUfaUOoYHpXTAdEEKp0gEUdgj178rxpnpTtSrlSPy1VL/I4CmgfHaBjZKMzVEVXqIYaiKIH9IRe0KvxaDwbb8b7tHXByGf20B8ZH99I/ZxX</latexit>

QJ → RJ
<latexit sha1_base64="9i7lYeibI95+Kq4mMEliP9aN/Yo=">AAACE3icbVDLSsNAFJ3UV62vqEs3wSJUhZKIVJdFN+KqBfuAJoSb6bQdOpmEmYlQYv/Bjb/ixoUibt2482+ctF1o64GBwzn3MvecIGZUKtv+NnJLyyura/n1wsbm1vaOubvXlFEiMGngiEWiHYAkjHLSUFQx0o4FgTBgpBUMrzO/dU+EpBG/U6OYeCH0Oe1RDEpLvnniAosH4IYQSxVZtdKp8zCVjl3KtawGGFhaH/u3vlm0y/YE1iJxZqSIZqj55pfbjXASEq4wAyk7jh0rLwWhKGZkXHATSWLAQ+iTjqYcQiK9dJJpbB1ppWv1IqEfV9ZE/b2RQijlKAz0ZHaknPcy8T+vk6jepZdSHieKcDz9qJcwS6fPCrK6VBCs2EgTwILqWy08AAFY6RoLugRnPvIiaZ6VnUq5Uj8vVq9mdeTRATpEJeSgC1RFN6iGGgijR/SMXtGb8WS8GO/Gx3Q0Z8x29tEfGJ8/mI6eAg==</latexit>

ω →↑ P (+1|ω) ↓ QJ
<latexit sha1_base64="120ViAnG5XrqM393dJO2UT0Z2KI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKewGiR6DXsRTBPOAZAmzk95kyOzsOjMrhJCP8OJBEa9+jzf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5YMYJ+hEdSB5yRo2VWl2Bj6Ry1yuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+7pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrzyJ1wmqUHJFovCVBATk9nvpM8VMiPGllCmuL2VsCFVlBmbUMGG4C2/vEqalbJXLVfvL0q16yyOPJzAKZyDB5dQg1uoQwMYjOAZXuHNSZwX5935WLTmnGzmGP7A+fwBeSKPBQ==</latexit>→ 2J

<latexit sha1_base64="wfahYeYAtTYFZ1CydhVu0ea9tQU="></latexit>

Lemma. For every P → QJ , there is a pure state |ω↑ → C2J+1

and a POVM {Eb}b→{+1,↑1} such that P (b|ε) = ↓ω|U†
ωEbUω|ω↑,

where Uω := exp(iεZ), Z + diag(J, J ↔ 1, . . . ,↔J).



Quantum	vs.	general	rotaPon	boxes



• DefiniPon	of	quantum	spin-J	boxes:
<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg=">AAACWXicbVFda9swFJW9tcuyr2x93ItoGGRkBLvsi0Eg0JfSp64sbSHKzLUiJ0plWUjXg+D5T+5hMPpX+jAlMaVrd0BwOOdcrnSUGiUdRtGfIHzwcGf3Uetx+8nTZ89fdF6+OnNFabkY80IV9iIFJ5TUYowSlbgwVkCeKnGeXh6u/fMfwjpZ6G+4MmKaw1zLTHJALyUdw3LABQdVndbJ8ZchUyJDVjFQZgHeMw4Lanr9+OdWejvkSdRnrsyTajmM6+/VwXFNebKkjBeut2xSfZcsmZP6RmBWzhfI6ndJpxsNog3ofRI3pEsanCSdX2xW8DIXGrkC5yZxZHBagUXJlajbrHTCAL+EuZh4qiEXblptmqnpG6/MaFZYfzTSjXp7ooLcuVWe+uS6B3fXW4v/8yYlZp+nldSmRKH5dlFWKurbWtdMZ9IKjmrlCXAr/V0pX4AFjv4z2r6E+O6T75Ozg0H8cfDh6/vuaNTU0SKvyT7pkZh8IiNyRE7ImHDym1wHO8FucBUGYStsb6Nh0MzskX8Q7v0F7Ciz4w==</latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg=">AAACWXicbVFda9swFJW9tcuyr2x93ItoGGRkBLvsi0Eg0JfSp64sbSHKzLUiJ0plWUjXg+D5T+5hMPpX+jAlMaVrd0BwOOdcrnSUGiUdRtGfIHzwcGf3Uetx+8nTZ89fdF6+OnNFabkY80IV9iIFJ5TUYowSlbgwVkCeKnGeXh6u/fMfwjpZ6G+4MmKaw1zLTHJALyUdw3LABQdVndbJ8ZchUyJDVjFQZgHeMw4Lanr9+OdWejvkSdRnrsyTajmM6+/VwXFNebKkjBeut2xSfZcsmZP6RmBWzhfI6ndJpxsNog3ofRI3pEsanCSdX2xW8DIXGrkC5yZxZHBagUXJlajbrHTCAL+EuZh4qiEXblptmqnpG6/MaFZYfzTSjXp7ooLcuVWe+uS6B3fXW4v/8yYlZp+nldSmRKH5dlFWKurbWtdMZ9IKjmrlCXAr/V0pX4AFjv4z2r6E+O6T75Ozg0H8cfDh6/vuaNTU0SKvyT7pkZh8IiNyRE7ImHDym1wHO8FucBUGYStsb6Nh0MzskX8Q7v0F7Ciz4w==</latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

Clearly
<latexit sha1_base64="PxUuyPxlrZhSgK3uW+jyX9NnaGk=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCqJeFsW3IirVuwF2hAm09N26GQSZyZCCX0CN76KGxeKuHXtzrdx0hbR1h8Gfr5zDnPOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3GipKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXmb15j1IxSJxq0cxeCHpC9ZjlGiDfLvUCYkeUMLT2ti/7qgkUKDhDv/gG4PLvl10ys5EeNG4M1NEM1V9+7PTjWgSgtCUE6XarhNrLyVSM8phXOgkCmJCh6QPbWMFCUF56eScMS4Z0sW9SJonNJ7Q3xMpCZUahYHpzLZU87UM/ldrJ7p34aVMxIkGQacf9RKOdYSzbHCXSaCaj4whVDKzK6YDIgnVJsGCCcGdP3nRNI7L7ln5tHZSrFRmceTRATpER8hF56iCrlAV1RFFD+gJvaBX69F6tt6s92lrzprN7KM/sj6+AcFLnIw=</latexit>

QJ ✓ RJ .

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg="></latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

Clearly
<latexit sha1_base64="PxUuyPxlrZhSgK3uW+jyX9NnaGk=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCqJeFsW3IirVuwF2hAm09N26GQSZyZCCX0CN76KGxeKuHXtzrdx0hbR1h8Gfr5zDnPOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3GipKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXmb15j1IxSJxq0cxeCHpC9ZjlGiDfLvUCYkeUMLT2ti/7qgkUKDhDv/gG4PLvl10ys5EeNG4M1NEM1V9+7PTjWgSgtCUE6XarhNrLyVSM8phXOgkCmJCh6QPbWMFCUF56eScMS4Z0sW9SJonNJ7Q3xMpCZUahYHpzLZU87UM/ldrJ7p34aVMxIkGQacf9RKOdYSzbHCXSaCaj4whVDKzK6YDIgnVJsGCCcGdP3nRNI7L7ln5tHZSrFRmceTRATpER8hF56iCrlAV1RFFD+gJvaBX69F6tt6s92lrzprN7KM/sj6+AcFLnIw=</latexit>

QJ ✓ RJ .

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

For																	we	obtain	the	constant	probability	funcPons:
<latexit sha1_base64="Fw/DeGUwcLzVWtRtgUKDfHDHI6g=">AAAB63icbVC7SgNBFL0bXzG+opaKDAbBQsKuRbQRgjZilYB5QLKE2clsMmR2dpmZFcKS0tbGQhFb/yHfYec3+BPOJik08cCFwzn3cu89XsSZ0rb9ZWWWlldW17LruY3Nre2d/O5eXYWxJLRGQh7KpocV5UzQmmaa02YkKQ48Thve4Cb1Gw9UKhaKez2MqBvgnmA+I1in0t2VfdbJF+yiPQFaJM6MFMqH4+r349G40sl/trshiQMqNOFYqZZjR9pNsNSMcDrKtWNFI0wGuEdbhgocUOUmk1tH6MQoXeSH0pTQaKL+nkhwoNQw8ExngHVfzXup+J/XirV/6SZMRLGmgkwX+TFHOkTp46jLJCWaDw3BRDJzKyJ9LDHRJp6cCcGZf3mR1M+LTqlYqpo0rmGKLBzAMZyCAxdQhluoQA0I9OEJXuDVCqxn6816n7ZmrNnMPvyB9fED6T+RNw==</latexit>

J = 0,
<latexit sha1_base64="5+3yhggljp9Cn2dQun2GjSZhYsQ="></latexit>

Q0 = R0 = {P (+1|ω) = c | 0 → c → 1}.

Quantum	vs.	general	rotaPon	boxes



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg="></latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

Clearly
<latexit sha1_base64="PxUuyPxlrZhSgK3uW+jyX9NnaGk=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCqJeFsW3IirVuwF2hAm09N26GQSZyZCCX0CN76KGxeKuHXtzrdx0hbR1h8Gfr5zDnPOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3GipKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXmb15j1IxSJxq0cxeCHpC9ZjlGiDfLvUCYkeUMLT2ti/7qgkUKDhDv/gG4PLvl10ys5EeNG4M1NEM1V9+7PTjWgSgtCUE6XarhNrLyVSM8phXOgkCmJCh6QPbWMFCUF56eScMS4Z0sW9SJonNJ7Q3xMpCZUahYHpzLZU87UM/ldrJ7p34aVMxIkGQacf9RKOdYSzbHCXSaCaj4whVDKzK6YDIgnVJsGCCcGdP3nRNI7L7ln5tHZSrFRmceTRATpER8hF56iCrlAV1RFFD+gJvaBX69F6tt6s92lrzprN7KM/sj6+AcFLnIw=</latexit>

QJ ✓ RJ .

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes

<latexit sha1_base64="ShG2kwR3vt8qSOmKZMku0FtCC+s=">AAACBHicbVC7SgNBFL0bXzG+VgWbNINBsAq7FtFGCLGxTMQ8IFmW2clsMmT2wcysEJYUNv6KjYIitlZ+gZ2N3+LkgWjigYFzz7mXufd4MWdSWdankVlaXlldy67nNja3tnfM3b2GjBJBaJ1EPBItD0vKWUjriilOW7GgOPA4bXqDi7HfvKFCsii8VsOYOgHuhcxnBCstuWa+E2DVJ5intZFrnf9UV7pyzYJVtCZAi8SekUL5oPbFHivvVdf86HQjkgQ0VIRjKdu2FSsnxUIxwuko10kkjTEZ4B5taxrigEonnRwxQkda6SI/EvqFCk3U3xMpDqQcBp7uHC8p572x+J/XTpR/5qQsjBNFQzL9yE84UhEaJ4K6TFCi+FATTATTuyLSxwITpXPL6RDs+ZMXSeOkaJeKpZpOowJTZCEPh3AMNpxCGS6hCnUgcAv38ATPxp3xYLwYr9PWjDGb2Yc/MN6+AYe6m7s=</latexit>

Q0 = R0



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg="></latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

Clearly
<latexit sha1_base64="PxUuyPxlrZhSgK3uW+jyX9NnaGk=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCqJeFsW3IirVuwF2hAm09N26GQSZyZCCX0CN76KGxeKuHXtzrdx0hbR1h8Gfr5zDnPOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3GipKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXmb15j1IxSJxq0cxeCHpC9ZjlGiDfLvUCYkeUMLT2ti/7qgkUKDhDv/gG4PLvl10ys5EeNG4M1NEM1V9+7PTjWgSgtCUE6XarhNrLyVSM8phXOgkCmJCh6QPbWMFCUF56eScMS4Z0sW9SJonNJ7Q3xMpCZUahYHpzLZU87UM/ldrJ7p34aVMxIkGQacf9RKOdYSzbHCXSaCaj4whVDKzK6YDIgnVJsGCCcGdP3nRNI7L7ln5tHZSrFRmceTRATpER8hF56iCrlAV1RFFD+gJvaBX69F6tt6s92lrzprN7KM/sj6+AcFLnIw=</latexit>

QJ ✓ RJ .

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes

<latexit sha1_base64="ShG2kwR3vt8qSOmKZMku0FtCC+s=">AAACBHicbVC7SgNBFL0bXzG+VgWbNINBsAq7FtFGCLGxTMQ8IFmW2clsMmT2wcysEJYUNv6KjYIitlZ+gZ2N3+LkgWjigYFzz7mXufd4MWdSWdankVlaXlldy67nNja3tnfM3b2GjBJBaJ1EPBItD0vKWUjriilOW7GgOPA4bXqDi7HfvKFCsii8VsOYOgHuhcxnBCstuWa+E2DVJ5intZFrnf9UV7pyzYJVtCZAi8SekUL5oPbFHivvVdf86HQjkgQ0VIRjKdu2FSsnxUIxwuko10kkjTEZ4B5taxrigEonnRwxQkda6SI/EvqFCk3U3xMpDqQcBp7uHC8p572x+J/XTpR/5qQsjBNFQzL9yE84UhEaJ4K6TFCi+FATTATTuyLSxwITpXPL6RDs+ZMXSeOkaJeKpZpOowJTZCEPh3AMNpxCGS6hCnUgcAv38ATPxp3xYLwYr9PWjDGb2Yc/MN6+AYe6m7s=</latexit>

Q0 = R0

For															all	rotaPon	boxes	can	be	realized	
on	a	qubit,	hence

<latexit sha1_base64="SbFuepeQ6jvM8Dv/Y2qYUFsXtH4=">AAACDXicbZA9S8NAGMcv9a3Wt6ijS7AKOliTDtVFKOrg2Ip9gTaEy/XSHr1cwt1FKCFfwMXP4ebioIirk4ub4Ndw99IW0dY/HPz5Pc/DPc/fDSkR0jQ/tMzM7Nz8QnYxt7S8srqmr2/URRBxhGsooAFvulBgShiuSSIpboYcQ9+luOH2z9J64xpzQQJ2JQchtn3YZcQjCEqFHH2n7UPZQ5DG1cSJrcNicvJDLsek4Oh5s2AOZUwba2zy5f2vt4Pzz7uKo7+3OwGKfMwkolCIlmWG0o4hlwRRnOTakcAhRH3YxS1lGfSxsOPhNYmxq0jH8AKuHpPGkP6eiKEvxMB3VWe6qZispfC/WiuS3rEdExZGEjM0+siLqCEDI43G6BCOkaQDZSDiRO1qoB7kEEkVYE6FYE2ePG3qxYJVKpSqKo1TMFIWbIFtsAcscATK4AJUQA0gcAPuwSN40m61B+1Zexm1ZrTxzCb4I+31G0p4n3c=</latexit>

Q1/2 = R1/2.

<latexit sha1_base64="Mol43ljq7Qhwec5QbxO+6Qn9tJo=">AAAB83icbVC7SgNBFL0bXzG+ooKNzWBQLCTspog2woKNWEUwD8guYXYymwyZnV1mZoWw5DdsLBSx9UPEzs6f8AdsnDwKjR64cDjnXu69J0g4U9q2P6zcwuLS8kp+tbC2vrG5Vdzeaag4lYTWScxj2QqwopwJWtdMc9pKJMVRwGkzGFyM/eYtlYrF4kYPE+pHuCdYyAjWRvKuzr1QYoIcVDnpFEt22Z4A/SXOjJTcI/L6+fa1V+sU371uTNKICk04Vqrt2In2Myw1I5yOCl6qaILJAPdo21CBI6r8bHLzCB0apYvCWJoSGk3UnxMZjpQaRoHpjLDuq3lvLP7ntVMdnvkZE0mqqSDTRWHKkY7ROADUZZISzYeGYCKZuRWRPjYhaBNTwYTgzL/8lzQqZadarl47JdeFKfKwDwdwDA6cgguXUIM6EEjgDh7g0Uqte+vJep625qzZzC78gvXyDbv5lKI=</latexit>

J = 1
2 ,



• DefiniPon	of	quantum	spin-J	boxes:

• DefiniPon	of	(general)	spin-J	rota=on	boxes:
<latexit sha1_base64="j8SOHjztl+vAMKHOLOjWG86yVrg="></latexit>

RJ :=

8
<

:↵ 7! p(+1|↵) = c0 +
2JX

j=1

cj cos(j↵) + sj sin(j↵)

9
=

; ,

Clearly
<latexit sha1_base64="PxUuyPxlrZhSgK3uW+jyX9NnaGk=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCqJeFsW3IirVuwF2hAm09N26GQSZyZCCX0CN76KGxeKuHXtzrdx0hbR1h8Gfr5zDnPOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3GipKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXmb15j1IxSJxq0cxeCHpC9ZjlGiDfLvUCYkeUMLT2ti/7qgkUKDhDv/gG4PLvl10ys5EeNG4M1NEM1V9+7PTjWgSgtCUE6XarhNrLyVSM8phXOgkCmJCh6QPbWMFCUF56eScMS4Z0sW9SJonNJ7Q3xMpCZUahYHpzLZU87UM/ldrJ7p34aVMxIkGQacf9RKOdYSzbHCXSaCaj4whVDKzK6YDIgnVJsGCCcGdP3nRNI7L7ln5tHZSrFRmceTRATpER8hF56iCrlAV1RFFD+gJvaBX69F6tt6s92lrzprN7KM/sj6+AcFLnIw=</latexit>

QJ ✓ RJ .

<latexit sha1_base64="EdGpPu1TEUWngSfunXHi4KHoWag="></latexit>

QJ :=
�
↵ 7! p(+1|↵) | p(b|↵) = tr(MbU↵⇢U

†
↵)
 
,

Quantum	vs.	general	rotaPon	boxes

8

Theorem 1. Let P → Q
A

J be any quantum spin-J corre-
lation. Then there exists a pure state |ω↑ → C2J+1 and a
POVM {Ea}a→A on C2J+1 such that

P (a|ε) = ↓ω|U†

ωEaUω|ω↑,

where Uω := eiωZ , with Z = diag(J, J↔1, . . . ,↔J). More-
over, we can choose |ω↑ to have real nonnegative entries
in any chosen eigenbasis of Z.

In particular, without loss of generality, we can always
assume that nj = 1 in Eq. (4).

In other words, we can always assume that the SO(2)-
rotation is given by rotations around a fixed axis of a
spin-J particle in the usual sense, i.e. one that is de-
scribed by a spin-J irrep of SU(2). We note that two
di!erent spin-J correlations P (a|ε) and P ↑(a|ε) may re-
quire di!erent orbits Uω |ω↑ and Uω |ω↑

↑ as well as di!er-
ent POVMs to be generated.

The proof is cumbersome and thus deferred to Ap-
pendix B 1. A simple consequence of Theorem 1 is that
the sets Q

A

J are compact: they arise from the com-
pact sets of |A|-outcome POVMs and quantum states
on C2J+1 under a continuous map, mapping the pair
({Ea}, ϑ) to the function ε ↗↘ Tr(UωϑU

†

ωEa). Fur-
thermore, multiplying out the complex exponentials in
Uω = eiωZ shows that these functions are all trigonomet-
ric polynomials of degree at most 2J (as in Lemma 5).
As we show in the appendix, we can say more:

Lemma 2. The correlation sets QA

J are compact convex
subsets of full dimension (|A| ↔ 1)(4J + 1) of the |A|-
tuples of trigonometric polynomials of degree 2J or less
that sum to one.

This lemma is proven in Appendix B 3.
In particular, for A = {+1,↔1}, the set QJ is a com-

pact subset of the trigonometric polynomials of degree at
most 2J , of full dimension 4J + 1.

As a simple example, consider the case of two out-
comes, A = {↔1,+1}, and J = 1/2. Then Q1/2 is a
compact convex set of dimension 3. Its elements are pairs
(P (+|ε), P (↔|ε)). Since P (↔|ε) = 1 ↔ P (+|ε), we need
to specify the functions P (+|ε) only, and can identify
Q1/2 with this set of functions. Every such function is a
trigonometric polynomial of degree one,

P (+|ε) = c0 + c1 cos ε + s1 sin ε,

and we can depict Q1/2 by plotting the possible values of
c0, c1 and s1. The result is shown in Figure 4. Indeed,
as we will show in Subsection IVA, in this simple case,
the only condition for a trigonometric polynomial of de-
gree one to be contained in Q1/2 is that P (+|ε) gives
valid probabilities, i.e. that 0 ≃ P (+|ε) ≃ 1 for all ε.
This simple characterization will, however, break down
for larger values of J , as we will see.

Further, as we prove in the Appendix B 4, the set of
spin-J quantum correlations for any fixed outcome set A
grows with increasing J :

FIG. 4. The binary quantum spin-1/2 correlations Q1/2,
which happens to be the set of trigonometric polynomials
P (+|ω) = c0 + c1 cos ω + s1 sin ω with 0 → P (+|ω) → 1 for
all ω. The two endpoints are the constant zero and one func-
tions, and the other extremal points on the circle correspond
to functions ω ↑↓

1

2
+ 1

2
cos(ω ↔ ε), with ε some fixed angle.

Lemma 3. For all J , we have Q
A

J ⇐ Q
A

J+1/2.

Since dimQ
A

J < dimQ
A

J+1/2, this set inclusion is strict.
In the next section, we will drop the requirement that

the rotation box – or, rather, the corresponding prepare-
and-measure scenario – is described by quantum theory.
In order to do so, we will leave the framework of Hilbert
spaces, and make use of general state spaces that could
describe the scenario. To consider quantum boxes as a
special case of a general scenario of this kind, we have to
slightly reformulate their description: while it is conve-
nient to consider unitary transformations acting on state
vectors, quantum states are actually density matrices,
and the rotations act on them by unitary conjugation,
ϑ ↗↘ UωϑU

†

ω . The following lemma gives a representation-
theoretic characterization of quantum spin-J boxes in
terms of the way that spatial rotations act on the den-
sity matrices. This reformulation will later on allow us to
motivate and derive the generalized definition of rotation
boxes beyond quantum theory.

Lemma 4. Let ε ↗↘ Uω be any finite-dimensional projec-
tive representation of SO(2). Then the following state-
ments are equivalent:

(i) Up to global phases, the representation can be writ-
ten in the form (4) with nJn↓J ⇒= 0, i.e. it is a
representation corresponding to a proper quantum
spin-J rotation box.

(ii) The maximum degree of any trigonometric polyno-
mial ε ↗↘ Tr(UωϑU

†

ωE), where ϑ is any quantum
state and E any POVM element, equals 2J .

(iii) The associated real representation on the density
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Theorem 1. Let P → Q
A

J be any quantum spin-J corre-
lation. Then there exists a pure state |ω↑ → C2J+1 and a
POVM {Ea}a→A on C2J+1 such that

P (a|ε) = ↓ω|U†

ωEaUω|ω↑,

where Uω := eiωZ , with Z = diag(J, J↔1, . . . ,↔J). More-
over, we can choose |ω↑ to have real nonnegative entries
in any chosen eigenbasis of Z.

In particular, without loss of generality, we can always
assume that nj = 1 in Eq. (4).

In other words, we can always assume that the SO(2)-
rotation is given by rotations around a fixed axis of a
spin-J particle in the usual sense, i.e. one that is de-
scribed by a spin-J irrep of SU(2). We note that two
di!erent spin-J correlations P (a|ε) and P ↑(a|ε) may re-
quire di!erent orbits Uω |ω↑ and Uω |ω↑

↑ as well as di!er-
ent POVMs to be generated.

The proof is cumbersome and thus deferred to Ap-
pendix B 1. A simple consequence of Theorem 1 is that
the sets Q

A

J are compact: they arise from the com-
pact sets of |A|-outcome POVMs and quantum states
on C2J+1 under a continuous map, mapping the pair
({Ea}, ϑ) to the function ε ↗↘ Tr(UωϑU

†

ωEa). Fur-
thermore, multiplying out the complex exponentials in
Uω = eiωZ shows that these functions are all trigonomet-
ric polynomials of degree at most 2J (as in Lemma 5).
As we show in the appendix, we can say more:

Lemma 2. The correlation sets QA

J are compact convex
subsets of full dimension (|A| ↔ 1)(4J + 1) of the |A|-
tuples of trigonometric polynomials of degree 2J or less
that sum to one.

This lemma is proven in Appendix B 3.
In particular, for A = {+1,↔1}, the set QJ is a com-

pact subset of the trigonometric polynomials of degree at
most 2J , of full dimension 4J + 1.

As a simple example, consider the case of two out-
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c0, c1 and s1. The result is shown in Figure 4. Indeed,
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gree one to be contained in Q1/2 is that P (+|ε) gives
valid probabilities, i.e. that 0 ≃ P (+|ε) ≃ 1 for all ε.
This simple characterization will, however, break down
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Further, as we prove in the Appendix B 4, the set of
spin-J quantum correlations for any fixed outcome set A
grows with increasing J :

FIG. 4. The binary quantum spin-1/2 correlations Q1/2,
which happens to be the set of trigonometric polynomials
P (+|ω) = c0 + c1 cos ω + s1 sin ω with 0 → P (+|ω) → 1 for
all ω. The two endpoints are the constant zero and one func-
tions, and the other extremal points on the circle correspond
to functions ω ↑↓

1

2
+ 1

2
cos(ω ↔ ε), with ε some fixed angle.

Lemma 3. For all J , we have Q
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In the next section, we will drop the requirement that
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and-measure scenario – is described by quantum theory.
In order to do so, we will leave the framework of Hilbert
spaces, and make use of general state spaces that could
describe the scenario. To consider quantum boxes as a
special case of a general scenario of this kind, we have to
slightly reformulate their description: while it is conve-
nient to consider unitary transformations acting on state
vectors, quantum states are actually density matrices,
and the rotations act on them by unitary conjugation,
ϑ ↗↘ UωϑU

†

ω . The following lemma gives a representation-
theoretic characterization of quantum spin-J boxes in
terms of the way that spatial rotations act on the den-
sity matrices. This reformulation will later on allow us to
motivate and derive the generalized definition of rotation
boxes beyond quantum theory.

Lemma 4. Let ε ↗↘ Uω be any finite-dimensional projec-
tive representation of SO(2). Then the following state-
ments are equivalent:

(i) Up to global phases, the representation can be writ-
ten in the form (4) with nJn↓J ⇒= 0, i.e. it is a
representation corresponding to a proper quantum
spin-J rotation box.

(ii) The maximum degree of any trigonometric polyno-
mial ε ↗↘ Tr(UωϑU

†

ωE), where ϑ is any quantum
state and E any POVM element, equals 2J .

(iii) The associated real representation on the density
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The	spin-1	rotaPon	boxes	are	the	trigonometric	polynomials	with
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0 → c0 + c1 cosω+ s1 sinω+ c2 cos(2ω) + s2 sin(2ω) → 1,
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(c0, c1, s1, c2, s2) → R5.
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FIG. 5. Di!erent perspectives of the set containing the associated trigonometric coe”cients of the face F0 of the binary spin-1
correlations R1, and its extremal points from Lemma 14. The red and yellow lines correspond to the two consecutive extremal
points for F0,ω1 with ω1 → (ε/2, 3ε/2), the pink dot corresponds to the case F0,ε/2 = F0,3ε/2, and the green and cyan dots
correspond to the two consecutive cases for F0,ε.

3. If ω1 →
(
ω
2
, 3ω

2

)
\ {ε}, then F0,ε1 contains exactly

two distinct extremal points,

ϑextF0,ε1 = {P (ω), P̃ (ω)},

where

P (ω) = c(1↑ cos ω)(1↑ cos(ω ↑ ω→
0
)),

P̃ (ω) = 1↑ P (ω1 ↑ ω),

and ω→
0
= 2ω1 for ω1 → (ω

2
,ε) and ω→

0
= 2(ω1 ↑ ε)

for ω1 → (ε, 3ω
2
). The parameter c > 0 is uniquely

determined by the condition maxε P (ω) = 1.

4. If ω1 = ε then the face F0,ω contains exactly two
extremal points, namely

F0,ω = {P (ω), P̃ (ω)},

where

P (ω) = sin4
ω

2
,

P̃ (ω) = 1↑ P (ω1 ↑ ω) =
1

4
(1↑ cos ω)(3 + cos ω).

This lemma is proven in Appendix C 2.
In Figure 5, we plot the face F0 in the coe!cients space,

illustrating the resulting extremal points from Lemma 14.
Note that from the conditions (31) for ω0 = 0, one has
c0 = ↑c1 ↑ c2 and s1 = ↑s2, thus dimF0 = 3.

2. Quantum realizability of R1

Having characterized the facial structure of R1 and its
extremal functions, we now ask if this set of correlations
can be realized by a quantum spin-1 system.

By Theorem 1, the space Q1 of SO(2)-correlations
generated by a quantum spin-1 system is given by the
functions P (+|ω) = ↓ϖ|U †

εE+Uε |ϖ↔, where |ϖ↔ → C3,

E+ a POVM element on C3, and Uε = eiZε with
Z = diag(1, 0,↑1).
It follows immediately from the convexity of R1 and of

Q1 that it is su!cient to show that the extremal points
of R1 are quantumly realizable to show that all the cor-
relations in R1 are quantumly realizable.

Lemma 15. ϱextR1 ↗ Q1 implies R1 = Q1.

This will be used to prove the main result of this sub-
section:

Theorem 6 (Q1 = R1). The correlation set R1 is equal
to Q1.

For the proof, see Appendix C 3. It follows from con-
structing explicit quantum spin-1 realizations of all the
extremal points of R1 which have been enumerated in
Lemma 14.
Although the correlation spaces R1 and Q1 are equal,

the J = 1 general rotation box system R1 (which gener-
ates R1) is not equivalent to a quantum spin-1 system.
This can be seen immediately from the fact that R1 is a
5-dimensional GPT system, while a quantum spin-1 sys-
tem is a 9-dimensional system (since dim(LH(C3)) = 9).
In the next section, we will see that these two

GPT systems, although they generate equivalent SO(2)-
correlations, have distinct informational properties.

3. Inequivalence of spin-1 rotation box system and quantum
system

Every P → R
A

1
can be decomposed in the following

way:
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1
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2
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)
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= ea · ς(ω), (33)
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FIG. 5. Di!erent perspectives of the set containing the associated trigonometric coe”cients of the face F0 of the binary spin-1
correlations R1, and its extremal points from Lemma 14. The red and yellow lines correspond to the two consecutive extremal
points for F0,ω1 with ω1 → (ε/2, 3ε/2), the pink dot corresponds to the case F0,ε/2 = F0,3ε/2, and the green and cyan dots
correspond to the two consecutive cases for F0,ε.

3. If ω1 →
(
ω
2
, 3ω

2

)
\ {ε}, then F0,ε1 contains exactly

two distinct extremal points,

ϑextF0,ε1 = {P (ω), P̃ (ω)},

where

P (ω) = c(1↑ cos ω)(1↑ cos(ω ↑ ω→
0
)),

P̃ (ω) = 1↑ P (ω1 ↑ ω),

and ω→
0
= 2ω1 for ω1 → (ω

2
,ε) and ω→

0
= 2(ω1 ↑ ε)

for ω1 → (ε, 3ω
2
). The parameter c > 0 is uniquely

determined by the condition maxε P (ω) = 1.

4. If ω1 = ε then the face F0,ω contains exactly two
extremal points, namely

F0,ω = {P (ω), P̃ (ω)},

where

P (ω) = sin4
ω

2
,

P̃ (ω) = 1↑ P (ω1 ↑ ω) =
1

4
(1↑ cos ω)(3 + cos ω).

This lemma is proven in Appendix C 2.
In Figure 5, we plot the face F0 in the coe!cients space,

illustrating the resulting extremal points from Lemma 14.
Note that from the conditions (31) for ω0 = 0, one has
c0 = ↑c1 ↑ c2 and s1 = ↑s2, thus dimF0 = 3.

2. Quantum realizability of R1

Having characterized the facial structure of R1 and its
extremal functions, we now ask if this set of correlations
can be realized by a quantum spin-1 system.

By Theorem 1, the space Q1 of SO(2)-correlations
generated by a quantum spin-1 system is given by the
functions P (+|ω) = ↓ϖ|U †

εE+Uε |ϖ↔, where |ϖ↔ → C3,

E+ a POVM element on C3, and Uε = eiZε with
Z = diag(1, 0,↑1).
It follows immediately from the convexity of R1 and of

Q1 that it is su!cient to show that the extremal points
of R1 are quantumly realizable to show that all the cor-
relations in R1 are quantumly realizable.

Lemma 15. ϱextR1 ↗ Q1 implies R1 = Q1.

This will be used to prove the main result of this sub-
section:

Theorem 6 (Q1 = R1). The correlation set R1 is equal
to Q1.

For the proof, see Appendix C 3. It follows from con-
structing explicit quantum spin-1 realizations of all the
extremal points of R1 which have been enumerated in
Lemma 14.
Although the correlation spaces R1 and Q1 are equal,

the J = 1 general rotation box system R1 (which gener-
ates R1) is not equivalent to a quantum spin-1 system.
This can be seen immediately from the fact that R1 is a
5-dimensional GPT system, while a quantum spin-1 sys-
tem is a 9-dimensional system (since dim(LH(C3)) = 9).
In the next section, we will see that these two

GPT systems, although they generate equivalent SO(2)-
correlations, have distinct informational properties.

3. Inequivalence of spin-1 rotation box system and quantum
system

Every P → R
A

1
can be decomposed in the following

way:

P (a|ω) = c(a)
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FIG. 5. Di!erent perspectives of the set containing the associated trigonometric coe”cients of the face F0 of the binary spin-1
correlations R1, and its extremal points from Lemma 14. The red and yellow lines correspond to the two consecutive extremal
points for F0,ω1 with ω1 → (ε/2, 3ε/2), the pink dot corresponds to the case F0,ε/2 = F0,3ε/2, and the green and cyan dots
correspond to the two consecutive cases for F0,ε.

3. If ω1 →
(
ω
2
, 3ω

2

)
\ {ε}, then F0,ε1 contains exactly

two distinct extremal points,

ϑextF0,ε1 = {P (ω), P̃ (ω)},

where

P (ω) = c(1↑ cos ω)(1↑ cos(ω ↑ ω→
0
)),

P̃ (ω) = 1↑ P (ω1 ↑ ω),

and ω→
0
= 2ω1 for ω1 → (ω

2
,ε) and ω→

0
= 2(ω1 ↑ ε)

for ω1 → (ε, 3ω
2
). The parameter c > 0 is uniquely

determined by the condition maxε P (ω) = 1.

4. If ω1 = ε then the face F0,ω contains exactly two
extremal points, namely

F0,ω = {P (ω), P̃ (ω)},

where

P (ω) = sin4
ω

2
,

P̃ (ω) = 1↑ P (ω1 ↑ ω) =
1

4
(1↑ cos ω)(3 + cos ω).

This lemma is proven in Appendix C 2.
In Figure 5, we plot the face F0 in the coe!cients space,

illustrating the resulting extremal points from Lemma 14.
Note that from the conditions (31) for ω0 = 0, one has
c0 = ↑c1 ↑ c2 and s1 = ↑s2, thus dimF0 = 3.

2. Quantum realizability of R1

Having characterized the facial structure of R1 and its
extremal functions, we now ask if this set of correlations
can be realized by a quantum spin-1 system.

By Theorem 1, the space Q1 of SO(2)-correlations
generated by a quantum spin-1 system is given by the
functions P (+|ω) = ↓ϖ|U †

εE+Uε |ϖ↔, where |ϖ↔ → C3,

E+ a POVM element on C3, and Uε = eiZε with
Z = diag(1, 0,↑1).
It follows immediately from the convexity of R1 and of

Q1 that it is su!cient to show that the extremal points
of R1 are quantumly realizable to show that all the cor-
relations in R1 are quantumly realizable.

Lemma 15. ϱextR1 ↗ Q1 implies R1 = Q1.

This will be used to prove the main result of this sub-
section:

Theorem 6 (Q1 = R1). The correlation set R1 is equal
to Q1.

For the proof, see Appendix C 3. It follows from con-
structing explicit quantum spin-1 realizations of all the
extremal points of R1 which have been enumerated in
Lemma 14.
Although the correlation spaces R1 and Q1 are equal,

the J = 1 general rotation box system R1 (which gener-
ates R1) is not equivalent to a quantum spin-1 system.
This can be seen immediately from the fact that R1 is a
5-dimensional GPT system, while a quantum spin-1 sys-
tem is a 9-dimensional system (since dim(LH(C3)) = 9).
In the next section, we will see that these two

GPT systems, although they generate equivalent SO(2)-
correlations, have distinct informational properties.

3. Inequivalence of spin-1 rotation box system and quantum
system

Every P → R
A

1
can be decomposed in the following

way:

P (a|ω) = c(a)
0

+ c(a)
1

cos ω + s(a)
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sin ω + c(a)
2
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=
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We	can	give	the	extremal	points	explicitly:
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p0(ω) = 0

p1(ω) = sin2 ω

p2(ω) = sin4
ω

2

p3(ω) =
1

4
(1→ cosω)(3 + cosω)

p4(ω) = c(1→ cosω)(1→ cos(ω→ ω0))

p5(ω) = 1→ p4(ω1 → ω).

Main	math.	tool:	Fejér-Riesz	theorem.
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FIG. 5. Di!erent perspectives of the set containing the associated trigonometric coe”cients of the face F0 of the binary spin-1
correlations R1, and its extremal points from Lemma 14. The red and yellow lines correspond to the two consecutive extremal
points for F0,ω1 with ω1 → (ε/2, 3ε/2), the pink dot corresponds to the case F0,ε/2 = F0,3ε/2, and the green and cyan dots
correspond to the two consecutive cases for F0,ε.

3. If ω1 →
(
ω
2
, 3ω

2

)
\ {ε}, then F0,ε1 contains exactly

two distinct extremal points,

ϑextF0,ε1 = {P (ω), P̃ (ω)},

where

P (ω) = c(1↑ cos ω)(1↑ cos(ω ↑ ω→
0
)),

P̃ (ω) = 1↑ P (ω1 ↑ ω),

and ω→
0
= 2ω1 for ω1 → (ω

2
,ε) and ω→

0
= 2(ω1 ↑ ε)

for ω1 → (ε, 3ω
2
). The parameter c > 0 is uniquely

determined by the condition maxε P (ω) = 1.

4. If ω1 = ε then the face F0,ω contains exactly two
extremal points, namely

F0,ω = {P (ω), P̃ (ω)},

where

P (ω) = sin4
ω

2
,

P̃ (ω) = 1↑ P (ω1 ↑ ω) =
1

4
(1↑ cos ω)(3 + cos ω).

This lemma is proven in Appendix C 2.
In Figure 5, we plot the face F0 in the coe!cients space,

illustrating the resulting extremal points from Lemma 14.
Note that from the conditions (31) for ω0 = 0, one has
c0 = ↑c1 ↑ c2 and s1 = ↑s2, thus dimF0 = 3.

2. Quantum realizability of R1

Having characterized the facial structure of R1 and its
extremal functions, we now ask if this set of correlations
can be realized by a quantum spin-1 system.

By Theorem 1, the space Q1 of SO(2)-correlations
generated by a quantum spin-1 system is given by the
functions P (+|ω) = ↓ϖ|U †

εE+Uε |ϖ↔, where |ϖ↔ → C3,

E+ a POVM element on C3, and Uε = eiZε with
Z = diag(1, 0,↑1).
It follows immediately from the convexity of R1 and of

Q1 that it is su!cient to show that the extremal points
of R1 are quantumly realizable to show that all the cor-
relations in R1 are quantumly realizable.

Lemma 15. ϱextR1 ↗ Q1 implies R1 = Q1.

This will be used to prove the main result of this sub-
section:

Theorem 6 (Q1 = R1). The correlation set R1 is equal
to Q1.

For the proof, see Appendix C 3. It follows from con-
structing explicit quantum spin-1 realizations of all the
extremal points of R1 which have been enumerated in
Lemma 14.
Although the correlation spaces R1 and Q1 are equal,

the J = 1 general rotation box system R1 (which gener-
ates R1) is not equivalent to a quantum spin-1 system.
This can be seen immediately from the fact that R1 is a
5-dimensional GPT system, while a quantum spin-1 sys-
tem is a 9-dimensional system (since dim(LH(C3)) = 9).
In the next section, we will see that these two

GPT systems, although they generate equivalent SO(2)-
correlations, have distinct informational properties.

3. Inequivalence of spin-1 rotation box system and quantum
system

Every P → R
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1
can be decomposed in the following

way:
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{p → R1 | p(0) = 0}

We	can	give	the	extremal	points	explicitly:
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p0(ω) = 0

p1(ω) = sin2 ω

p2(ω) = sin4
ω

2

p3(ω) =
1

4
(1→ cosω)(3 + cosω)

p4(ω) = c(1→ cosω)(1→ cos(ω→ ω0))

p5(ω) = 1→ p4(ω1 → ω).

Main	math.	tool:	Fejér-Riesz	theorem.

For	all	of	these,	we	can	
construct	spin-1	quantum	
realizaPons!	This	proves
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FIG. 5. Di!erent perspectives of the set containing the associated trigonometric coe”cients of the face F0 of the binary spin-1
correlations R1, and its extremal points from Lemma 14. The red and yellow lines correspond to the two consecutive extremal
points for F0,ω1 with ω1 → (ε/2, 3ε/2), the pink dot corresponds to the case F0,ε/2 = F0,3ε/2, and the green and cyan dots
correspond to the two consecutive cases for F0,ε.

3. If ω1 →
(
ω
2
, 3ω

2

)
\ {ε}, then F0,ε1 contains exactly

two distinct extremal points,

ϑextF0,ε1 = {P (ω), P̃ (ω)},

where

P (ω) = c(1↑ cos ω)(1↑ cos(ω ↑ ω→
0
)),

P̃ (ω) = 1↑ P (ω1 ↑ ω),

and ω→
0
= 2ω1 for ω1 → (ω

2
,ε) and ω→

0
= 2(ω1 ↑ ε)

for ω1 → (ε, 3ω
2
). The parameter c > 0 is uniquely

determined by the condition maxε P (ω) = 1.

4. If ω1 = ε then the face F0,ω contains exactly two
extremal points, namely

F0,ω = {P (ω), P̃ (ω)},

where

P (ω) = sin4
ω

2
,

P̃ (ω) = 1↑ P (ω1 ↑ ω) =
1

4
(1↑ cos ω)(3 + cos ω).

This lemma is proven in Appendix C 2.
In Figure 5, we plot the face F0 in the coe!cients space,

illustrating the resulting extremal points from Lemma 14.
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εE+Uε |ϖ↔, where |ϖ↔ → C3,

E+ a POVM element on C3, and Uε = eiZε with
Z = diag(1, 0,↑1).
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3. Inequivalence of spin-1 rotation box system and quantum
system

Every P → R
A

1
can be decomposed in the following

way:

P (a|ω) = c(a)
0

+ c(a)
1

cos ω + s(a)
1

sin ω + c(a)
2

cos(2ω) + s(a)
2

sin(2ω)

=
(
c(a)
0

, c(a)
1

, s(a)
1

, c(a)
2

, s(a)
2

)
·





1
cos(ω)
sin(ω)
cos(2ω)
sin(2ω)





= ea · ς(ω), (33)

3-dimensional	face
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{p → R1 | p(0) = 0}

We	can	give	the	extremal	points	explicitly:
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Q1 = R1.

What	about																		?		Soon…
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theory (or a more general theory) admits. The
paradigmatic example is the study of quantum
speed limits [20–23]: upper-bounding the (expec-
tation value or variance of the) energy constrains
how quickly quantum states can become orthogo-
nal. Replacing time-translation symmetry by ro-
tational symmetry leads to the formalism of this
paper.

Our article is organized as follows. In Section II, we
consider a metrological game to illustrate a gap between
the predictions of quantum theory and those of hypo-
thetical, more general theories consistent with rotational
symmetry. In Section III, we introduce the conceptual
framework and discuss the background assumptions of
rotation boxes. More specifically, in Subsection IIIA, we
define and analyze the structure of the sets of quantum
correlations, when the spin is constrained. In Subsec-
tion III B, we do so for the corresponding sets of general
“rotational correlations”, when boxes are characterized
only by their response to rotations (but need not neces-
sarily be quantum). In Subsection III C, we discuss how,
although defined independently, the rotation set can be
interpreted as a relaxation of the quantum set of correla-
tions, and show how this leads to an e!cient semidefinite
programming (SDP) characterization.

Next, in Section IV, we outline our main results, which
concern rotation boxes in prepare-and-measure scenarios,
and the relation between the quantum and general sets.
In Subsection IVA, we start by analyzing the scenario
for the cases J → {0, 1/2}, for which we show that every
rotation box correlation can be generated by a quantum
system of the same J . In Subsection IVB, we consider
the J = 1 case, and show the equivalence of the rota-
tion and quantum sets of correlations specifically for 2
outputs, based on an exact convex characterization of
this set. In Subsection IVC, we demonstrate that a gap
between the sets appears for J ↑ 3/2. We construct a
Tsirelson-like inequality for J = 3/2 and provide an ex-
plicit correlation of rotation box form that violates the
quantum bound. Using the same methodology, we fur-
ther show that the gap exists for all finite J ↑ 3/2. In
Subsection IVD, we examine the case where J is uncon-
strained (i.e. J ↓ ↔), in which every rotation correlation
can be approximated arbitrarily well by finite-J quantum
systems. In Subsection IVE, we then review our pre-
vious results [19], concerning two input rotation boxes,
in which we have applied the framework to describe a
theory-independent protocol for randomness generation.
Finally, in Subsection IVF, we address how one should
understand a “classical” rotation box.

In Section V, we consolidate earlier results concern-
ing Bell setups using our framework. First, in Subsec-
tion VA, we review and shed some new light on the
results of [11], which yield an exact characterization of
the (2, 2, 2)-quantum Bell correlations; second, in Sub-
section VB, we clarify the additional assumption of [24]
allowing for indirect witnesses of multipartite Bell non-
locality. Next, in Section VI, we outline connections to

L(V ) Space of linear operators on the vector space V
LH(Cn) Space of Hermitian operators on Cn

LS(Rn) Space of symmetric operators on Rn

D(H) Set of density operators on Hilbert space H

E(H) Set of POVM elements on H

LSH(Cn) Space of symmetric Hermitian operators on Cn

Symd(V ) Symmetric subspace of V →d

N Natural numbers {1, 2, 3, 4, . . .}
N0 Non-negative integers {0, 1, 2, 3, 4 . . .}

TABLE I. Notation used in the paper.

other known results. In particular, in Subsection VIA,
we discuss the conceptual similarity to “almost quantum”
Bell correlations [25] in more depth; in Subsection VIB,
we show that the state spaces of rotation boxes are iso-
morphic to Carathéodory orbitopes [26]; and in Subsec-
tion VIC, we make a connection between the e”ect space
of the rotation GPT system and a family of rebit entan-
glement witnesses. Finally, we conclude in Section VII.
Table I gives a brief overview on our notation.

II. INVITATION: A SPIN-BOUNDED
METROLOGICAL TASK

Consider the following situation, which resembles
a typical scenario in quantum metrology. A referee
promises to perform a spatial rotation by some angle ω.
Before this, we may prepare a physical system in some
state, submit it to the rotation, and subsequently mea-
sure it to estimate ω. How well can we do this?

FIG. 1. Schematic sketch of the metrological task. An agent
holds a physical system of spin J = 3/2, in an initial state ω.
She gives it to a referee, who, in a black box with respect to the
agent, performs some spatial rotation of angle ε on the system,
where ε is chosen according to the distribution function µ(ε)
(defined in the main text and shown in Figure 2). The referee
then passes the system back to the agent, who measures it
using a two-outcome box in order to determine whether the
angle ε is in the range R+ or R↑ (see also Figure 2).

If our physical system is a classical gyroscope, we can
certainly determine ω perfectly — the challenge lies in the
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• Alice	prepares	a	spin-J	system	
of	her	probabilisPc	theory.	

• She	hands	it	over	to	Bob,	who	
performs	a	rotaPon	by							His	
angle	is	chosen	at	random	with	
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L(V ) Space of linear operators on the vector space V
LH(Cn) Space of Hermitian operators on Cn

LS(Rn) Space of symmetric operators on Rn

D(H) Set of density operators on Hilbert space H

E(H) Set of POVM elements on H

LSH(Cn) Space of symmetric Hermitian operators on Cn

Symd(V ) Symmetric subspace of V →d

N Natural numbers {1, 2, 3, 4, . . .}
N0 Non-negative integers {0, 1, 2, 3, 4 . . .}

TABLE I. Notation used in the paper.

other known results. In particular, in Subsection VIA,
we discuss the conceptual similarity to “almost quantum”
Bell correlations [25] in more depth; in Subsection VIB,
we show that the state spaces of rotation boxes are iso-
morphic to Carathéodory orbitopes [26]; and in Subsec-
tion VIC, we make a connection between the e”ect space
of the rotation GPT system and a family of rebit entan-
glement witnesses. Finally, we conclude in Section VII.
Table I gives a brief overview on our notation.

II. INVITATION: A SPIN-BOUNDED
METROLOGICAL TASK

Consider the following situation, which resembles
a typical scenario in quantum metrology. A referee
promises to perform a spatial rotation by some angle ω.
Before this, we may prepare a physical system in some
state, submit it to the rotation, and subsequently mea-
sure it to estimate ω. How well can we do this?

FIG. 1. Schematic sketch of the metrological task. An agent
holds a physical system of spin J = 3/2, in an initial state ω.
She gives it to a referee, who, in a black box with respect to the
agent, performs some spatial rotation of angle ε on the system,
where ε is chosen according to the distribution function µ(ε)
(defined in the main text and shown in Figure 2). The referee
then passes the system back to the agent, who measures it
using a two-outcome box in order to determine whether the
angle ε is in the range R+ or R↑ (see also Figure 2).

If our physical system is a classical gyroscope, we can
certainly determine ω perfectly — the challenge lies in the

• Alice	prepares	a	spin-J	system	
of	her	probabilisPc	theory.	

• She	hands	it	over	to	Bob,	who	
performs	a	rotaPon	by							His	
angle	is	chosen	at	random	with	

• Alice’s	task:	decide	whether	
is	in	the	gray	or	the	white	set	
of	angles	(has	prob.	1/2	each).
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µ(ω) := n→1| cos(2ω) + sin(3ω)|.

4

use ofmicroscopic systems. Think of the system as carry-
ing some intrinsic spin J , an integer or half-integer, that
responds to rotations. Classical systems correspond to
the case of J → ↑, supported on an infinite-dimensional
Hilbert space with narrowly peaked coherent states, al-
lowing us to resolve the rotation arbitrarily well. Hence,
consider a more interesting case: we demand that the
system is a quantum spin-J system, where J is small.
Concretely, let us choose J = 3/2 (the smallest interest-
ing J for this task, as we will see in subsequent sections).
That is, we regard the total spin, as represented by the
spin quantum number, as a resource, and are constrained
in our access to such resources.

Moreover, suppose that our task is not to estimate
ω directly. Instead, our task is to guess whether ω is
in region R+ or in region R→, as depicted in Figure 2,
corresponding to the sets of angles where the function
cos(2ω) + sin(3ω) is either positive or negative. That is,
our guess will be a single bit, + or ↓, and we would like
to maximize our probability that this bit equals the sign
of cos(2ω) + sin(3ω).

FIG. 2. The task is to estimate whether ω is in the range R+

(gray) or in the range R→ (white). These ranges are defined
according to where the function cos(2ω)+sin(3ω) is either pos-
itive or negative. Here we plot its normalized absolute value,
which is the probability density that our referee uses to draw
the angle ω in our metrological game. The ranges correspond
to R+ = (0, 3ε/10) → (7ε/10, 11ε/10) → (19/10ε, 2ε), R→ is
the complement R→ = (3ε/10, 7ε/10) → (11/10ε, 19/10ε).

Let us summarize the task (also sketched in Figure 1)
and specify it some more. First, the referee picks an angle
ω, but not uniformly in the interval [0, 2ε), but accord-
ing to the distribution function µ(ω) := n→1

| cos(2ω) +

sin(3ω)|, where n is a constant such that
∫
2ω
0

µ(ω)dω = 1

(it turns out that n = 5

3

√
5 + 2

↔
5). Then, we prepare

a spin-3/2 system in some state ϑ and send it to the ref-
eree, who subsequently applies a rotation by angle ω to
it. Finally, we retrieve the system and measure it with
a two-outcome POVM (E+, E→). Our task is to produce
outcome + if the angle was chosen from R+, and outcome

↓ if the angle was chosen from R→.
This may not be the most obviously relevant task to

consider, but it will serve its purpose to demonstrate an
in-principle gap between quantum and beyond-quantum
resources for metrology.
It turns out that the two events + and ↓ both have

probability 1/2, since
∫

R+

µ(ω)dω =

∫

R→

µ(ω)dω =
1

2
.

But our goal is to improve upon random guessing by
preparing and measuring a quantum system used for
sensing in the optimal way. By the Born rule, the condi-
tional probability of our measurement outcome is

P (±|ω) = Tr
(
eiεZϑe→iεZE±

)

= c±
0
+ c±

1
cos ω + s±

1
sin ω + c±

2
cos(2ω)

+s±
2
sin(2ω) + c±

3
cos(3ω) + s±

3
sin(3ω), (1)

where ϑ is some quantum state, Z =
diag(3/2, 1/2,↓1/2,↓3/2) is the spin-3/2 represen-
tation of the generator of a rotation around a fixed
axis, and E± ↗ 0, E+ + E→ = 1 is a measurement
operator. The coe!cients c±i , s

±

i can be determined
from the state and measurement operator. The set of
all such probability functions will be called the quantum
spin-3/2 correlations, Q3/2. In fact, our construction
will be more general than this: we will not define
spin-J correlations as those that can be realized on the
(2J + 1)-dimensional irreducible representation, but on
any quantum system where all outcome probabilities are
trigonometric polynomials of degree at most 2J . That
these correlations can always be realized on C2J+1 is a
non-trivial fact which we are going to prove.

The success probability becomes

Psucc =

∫

R+

P (+|ω)µ(ω)dω +

∫

R→

P (↓|ω)µ(ω)dω

=

∫

R+

P (+|ω)µ(ω)dω +
1

2
↓

∫

R→

P (+|ω)µ(ω)dω

=

∫
2ω

0

P (+|ω)n→1
(
cos(2ω) + sin(3ω)

)
dω +

1

2

=
ε

n
(c+

2
+ s+

3
) +

1

2
,

where we have used that, by definition, |f(ω)| = ±f(ω)
for ω ↘ R±, where f(ω) = cos(2ω) + sin(3ω). To compute
the maximum success probability PQ

succ
over all spin-3/2

quantum systems, we have to determine the maximum
value of c2+s3 on all quantum spin-3/2 correlations. We
will do this in Subsection IVC, showing in Theorem 7
that this maximum equals 1/

↔
3. Thus

PQ

succ
= max

P↑Q3/2

ε

n
(c+

2
+ s+

3
) +

1

2
=

1

2
+

3ε

5
√

3(5 + 2
↔
5)

≃ 0.8536.
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A	metrological	game

3

theory (or a more general theory) admits. The
paradigmatic example is the study of quantum
speed limits [20–23]: upper-bounding the (expec-
tation value or variance of the) energy constrains
how quickly quantum states can become orthogo-
nal. Replacing time-translation symmetry by ro-
tational symmetry leads to the formalism of this
paper.

Our article is organized as follows. In Section II, we
consider a metrological game to illustrate a gap between
the predictions of quantum theory and those of hypo-
thetical, more general theories consistent with rotational
symmetry. In Section III, we introduce the conceptual
framework and discuss the background assumptions of
rotation boxes. More specifically, in Subsection IIIA, we
define and analyze the structure of the sets of quantum
correlations, when the spin is constrained. In Subsec-
tion III B, we do so for the corresponding sets of general
“rotational correlations”, when boxes are characterized
only by their response to rotations (but need not neces-
sarily be quantum). In Subsection III C, we discuss how,
although defined independently, the rotation set can be
interpreted as a relaxation of the quantum set of correla-
tions, and show how this leads to an e!cient semidefinite
programming (SDP) characterization.

Next, in Section IV, we outline our main results, which
concern rotation boxes in prepare-and-measure scenarios,
and the relation between the quantum and general sets.
In Subsection IVA, we start by analyzing the scenario
for the cases J → {0, 1/2}, for which we show that every
rotation box correlation can be generated by a quantum
system of the same J . In Subsection IVB, we consider
the J = 1 case, and show the equivalence of the rota-
tion and quantum sets of correlations specifically for 2
outputs, based on an exact convex characterization of
this set. In Subsection IVC, we demonstrate that a gap
between the sets appears for J ↑ 3/2. We construct a
Tsirelson-like inequality for J = 3/2 and provide an ex-
plicit correlation of rotation box form that violates the
quantum bound. Using the same methodology, we fur-
ther show that the gap exists for all finite J ↑ 3/2. In
Subsection IVD, we examine the case where J is uncon-
strained (i.e. J ↓ ↔), in which every rotation correlation
can be approximated arbitrarily well by finite-J quantum
systems. In Subsection IVE, we then review our pre-
vious results [19], concerning two input rotation boxes,
in which we have applied the framework to describe a
theory-independent protocol for randomness generation.
Finally, in Subsection IVF, we address how one should
understand a “classical” rotation box.

In Section V, we consolidate earlier results concern-
ing Bell setups using our framework. First, in Subsec-
tion VA, we review and shed some new light on the
results of [11], which yield an exact characterization of
the (2, 2, 2)-quantum Bell correlations; second, in Sub-
section VB, we clarify the additional assumption of [24]
allowing for indirect witnesses of multipartite Bell non-
locality. Next, in Section VI, we outline connections to

L(V ) Space of linear operators on the vector space V
LH(Cn) Space of Hermitian operators on Cn

LS(Rn) Space of symmetric operators on Rn

D(H) Set of density operators on Hilbert space H

E(H) Set of POVM elements on H

LSH(Cn) Space of symmetric Hermitian operators on Cn

Symd(V ) Symmetric subspace of V →d

N Natural numbers {1, 2, 3, 4, . . .}
N0 Non-negative integers {0, 1, 2, 3, 4 . . .}

TABLE I. Notation used in the paper.

other known results. In particular, in Subsection VIA,
we discuss the conceptual similarity to “almost quantum”
Bell correlations [25] in more depth; in Subsection VIB,
we show that the state spaces of rotation boxes are iso-
morphic to Carathéodory orbitopes [26]; and in Subsec-
tion VIC, we make a connection between the e”ect space
of the rotation GPT system and a family of rebit entan-
glement witnesses. Finally, we conclude in Section VII.
Table I gives a brief overview on our notation.

II. INVITATION: A SPIN-BOUNDED
METROLOGICAL TASK

Consider the following situation, which resembles
a typical scenario in quantum metrology. A referee
promises to perform a spatial rotation by some angle ω.
Before this, we may prepare a physical system in some
state, submit it to the rotation, and subsequently mea-
sure it to estimate ω. How well can we do this?

FIG. 1. Schematic sketch of the metrological task. An agent
holds a physical system of spin J = 3/2, in an initial state ω.
She gives it to a referee, who, in a black box with respect to the
agent, performs some spatial rotation of angle ε on the system,
where ε is chosen according to the distribution function µ(ε)
(defined in the main text and shown in Figure 2). The referee
then passes the system back to the agent, who measures it
using a two-outcome box in order to determine whether the
angle ε is in the range R+ or R↑ (see also Figure 2).

If our physical system is a classical gyroscope, we can
certainly determine ω perfectly — the challenge lies in the

• Alice	prepares	a	spin-J	system	
of	her	probabilisPc	theory.	

• She	hands	it	over	to	Bob,	who	
performs	a	rotaPon	by							His	
angle	is	chosen	at	random	with	

• Alice’s	task:	decide	whether	
is	in	the	gray	or	the	white	set	
of	angles	(has	prob.	1/2	each).
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µ(ω) := n→1| cos(2ω) + sin(3ω)|.
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use ofmicroscopic systems. Think of the system as carry-
ing some intrinsic spin J , an integer or half-integer, that
responds to rotations. Classical systems correspond to
the case of J → ↑, supported on an infinite-dimensional
Hilbert space with narrowly peaked coherent states, al-
lowing us to resolve the rotation arbitrarily well. Hence,
consider a more interesting case: we demand that the
system is a quantum spin-J system, where J is small.
Concretely, let us choose J = 3/2 (the smallest interest-
ing J for this task, as we will see in subsequent sections).
That is, we regard the total spin, as represented by the
spin quantum number, as a resource, and are constrained
in our access to such resources.

Moreover, suppose that our task is not to estimate
ω directly. Instead, our task is to guess whether ω is
in region R+ or in region R→, as depicted in Figure 2,
corresponding to the sets of angles where the function
cos(2ω) + sin(3ω) is either positive or negative. That is,
our guess will be a single bit, + or ↓, and we would like
to maximize our probability that this bit equals the sign
of cos(2ω) + sin(3ω).

FIG. 2. The task is to estimate whether ω is in the range R+

(gray) or in the range R→ (white). These ranges are defined
according to where the function cos(2ω)+sin(3ω) is either pos-
itive or negative. Here we plot its normalized absolute value,
which is the probability density that our referee uses to draw
the angle ω in our metrological game. The ranges correspond
to R+ = (0, 3ε/10) → (7ε/10, 11ε/10) → (19/10ε, 2ε), R→ is
the complement R→ = (3ε/10, 7ε/10) → (11/10ε, 19/10ε).

Let us summarize the task (also sketched in Figure 1)
and specify it some more. First, the referee picks an angle
ω, but not uniformly in the interval [0, 2ε), but accord-
ing to the distribution function µ(ω) := n→1

| cos(2ω) +

sin(3ω)|, where n is a constant such that
∫
2ω
0

µ(ω)dω = 1

(it turns out that n = 5

3

√
5 + 2

↔
5). Then, we prepare

a spin-3/2 system in some state ϑ and send it to the ref-
eree, who subsequently applies a rotation by angle ω to
it. Finally, we retrieve the system and measure it with
a two-outcome POVM (E+, E→). Our task is to produce
outcome + if the angle was chosen from R+, and outcome

↓ if the angle was chosen from R→.
This may not be the most obviously relevant task to

consider, but it will serve its purpose to demonstrate an
in-principle gap between quantum and beyond-quantum
resources for metrology.
It turns out that the two events + and ↓ both have

probability 1/2, since
∫

R+

µ(ω)dω =

∫

R→

µ(ω)dω =
1

2
.

But our goal is to improve upon random guessing by
preparing and measuring a quantum system used for
sensing in the optimal way. By the Born rule, the condi-
tional probability of our measurement outcome is

P (±|ω) = Tr
(
eiεZϑe→iεZE±

)

= c±
0
+ c±

1
cos ω + s±

1
sin ω + c±

2
cos(2ω)

+s±
2
sin(2ω) + c±

3
cos(3ω) + s±

3
sin(3ω), (1)

where ϑ is some quantum state, Z =
diag(3/2, 1/2,↓1/2,↓3/2) is the spin-3/2 represen-
tation of the generator of a rotation around a fixed
axis, and E± ↗ 0, E+ + E→ = 1 is a measurement
operator. The coe!cients c±i , s

±

i can be determined
from the state and measurement operator. The set of
all such probability functions will be called the quantum
spin-3/2 correlations, Q3/2. In fact, our construction
will be more general than this: we will not define
spin-J correlations as those that can be realized on the
(2J + 1)-dimensional irreducible representation, but on
any quantum system where all outcome probabilities are
trigonometric polynomials of degree at most 2J . That
these correlations can always be realized on C2J+1 is a
non-trivial fact which we are going to prove.

The success probability becomes

Psucc =

∫

R+

P (+|ω)µ(ω)dω +

∫

R→

P (↓|ω)µ(ω)dω

=

∫

R+

P (+|ω)µ(ω)dω +
1

2
↓

∫

R→

P (+|ω)µ(ω)dω

=

∫
2ω

0

P (+|ω)n→1
(
cos(2ω) + sin(3ω)

)
dω +

1

2

=
ε

n
(c+

2
+ s+

3
) +

1

2
,

where we have used that, by definition, |f(ω)| = ±f(ω)
for ω ↘ R±, where f(ω) = cos(2ω) + sin(3ω). To compute
the maximum success probability PQ

succ
over all spin-3/2

quantum systems, we have to determine the maximum
value of c2+s3 on all quantum spin-3/2 correlations. We
will do this in Subsection IVC, showing in Theorem 7
that this maximum equals 1/

↔
3. Thus

PQ

succ
= max

P↑Q3/2

ε

n
(c+

2
+ s+

3
) +

1

2
=

1

2
+

3ε

5
√

3(5 + 2
↔
5)

≃ 0.8536.
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ω

For	spin																									,	quantum	systems	
are	opPmal	for	winning	such	games.	
But	for													,	the	maximal	quantum	
winning	probability	is	
whereas	some	rotaPon	boxes	allow	
Alice	to	win	it	with		
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reversible transformations such as diag(1, 1,�1, 1,�1).
The property of bit symmetry violation holds for SO(2)
reversible transformations for R1 not sure if worth trying
to prove in general?]

We note that although the space of correlations R1
⇠=

E1, the GPT system R1 contains additional structure,
namely in its state space ⌦1. Hence although every
p(✓) 2 R1 can be generated using a quantum system
Q1 this does not imply that every information theoretic
game carried out using the system R1 can be equally suc-
cessfully carried out with a quantum system. For in-
stance a game which required on to encode a pair of bits
(i, j) 2 {0, 1}⇥2 in four states of a GPT system such that
one could perfectly decode either the first bit or the sec-
ond bit can be implemented with R1 with 100% success
probability but will necessarily have some error when im-
plemented on a quantum spin 1 system.

A key di↵erence between the the GPT system R1 and
the SO(2) quantum spin 1 system (i.e. a qutrit with dy-
namics restricted to U✓ = eiZ✓) is that inequivalent SO(2)
orbits of pure states of the qutrit are needed to generate
R1 whilst a single SO(2) orbit of states {!(✓)|✓ 2 [0, 2⇡)}
of R1 is needed to generate R1.

Formally the inequivalence between the two GPT sys-
tems R1 and Q1 manifests itself in the fact that neither
can be linearly embedded in the other.

Lemma 19. Neither the R1 GPT nor the quantum spin-1
system C3 embed in one another.

Proof. 1. The spin-1 quantum system Q1 spans the
vector space Herm(C3) ' R9 and hence cannot be
embedded in the GPT system R1 which spans R5.

2. In order to embed R1 into a Q1 system we require the
existence of a linear map � : ⌦R1 ! ⌦Q1 . Without
loss of generality this map can be defined as:

� : !(✓) 7! ⇢(✓) (30)

where ⇢(✓) is some U(1) orbit of qutrit states.

Let us assume that there exists a map  : ER1 !

EQ1 such that  (e) ·�(!) = e ·! for all e 2 ER1 and
! 2 ⌦R1 .

This would entail that there exist four states
⇢(0), ⇢(⇡2 ), ⇢(⇡), ⇢(

3⇡
2 ) of the qutrit which are

pairwise distinguishable. Since this is false by
Lemma 18 this implies that no pair of maps (�, )
can exist.

C. QJ ( RJ for J � 3/2

Up until now we have seen that an equivalence holds
between the correlation sets QJ and RJ for J  1. How-
ever, in this section we show that this equivalence breaks
for J � 3/2. We split the analysis in two parts: First,
we provide an explicit counterexample of a rotation box

probability distribution outside of the quantum set for
J = 3/2; Second, we use the same methodology to show
that a non-empty gap exists between both sets for any
J � 3/2.

1. Q3/2 ( R3/2

Here we show that Q3/2 ( R3/2. Every spin-3/2 ro-
tation box probability distribution can be expressed as a
degree-3 trigonometric polynomial:

p(✓) = c0 + c1 cos ✓ + s1 sin ✓ + c2 cos(2✓) + s2 sin(2✓)

+c3 cos(3✓) + s3 sin(3✓), (31)

where the ci and si are suitable real numbers such that
0  p(✓)  1 for all ✓. To show that there exist rotation
boxes p 2 R3/2 which are not contained in Q3/2, we
construct an inequality that is satisfied by all quantum
boxes, but violated by p?. In particular, we show the
following:

Theorem 6. If p 2 Q3/2, then its trigonometric coe�-
cients, as taken from representation (31), satisfy

c2 + s3 
1
p
3
. 0.5774.

On the other hand, the trigonometric polynomial

p?(✓) :=
2

5
+

1

4
sin ✓ +

7

20
cos(2✓) +

1

4
sin(3✓)

satisfies 0  p?(✓)  1 for all ✓, hence p? 2 R3/2, but
c2+s3 = 0.6, i.e. p? 62 Q3/2. In particular, Q3/2 ( R3/2.

In the remainder of this section, we prove this theorem
by solving the optimization problem

� := max
p2Q3/2

(c2 + s3)[p],

and we will show that � = 1
p
3
. Since (c2 + s3)[p?] =

3
5 ,

p⇤ violates the inequality, thus proving Q3/2 ( R3/2. For
the sake of completion, by adapting the SDP in Eq. (41)
one can observe that the maximal value attainable with
rotation boxes is �R = maxp2R3/2

(c2 + s3)[p] = 5
8 =

0.625, hence � < (c2 + s3)[p?] < �R. In Figure 5 we
illustrate Theorem 6 by showing the 2D projection of
the correlation sets onto the c2-s3 plane and plotting the
inequality given by c2 + s3  1/

p
3 as well as the point

p? violating it.
We start the proof by noting that in its full generality

the optimization problem has too many free variables. In
order to simplify it, it is useful to move between the com-
plex and the real representations by means of Lemma 5.
Lets suppose that there exists a quantum realization

p 2 Q3/2, i.e. that there exist a POVM element 0  E 

1 and a quantum state ⇢ such that p(✓) = tr(E>U✓⇢U
†

✓ ).
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system Q1 spans the vector space LH(C3) → R9 and hence
cannot be embedded in the GPT system R1 which spans
R5. More generally, we can say the following:

Lemma 18. The spin-1 GPT system R1 cannot be em-
bedded into any finite-dimensional quantum system.

Proof. According to Theorem 2 of [46], all unrestricted
GPTs that can be so embedded are special Euclidean
Jordan algebras. For all such systems, the numbers of
jointly and pairwise perfectly distinguishable states coin-
cide. This can be seen e.g. by noting that perfectly dis-
tinguishable pure states in Euclidean Jordan algebras are
orthogonal (with respect to the self-dualizing inner prod-
uct) idempotents (see e.g. [48, Lemma 3.3]), and pairwise
orthogonality implies that they are elements of a Jordan
frame and hence jointly perfectly distinguishable. But as
we have shown in Lemma 17 above, this correspondence
does not hold for R1.

Hence, even though the set of spin correlations R1 and
Q1 agree, the corresponding GPT systems have genuinely
di!erent information-theoretic and physical behaviors.
This is also the reason why we do not currently know
whether QA

1
= R

A

1
for |A| ↑ 3.

C. QJ ⊋ RJ for J → 3/2

Up until now we have seen that for J ↓ 1 an equiv-
alence holds between the correlation sets QJ and RJ .
However, in this section we show that this equivalence
breaks for J ↑ 3/2. We split the analysis in two parts:
First, we provide an explicit counterexample of a spin-
J correlation outside of the quantum set for J = 3/2;
Second, we use the same methodology to show that a
non-empty gap exists between both sets for any J ↑ 3/2.

1. Q3/2 ⊋ R3/2

We start by showing thatQ3/2 ⊋ R3/2. Every spin-3/2
correlation can be expressed as a degree-3 trigonometric
polynomial:

P (ω) = c0 + c1 cos ω + s1 sin ω + c2 cos(2ω) + s2 sin(2ω)

+c3 cos(3ω) + s3 sin(3ω), (35)

where the coe”cients ci and si are suitable real numbers
such that 0 ↓ P (ω) ↓ 1 for all ω. To show that there
exist correlations P ↔ R3/2 which are not contained in
Q3/2, we construct an inequality that is satisfied by all
quantum boxes, but violated by some P ω

↔ R3/2. In
particular, we show the following:

Theorem 7. If P ↔ Q3/2, then its trigonometric coe!-
cients, as taken from representation (35), satisfy

c2 + s3 ↓
1
↗
3
↭ 0.5774.

FIG. 6. Spin-3/2 rotation and quantum correlations sets in
the c2-s3 plane projection illustrating Q3/2 ⊋ R3/2. The in-
equality corresponds to the case that saturates Theorem 7,
i.e., c2 + s3 = 1/

↑
3. The boundary of the 2D projections

for the sets Q3/2 (blue) and R3/2 (green) have been numeri-
cally obtained using the SDP methodology presented in Ap-
pendix D. The quantum inequality (red line) and validity of
the rotation box (red dot) P ω

↓ R3/2 but P ω /↓ Q3/2 are an-
alytically proven in the main text.

On the other hand, the trigonometric polynomial

P ω(ω) :=
2

5
+

1

4
sin ω +

7

20
cos(2ω) +

1

4
sin(3ω)

satisfies 0 ↓ P ω(ω) ↓ 1 for all ω, hence P ω
↔ R3/2, but

c2 + s3 = 0.6, i.e. P ω
↘↔ Q3/2. Therefore, Q3/2 ⊋ R3/2.

Clearly, this also implies that Q
A

3/2 ⊋ R
A

3/2 for three

or more outcomes, k := |A| ↑ 3, since P ω can always
appear as the probability of the first of the k outcomes.
In the remainder of this section, we prove this theorem

by solving the optimization problem

ε := max
P→Q3/2

(c2 + s3)[P ], (36)

and show that the quantum bound is ε = 1
↑
3
. Since

(c2+s3)[P ω] = 3

5
, P ω violates the inequality, thus proving

Q3/2 ⊋ R3/2. For the sake of completion, by adapting
the SDP in Eq. (20) one can show that the maximal value
attainable with rotation boxes is εR = maxP→R3/2

(c2 +

s3)[P ] = 5

8
= 0.625, hence ε < (c2 + s3)[P ω] < εR.

In Figure 6 we illustrate Theorem 7 by showing the 2D
projection of the correlation sets onto the c2-s3 plane and
plotting the inequality given by c2 + s3 ↓ 1/

↗
3 as well

as the point P ω violating it.
Suppose that there exists a quantum realization P ↔

Q3/2, i.e. that there exist a POVM element 0 ↓ E ↓ 1

and a quantum state ϑ such that P (ω) = Tr(E↓UεϑU
†

ε )
(the transpose on E is not necessary, but is used by con-
vention to relate to the Schur product in Lemma 11).
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reversible transformations such as diag(1, 1,�1, 1,�1).
The property of bit symmetry violation holds for SO(2)
reversible transformations for R1 not sure if worth trying
to prove in general?]

We note that although the space of correlations R1
⇠=

E1, the GPT system R1 contains additional structure,
namely in its state space ⌦1. Hence although every
p(✓) 2 R1 can be generated using a quantum system
Q1 this does not imply that every information theoretic
game carried out using the system R1 can be equally suc-
cessfully carried out with a quantum system. For in-
stance a game which required on to encode a pair of bits
(i, j) 2 {0, 1}⇥2 in four states of a GPT system such that
one could perfectly decode either the first bit or the sec-
ond bit can be implemented with R1 with 100% success
probability but will necessarily have some error when im-
plemented on a quantum spin 1 system.

A key di↵erence between the the GPT system R1 and
the SO(2) quantum spin 1 system (i.e. a qutrit with dy-
namics restricted to U✓ = eiZ✓) is that inequivalent SO(2)
orbits of pure states of the qutrit are needed to generate
R1 whilst a single SO(2) orbit of states {!(✓)|✓ 2 [0, 2⇡)}
of R1 is needed to generate R1.

Formally the inequivalence between the two GPT sys-
tems R1 and Q1 manifests itself in the fact that neither
can be linearly embedded in the other.

Lemma 19. Neither the R1 GPT nor the quantum spin-1
system C3 embed in one another.

Proof. 1. The spin-1 quantum system Q1 spans the
vector space Herm(C3) ' R9 and hence cannot be
embedded in the GPT system R1 which spans R5.

2. In order to embed R1 into a Q1 system we require the
existence of a linear map � : ⌦R1 ! ⌦Q1 . Without
loss of generality this map can be defined as:

� : !(✓) 7! ⇢(✓) (30)

where ⇢(✓) is some U(1) orbit of qutrit states.

Let us assume that there exists a map  : ER1 !

EQ1 such that  (e) ·�(!) = e ·! for all e 2 ER1 and
! 2 ⌦R1 .

This would entail that there exist four states
⇢(0), ⇢(⇡2 ), ⇢(⇡), ⇢(

3⇡
2 ) of the qutrit which are

pairwise distinguishable. Since this is false by
Lemma 18 this implies that no pair of maps (�, )
can exist.

C. QJ ( RJ for J � 3/2

Up until now we have seen that an equivalence holds
between the correlation sets QJ and RJ for J  1. How-
ever, in this section we show that this equivalence breaks
for J � 3/2. We split the analysis in two parts: First,
we provide an explicit counterexample of a rotation box

probability distribution outside of the quantum set for
J = 3/2; Second, we use the same methodology to show
that a non-empty gap exists between both sets for any
J � 3/2.

1. Q3/2 ( R3/2

Here we show that Q3/2 ( R3/2. Every spin-3/2 ro-
tation box probability distribution can be expressed as a
degree-3 trigonometric polynomial:

p(✓) = c0 + c1 cos ✓ + s1 sin ✓ + c2 cos(2✓) + s2 sin(2✓)

+c3 cos(3✓) + s3 sin(3✓), (31)

where the ci and si are suitable real numbers such that
0  p(✓)  1 for all ✓. To show that there exist rotation
boxes p 2 R3/2 which are not contained in Q3/2, we
construct an inequality that is satisfied by all quantum
boxes, but violated by p?. In particular, we show the
following:

Theorem 6. If p 2 Q3/2, then its trigonometric coe�-
cients, as taken from representation (31), satisfy

c2 + s3 
1
p
3
. 0.5774.

On the other hand, the trigonometric polynomial

p?(✓) :=
2

5
+

1

4
sin ✓ +

7

20
cos(2✓) +

1

4
sin(3✓)

satisfies 0  p?(✓)  1 for all ✓, hence p? 2 R3/2, but
c2+s3 = 0.6, i.e. p? 62 Q3/2. In particular, Q3/2 ( R3/2.

In the remainder of this section, we prove this theorem
by solving the optimization problem

� := max
p2Q3/2

(c2 + s3)[p],

and we will show that � = 1
p
3
. Since (c2 + s3)[p?] =

3
5 ,

p⇤ violates the inequality, thus proving Q3/2 ( R3/2. For
the sake of completion, by adapting the SDP in Eq. (41)
one can observe that the maximal value attainable with
rotation boxes is �R = maxp2R3/2

(c2 + s3)[p] = 5
8 =

0.625, hence � < (c2 + s3)[p?] < �R. In Figure 5 we
illustrate Theorem 6 by showing the 2D projection of
the correlation sets onto the c2-s3 plane and plotting the
inequality given by c2 + s3  1/

p
3 as well as the point

p? violating it.
We start the proof by noting that in its full generality

the optimization problem has too many free variables. In
order to simplify it, it is useful to move between the com-
plex and the real representations by means of Lemma 5.
Lets suppose that there exists a quantum realization

p 2 Q3/2, i.e. that there exist a POVM element 0  E 

1 and a quantum state ⇢ such that p(✓) = tr(E>U✓⇢U
†

✓ ).
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Q3/2 ⊋ R3/2 :

17

system Q1 spans the vector space LH(C3) → R9 and hence
cannot be embedded in the GPT system R1 which spans
R5. More generally, we can say the following:

Lemma 18. The spin-1 GPT system R1 cannot be em-
bedded into any finite-dimensional quantum system.

Proof. According to Theorem 2 of [46], all unrestricted
GPTs that can be so embedded are special Euclidean
Jordan algebras. For all such systems, the numbers of
jointly and pairwise perfectly distinguishable states coin-
cide. This can be seen e.g. by noting that perfectly dis-
tinguishable pure states in Euclidean Jordan algebras are
orthogonal (with respect to the self-dualizing inner prod-
uct) idempotents (see e.g. [48, Lemma 3.3]), and pairwise
orthogonality implies that they are elements of a Jordan
frame and hence jointly perfectly distinguishable. But as
we have shown in Lemma 17 above, this correspondence
does not hold for R1.

Hence, even though the set of spin correlations R1 and
Q1 agree, the corresponding GPT systems have genuinely
di!erent information-theoretic and physical behaviors.
This is also the reason why we do not currently know
whether QA

1
= R

A

1
for |A| ↑ 3.

C. QJ ⊋ RJ for J → 3/2

Up until now we have seen that for J ↓ 1 an equiv-
alence holds between the correlation sets QJ and RJ .
However, in this section we show that this equivalence
breaks for J ↑ 3/2. We split the analysis in two parts:
First, we provide an explicit counterexample of a spin-
J correlation outside of the quantum set for J = 3/2;
Second, we use the same methodology to show that a
non-empty gap exists between both sets for any J ↑ 3/2.

1. Q3/2 ⊋ R3/2

We start by showing thatQ3/2 ⊋ R3/2. Every spin-3/2
correlation can be expressed as a degree-3 trigonometric
polynomial:

P (ω) = c0 + c1 cos ω + s1 sin ω + c2 cos(2ω) + s2 sin(2ω)

+c3 cos(3ω) + s3 sin(3ω), (35)

where the coe”cients ci and si are suitable real numbers
such that 0 ↓ P (ω) ↓ 1 for all ω. To show that there
exist correlations P ↔ R3/2 which are not contained in
Q3/2, we construct an inequality that is satisfied by all
quantum boxes, but violated by some P ω

↔ R3/2. In
particular, we show the following:

Theorem 7. If P ↔ Q3/2, then its trigonometric coe!-
cients, as taken from representation (35), satisfy

c2 + s3 ↓
1
↗
3
↭ 0.5774.

FIG. 6. Spin-3/2 rotation and quantum correlations sets in
the c2-s3 plane projection illustrating Q3/2 ⊋ R3/2. The in-
equality corresponds to the case that saturates Theorem 7,
i.e., c2 + s3 = 1/

↑
3. The boundary of the 2D projections

for the sets Q3/2 (blue) and R3/2 (green) have been numeri-
cally obtained using the SDP methodology presented in Ap-
pendix D. The quantum inequality (red line) and validity of
the rotation box (red dot) P ω

↓ R3/2 but P ω /↓ Q3/2 are an-
alytically proven in the main text.

On the other hand, the trigonometric polynomial

P ω(ω) :=
2

5
+

1

4
sin ω +

7

20
cos(2ω) +

1

4
sin(3ω)

satisfies 0 ↓ P ω(ω) ↓ 1 for all ω, hence P ω
↔ R3/2, but

c2 + s3 = 0.6, i.e. P ω
↘↔ Q3/2. Therefore, Q3/2 ⊋ R3/2.

Clearly, this also implies that Q
A

3/2 ⊋ R
A

3/2 for three

or more outcomes, k := |A| ↑ 3, since P ω can always
appear as the probability of the first of the k outcomes.
In the remainder of this section, we prove this theorem

by solving the optimization problem

ε := max
P→Q3/2

(c2 + s3)[P ], (36)

and show that the quantum bound is ε = 1
↑
3
. Since

(c2+s3)[P ω] = 3

5
, P ω violates the inequality, thus proving

Q3/2 ⊋ R3/2. For the sake of completion, by adapting
the SDP in Eq. (20) one can show that the maximal value
attainable with rotation boxes is εR = maxP→R3/2

(c2 +

s3)[P ] = 5

8
= 0.625, hence ε < (c2 + s3)[P ω] < εR.

In Figure 6 we illustrate Theorem 7 by showing the 2D
projection of the correlation sets onto the c2-s3 plane and
plotting the inequality given by c2 + s3 ↓ 1/

↗
3 as well

as the point P ω violating it.
Suppose that there exists a quantum realization P ↔

Q3/2, i.e. that there exist a POVM element 0 ↓ E ↓ 1

and a quantum state ϑ such that P (ω) = Tr(E↓UεϑU
†

ε )
(the transpose on E is not necessary, but is used by con-
vention to relate to the Schur product in Lemma 11).
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reversible transformations such as diag(1, 1,�1, 1,�1).
The property of bit symmetry violation holds for SO(2)
reversible transformations for R1 not sure if worth trying
to prove in general?]

We note that although the space of correlations R1
⇠=

E1, the GPT system R1 contains additional structure,
namely in its state space ⌦1. Hence although every
p(✓) 2 R1 can be generated using a quantum system
Q1 this does not imply that every information theoretic
game carried out using the system R1 can be equally suc-
cessfully carried out with a quantum system. For in-
stance a game which required on to encode a pair of bits
(i, j) 2 {0, 1}⇥2 in four states of a GPT system such that
one could perfectly decode either the first bit or the sec-
ond bit can be implemented with R1 with 100% success
probability but will necessarily have some error when im-
plemented on a quantum spin 1 system.

A key di↵erence between the the GPT system R1 and
the SO(2) quantum spin 1 system (i.e. a qutrit with dy-
namics restricted to U✓ = eiZ✓) is that inequivalent SO(2)
orbits of pure states of the qutrit are needed to generate
R1 whilst a single SO(2) orbit of states {!(✓)|✓ 2 [0, 2⇡)}
of R1 is needed to generate R1.

Formally the inequivalence between the two GPT sys-
tems R1 and Q1 manifests itself in the fact that neither
can be linearly embedded in the other.

Lemma 19. Neither the R1 GPT nor the quantum spin-1
system C3 embed in one another.

Proof. 1. The spin-1 quantum system Q1 spans the
vector space Herm(C3) ' R9 and hence cannot be
embedded in the GPT system R1 which spans R5.

2. In order to embed R1 into a Q1 system we require the
existence of a linear map � : ⌦R1 ! ⌦Q1 . Without
loss of generality this map can be defined as:

� : !(✓) 7! ⇢(✓) (30)

where ⇢(✓) is some U(1) orbit of qutrit states.

Let us assume that there exists a map  : ER1 !

EQ1 such that  (e) ·�(!) = e ·! for all e 2 ER1 and
! 2 ⌦R1 .

This would entail that there exist four states
⇢(0), ⇢(⇡2 ), ⇢(⇡), ⇢(

3⇡
2 ) of the qutrit which are

pairwise distinguishable. Since this is false by
Lemma 18 this implies that no pair of maps (�, )
can exist.

C. QJ ( RJ for J � 3/2

Up until now we have seen that an equivalence holds
between the correlation sets QJ and RJ for J  1. How-
ever, in this section we show that this equivalence breaks
for J � 3/2. We split the analysis in two parts: First,
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probability distribution outside of the quantum set for
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construct an inequality that is satisfied by all quantum
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(c2 + s3)[p] = 5
8 =

0.625, hence � < (c2 + s3)[p?] < �R. In Figure 5 we
illustrate Theorem 6 by showing the 2D projection of
the correlation sets onto the c2-s3 plane and plotting the
inequality given by c2 + s3  1/

p
3 as well as the point

p? violating it.
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between the correlation sets QJ and RJ for J  1. How-
ever, in this section we show that this equivalence breaks
for J � 3/2. We split the analysis in two parts: First,
we provide an explicit counterexample of a rotation box

probability distribution outside of the quantum set for
J = 3/2; Second, we use the same methodology to show
that a non-empty gap exists between both sets for any
J � 3/2.

1. Q3/2 ( R3/2

Here we show that Q3/2 ( R3/2. Every spin-3/2 ro-
tation box probability distribution can be expressed as a
degree-3 trigonometric polynomial:

p(✓) = c0 + c1 cos ✓ + s1 sin ✓ + c2 cos(2✓) + s2 sin(2✓)

+c3 cos(3✓) + s3 sin(3✓), (31)

where the ci and si are suitable real numbers such that
0  p(✓)  1 for all ✓. To show that there exist rotation
boxes p 2 R3/2 which are not contained in Q3/2, we
construct an inequality that is satisfied by all quantum
boxes, but violated by p?. In particular, we show the
following:

Theorem 6. If p 2 Q3/2, then its trigonometric coe�-
cients, as taken from representation (31), satisfy

c2 + s3 
1
p
3
. 0.5774.

On the other hand, the trigonometric polynomial

p?(✓) :=
2

5
+

1

4
sin ✓ +

7

20
cos(2✓) +

1

4
sin(3✓)

satisfies 0  p?(✓)  1 for all ✓, hence p? 2 R3/2, but
c2+s3 = 0.6, i.e. p? 62 Q3/2. In particular, Q3/2 ( R3/2.

In the remainder of this section, we prove this theorem
by solving the optimization problem

� := max
p2Q3/2

(c2 + s3)[p],

and we will show that � = 1
p
3
. Since (c2 + s3)[p?] =

3
5 ,

p⇤ violates the inequality, thus proving Q3/2 ( R3/2. For
the sake of completion, by adapting the SDP in Eq. (41)
one can observe that the maximal value attainable with
rotation boxes is �R = maxp2R3/2

(c2 + s3)[p] = 5
8 =

0.625, hence � < (c2 + s3)[p?] < �R. In Figure 5 we
illustrate Theorem 6 by showing the 2D projection of
the correlation sets onto the c2-s3 plane and plotting the
inequality given by c2 + s3  1/

p
3 as well as the point

p? violating it.
We start the proof by noting that in its full generality

the optimization problem has too many free variables. In
order to simplify it, it is useful to move between the com-
plex and the real representations by means of Lemma 5.
Lets suppose that there exists a quantum realization

p 2 Q3/2, i.e. that there exist a POVM element 0  E 

1 and a quantum state ⇢ such that p(✓) = tr(E>U✓⇢U
†

✓ ).
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2
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[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily
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p(a|x, y)

<latexit sha1_base64="aNorDOmAidKoouklcefdsIAKqCc=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqswUUTdC0U2XFewDOkPJZDJtaJIZkoxSxn6KGxeKuPVL3Pk3ZtpZaOuBwOGce7knJ0gYVdpxvq3S2vrG5lZ5u7Kzu7d/YFcPuypOJSYdHLNY9gOkCKOCdDTVjPQTSRAPGOkFk9vc7z0QqWgs7vU0IT5HI0EjipE20tCueiHlHkd6jBHLWrPrxtCuOXVnDrhK3ILUQIH20P7ywhinnAiNGVJq4DqJ9jMkNcWMzCpeqkiC8ASNyMBQgThRfjaPPoOnRglhFEvzhIZz9fdGhrhSUx6YyTykWvZy8T9vkOroys+oSFJNBF4cilIGdQzzHmBIJcGaTQ1BWFKTFeIxkghr01bFlOAuf3mVdBt196LeuDuvNW+KOsrgGJyAM+CCS9AELdAGHYDBI3gGr+DNerJerHfrYzFasoqdI/AH1ucPAweT1w==</latexit>

dimH = 2

Semi-device-independent	(SDI):	allow	communication,	add	assumption.

<latexit sha1_base64="4Ch55MNSLXeqXGDUWwhkX5Bfhs0=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSQiK9lxU0XLirYhzShTCaTdOjkwcxEKGkX/oobF4q49Tfc+TdO2yy09cDA4Zx7uHeOmzAqpGl+a4Wl5ZXVteJ6aWNza3tH391riTjlmDRxzGLecZEgjEakKalkpJNwgkKXkbY7uJn47UfCBY2jezlMiBOiIKI+xUgqqacf1CvXo071oWrfqpCHTuwggKbR08umYU4BF4mVkzLI0ejpX7YX4zQkkcQMCdG1zEQ6GeKSYkbGJTsVJEF4gALSVTRCIRFONr1/DI+V4kE/5upFEk7V34kMhUIMQ1dNhkj2xbw3Ef/zuqn0r5yMRkkqSYRni/yUQRnDSRnQo5xgyYaKIMypuhXiPuIIS1VZSZVgzX95kbRODevCOL87K9dqeR1FcAiOQAVY4BLUQB00QBNgMALP4BW8aU/ai/aufcxGC1qe2Qd/oH3+AAv2lDM=</latexit>

H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.

MoPvaPon:	(semi-)device-independent	QIT
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Figure 1: Prepare-and-measure scenario considered here involving a device made of a

source S and a measurement apparatus M. We assume that the states send by S to M

have a bounded average energy.

[4, 5]. This assurance does not rely on any modelling of the devices, which can be
treated in a black-box manner, but only requires that the devices satisfy certain
causality constraints, usually that they do not communicate. Though DI QRNGs are
conceptually very compelling and have even be demonstrated experimentally [6–8],
they require challenging loophole-free Bell tests, which precludes real-life implemen-
tations with present day technology.

The semi-DI approach aim to retain the conceptual advantages of DI schemes,
while making their implementation easier, and in particular avoiding the necessity
of using entanglement and loophole-free Bell tests. Their experimental requirements
and generation rates are typically similar to standard QRNGs [9, 10], while their
theoretical analysis is similar to fully DI schemes as it relies on the observation of
certain statistical features akin to the violations of Bell inequalities. However, semi-
DI devices cannot be fully treated in a black-box manner, but must satisfy one or a
small set of assumptions, such as a bound on the dimension of the relevant Hilbert
space [11].

In [12], we introduced a simple semi-DI prepare-and-measure scenario, where the
only required assumption is a bound on the average value of a natural physical ob-
servable, such as the energy of the prepared states. The device we considered, see
Fig. 1, consists of two distinguishable parts: a source (S) and a measurement appara-
tus (M). The source S prepares one of two quantum systems, depending of an external
control variable x 2 {1, 2}, which are then measured at M, yielding a binary outcome
a 2 {±1}. The correlations between the output b of the measurement apparatus M
and the control variable x of the source S can be quantified by the two quantities
E1, E2, where

Ex = Pr(a = +1|x) � Pr(a = �1|x) , (1)

for x 2 {1, 2}, indicates how much the output a is biased depending on x.
It is shown in [12] that the observation of certain correlations E = (E1, E2) be-

tween S and M guarantees that the output a is random, similarly to the observation
of nonlocal correlations in Bell scenarios. This conclusion is valid assuming only a
bound on the average energy (as defined precisely below) of the states emitted by
S. But apart from this assumption no other assumptions are made on S or M, in
particular the measurement apparatus M can be treated in a fully black-box manner.
The scenario is therefore semi-DI. The interest of this proposal is that very simple
optical implementations, involving only the preparation of attenuated coherent states
and homodyne measurements or single-photon threshold detectors, can produce cor-
relations in the randomness generating regime.

The work [12] showed the existence of inherently random correlations in the energy
constrained semi-DI scenario by deriving Bell-type inequalities which are necessarily

2

<latexit sha1_base64="fOVDUWOXAQC6E/K1ZGiJ3S7ebd0=">AAAB7nicbVC7SgNBFL0bXzG+opY2g0GwCrtB1DJoY2ERwTwgWcLd2dlkyOzsMjMrhJCPsLFQxNbvsfNvnCRbaOKBgcM55zL3niAVXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWTTFHWpIlIVCdAzQSXrGm4EayTKoZxIFg7GN3O/PYTU5on8tGMU+bHOJA84hSNldq9exsNsV+uuFV3DrJKvJxUIEejX/7qhQnNYiYNFah113NT409QGU4Fm5Z6mWYp0hEOWNdSiTHT/mS+7pScWSUkUaLsk4bM1d8TE4y1HseBTcZohnrZm4n/ed3MRNf+hMs0M0zSxUdRJohJyOx2EnLFqBFjS5AqbncldIgKqbENlWwJ3vLJq6RVq3qX1drDRaV+k9dRhBM4hXPw4ArqcAcNaAKFETzDK7w5qfPivDsfi2jByWeO4Q+czx8N749k</latexit>

⇤<latexit sha1_base64="07ISr+7SCwwdZd5RDmW4VFVO87c=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaSIuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veVa3+cFlt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPw+PhA==</latexit>

�

Observed	correlations																				imply																																		

<latexit sha1_base64="ptkw970nXDyixd9BXtz6FuK1q48=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0SNQjiRePmAiY0IZsly1s2G6b3a0RG36JFw8a49Wf4s1/4wI9KPiSSV7em8nMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T447Kg4lYS2ScxjeR9gRTkTtK2Z5vQ+kRRHAafdYHw987sPVCoWizs9Sagf4aFgISNYG6lvlx89JrzMrdar59WGN+3bFafmzIFWiZuTCuRo9e0vbxCTNK JCE46V6rlOov0MS80Ip9OSlyqaYDLGQ9ozVOCIKj+bHz5Fp0YZoDCWpoRGc/X3RIYjpSZRYDojrEdq2ZuJ/3m9VIdXfsZEkmoqyGJRmHKkYzRLAQ2YpETziSGYSGZuRWSEJSbaZFUyIbjLL6+STr3mXtTqt41Ks5nHUYRjOIEzcOESmnADLWgDgRSe4RXerCfrxXq3PhatBSufOYI/sD5/AOM8ke8=</latexit>

x 2 {1, 2, 3, 4}

<latexit sha1_base64="lbgqN3mE87GS0M5xm9Ki4bgJAAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY8FLx4r2A9IQtlsN+3SzW7Y3Qgh9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777aytb2xubVd2qrt7+weHtaPjrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140uZv5vSeqNJPi0eQpDRM8EixmBBsr+XnARFB4l81gOqjV3YY7B1olXknqUKI9qH0FQ0myhApDONba99zUhAVWhhFOp9Ug0zTFZIJH1LdU4ITqsJifPEXnVhmiWCpbwqC5+nuiwInWeRLZzgSbsV72ZuJ/np+Z+DYsmEgzQwVZLIozjoxEs//RkClKDM8twUQxeysiY6wwMTalqg3BW355lXSbDe+60Xy4qrdaZRwVOIUzuAAPbqAF99CGDhCQ8Ayv8OYY58V5dz4WrWtOOXMCf+B8/gCot5DY</latexit>

y 2 {1, 2}

<latexit sha1_base64="Tpctxd3a/fKkBsZsovtKqS3VJEM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkiHosePFYwX5AG8pmu2mXbjZxdyOG2D/hxYMiXv073vw3btMctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k+uZ33mgUrFQ3Okkom6AR4L5jGBtpG5UxU+PZ8npoFyxa3YGtEycnFQgR3NQ/uoPQxIHVGjCsVI9x460m2KpGeF0WurHikaYTPCI9gwVOKDKTbN7p+jEKEPkh9KU0ChTf0+kOFAqCTzTGWA9VoveTPzP68Xav3JTJqJYU0Hmi/yYIx2i2fNoyCQlmieGYCKZuRWRMZaYaBNRyYTgLL68TNr1mnNRq9+eVxqNPI4iHMExVMGBS2jADTShBQQ4PMMrvFn31ov1bn3MWwtWPnMIf2B9/gBiNI+K</latexit>

p(a|x, y)

<latexit sha1_base64="aNorDOmAidKoouklcefdsIAKqCc=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgqswUUTdC0U2XFewDOkPJZDJtaJIZkoxSxn6KGxeKuPVL3Pk3ZtpZaOuBwOGce7knJ0gYVdpxvq3S2vrG5lZ5u7Kzu7d/YFcPuypOJSYdHLNY9gOkCKOCdDTVjPQTSRAPGOkFk9vc7z0QqWgs7vU0IT5HI0EjipE20tCueiHlHkd6jBHLWrPrxtCuOXVnDrhK3ILUQIH20P7ywhinnAiNGVJq4DqJ9jMkNcWMzCpeqkiC8ASNyMBQgThRfjaPPoOnRglhFEvzhIZz9fdGhrhSUx6YyTykWvZy8T9vkOroys+oSFJNBF4cilIGdQzzHmBIJcGaTQ1BWFKTFeIxkghr01bFlOAuf3mVdBt196LeuDuvNW+KOsrgGJyAM+CCS9AELdAGHYDBI3gGr+DNerJerHfrYzFasoqdI/AH1ucPAweT1w==</latexit>

dimH = 2

Semi-device-independent	(SDI):	allow	communication,	add	assumption.

<latexit sha1_base64="4Ch55MNSLXeqXGDUWwhkX5Bfhs0=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSQiK9lxU0XLirYhzShTCaTdOjkwcxEKGkX/oobF4q49Tfc+TdO2yy09cDA4Zx7uHeOmzAqpGl+a4Wl5ZXVteJ6aWNza3tH391riTjlmDRxzGLecZEgjEakKalkpJNwgkKXkbY7uJn47UfCBY2jezlMiBOiIKI+xUgqqacf1CvXo071oWrfqpCHTuwggKbR08umYU4BF4mVkzLI0ejpX7YX4zQkkcQMCdG1zEQ6GeKSYkbGJTsVJEF4gALSVTRCIRFONr1/DI+V4kE/5upFEk7V34kMhUIMQ1dNhkj2xbw3Ef/zuqn0r5yMRkkqSYRni/yUQRnDSRnQo5xgyYaKIMypuhXiPuIIS1VZSZVgzX95kbRODevCOL87K9dqeR1FcAiOQAVY4BLUQB00QBNgMALP4BW8aU/ai/aufcxGC1qe2Qd/oH3+AAv2lDM=</latexit>

H(A|X,Y,⇤) � 0.

Drawback:	assumption	not	physically	well-motivated	&	requires	QT.

Observation:	in	many	experiments,	settings	are	spatiotemporal	quantities.

Idea:	use	the	formalism	of	rotation	boxes;	replace	dim	bound	by	spin	bound.	
										Slightly	more	physical;	does	not	assume	the	validity	of	quantum	theory.

MoPvaPon:	(semi-)device-independent	QIT



A	theory-independent	SDI	randomness	generator

Suppose	we	only	have	two	possible	choices	of	angles	—	say,	0	and <latexit sha1_base64="5IpAbTCZq9mGuItHJFDdgyxP9QQ=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYLXsWkQ7AxZaRjAXSJYwO5lNhszODjOzQlzyEDYWitha+RQ+gZ2lb+LkUmjiDwMf/38Oc84JJWfaeN6Xk1taXlldy68XNja3tneKu3t1naSK0BpJeKKaIdaUM0FrhhlOm1JRHIecNsLB5Thv3FGlWSJuzVDSIMY9wSJGsLFWo4257GO3Uyx5rjcRWgR/BqWLj/vvq/eDrNopfra7CUljKgzhWOuW70kTZFgZRjgdFdqpphKTAe7RlkWBY6qDbDLuCB1bp4uiRNknDJq4vzsyHGs9jENbGWPT1/PZ2Pwva6UmOg8yJmRqqCDTj6KUI5Og8e6oyxQlhg8tYKKYnRWRPlaYGHuhgj2CP7/yItRPXb/slm/8UqUCU+XhEI7gBHw4gwpcQxVqQGAAD/AEz450Hp0X53VamnNmPfvwR87bDzVxkzg=</latexit>ω.



A	theory-independent	SDI	randomness	generator
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Gives	two	probabiliPes <latexit sha1_base64="IFMsnUL8OoWqYmHCotgyocjI6K8="></latexit>

P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.
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Gives	two	probabiliPes <latexit sha1_base64="IFMsnUL8OoWqYmHCotgyocjI6K8="></latexit>

P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Equivalently	characterized	by	the	correlaPons
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Gives	two	probabiliPes <latexit sha1_base64="IFMsnUL8OoWqYmHCotgyocjI6K8=">AAACX3icbVFNaxRBEO2ZqImTGMd4Ei+Ni5IgDDM5RC+RBS8eV3CTwPay1PTW7Dbp6Rm6a8Iu4/6G/CX9C94EL/4PD/Z+ILqxoOHx3qtX3dV5rZWjNP0ehDv37j/Y3XsY7R88OnwcPzm6cFVjJfZlpSt7lYNDrQz2SZHGq9oilLnGy/z6/VK/vEHrVGU+0bzGYQkTowolgTw1im96x6+zz7OTc6GxINFGnHOR40SZFqyF+aKVerEkV770hL/iosyrWasKvpidZ0L8EQXoegrbjtMkEmjGm7RIWDWZUjKKO2mSrorfBdkGdLrvbt2Xr79ue6P4mxhXsinRkNTg3CBLaxr6VFJSo89tHNYgr2GCAw8NlOiG7Wo/C/7SM2NeVNYfQ3zF/t3RQuncvMy9swSaum1tSf5PGzRUvB22ytQNoZHrQUWjOVV8uWw+VhYl6bkHIK3yd+VyChYk+S+J/BKy7SffBRenSXaWnH3MOt0uW9cee85esGOWsTesyz6wHuszyX4EYbAfHAQ/w93wMIzX1jDY9Dxl/1T47Dfii7TE</latexit>

P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Equivalently	characterized	by	the	correlaPons

“Two	seRngs”	quantum	and	rotaPon	box	correlaPons:
<latexit sha1_base64="lbWzfHEM5oq4V/3Ts/o/mF39nCg="></latexit>

QJ,ω = {(E1, E2) | P → QJ}
<latexit sha1_base64="x4SnZq7UnUw2UA4DPTxqtkF5n14="></latexit>

RJ,ω = {(E1, E2) | P → RJ}
(Recall																					for																	)

<latexit sha1_base64="Zf1P1dSKsYAvaocTV+Md9GkUOV4=">AAACDXicbZC7SgNBFIZnvcZ4i6a0WYyChYRdi2gZsBGrRMwFsmGZnZwkQ2Zn15lZISzbWNr4KjYWitjaWwi+gc9g5WwSRBN/GPj5zjnMOb8XMiqVZX0Yc/MLi0vLmZXs6tr6xmZua7sug0gQqJGABaLpYQmMcqgpqhg0QwHY9xg0vMFpWm9cg5A04JdqGELbxz1Ou5RgpZGb23N8rPoEs7iauOeOjDwJisPVD77Q2M0VrKI1kjlr7IkplPPvXzefyWHFzb05nYBEPnBFGJayZVuhasdYKEoYJFknkhBiMsA9aGnLsQ+yHY+uScx9TTpmNxD6cWWO6O+JGPtSDn1Pd6ZLyulaCv+rtSLVPWnHlIeRAk7GH3UjZqrATKMxO1QAUWyoDSaC6l1N0scCE6UDzOoQ7OmTZ039qGiXiqWqXSiX0VgZtIN20QGy0TEqozNUQTVE0C26R4/oybgzHoxn42XcOmdMZvLoj4zXb2wKoNY=</latexit>

QJ ⊋ RJ
<latexit sha1_base64="FzPNUZw3rsm6dP4VEhDjdzfgYpI=">AAAB8HicbZDLSgMxFIYz9dJab1WXboJFcFVnKlaXA27EVQv2Iu1QMumZNjSZGZOMUIY+hRsXirj1cdz5AuJjmF4W2vpD4OP/zyHnHD/mTGnb/rQyK6tr69ncRn5za3tnt7C331BRIinUacQj2fKJAs5CqGumObRiCUT4HJr+8GqSNx9AKhaFt3oUgydIP2QBo0Qb6+6m04d7fHZa7haKdsmeCi+DM4eii2vfX7nsebVb+Oj0IpoICDXlRKm2Y8faS4nUjHIY5zuJgpjQIelD22BIBCgvnQ48xsfG6eEgkuaFGk/d3x0pEUqNhG8qBdEDtZhNzP+ydqKDSy9lYZxoCOnsoyDhWEd4sj3uMQlU85EBQiUzs2I6IJJQbW6UN0dwFldehka55FRKlZpTdF00Uw4doiN0ghx0gVx0jaqojigS6BE9oxdLWk/Wq/U2K81Y854D9EfW+w8LSZI0</latexit>

J → 3/2
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Gives	two	probabiliPes <latexit sha1_base64="IFMsnUL8OoWqYmHCotgyocjI6K8="></latexit>

P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Equivalently	characterized	by	the	correlaPons

“Two	seRngs”	quantum	and	rotaPon	box	correlaPons:
<latexit sha1_base64="lbWzfHEM5oq4V/3Ts/o/mF39nCg="></latexit>

QJ,ω = {(E1, E2) | P → QJ}
<latexit sha1_base64="x4SnZq7UnUw2UA4DPTxqtkF5n14="></latexit>

RJ,ω = {(E1, E2) | P → RJ}
(Recall																					for																	)
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QJ ⊋ RJ
<latexit sha1_base64="FzPNUZw3rsm6dP4VEhDjdzfgYpI=">AAAB8HicbZDLSgMxFIYz9dJab1WXboJFcFVnKlaXA27EVQv2Iu1QMumZNjSZGZOMUIY+hRsXirj1cdz5AuJjmF4W2vpD4OP/zyHnHD/mTGnb/rQyK6tr69ncRn5za3tnt7C331BRIinUacQj2fKJAs5CqGumObRiCUT4HJr+8GqSNx9AKhaFt3oUgydIP2QBo0Qb6+6m04d7fHZa7haKdsmeCi+DM4eii2vfX7nsebVb+Oj0IpoICDXlRKm2Y8faS4nUjHIY5zuJgpjQIelD22BIBCgvnQ48xsfG6eEgkuaFGk/d3x0pEUqNhG8qBdEDtZhNzP+ydqKDSy9lYZxoCOnsoyDhWEd4sj3uMQlU85EBQiUzs2I6IJJQbW6UN0dwFldehka55FRKlZpTdF00Uw4doiN0ghx0gVx0jaqojigS6BE9oxdLWk/Wq/U2K81Y854D9EfW+w8LSZI0</latexit>

J → 3/2

Theorem:																												for	all	
<latexit sha1_base64="HueiGH0IsEVQTAFzGzZKSoAu808=">AAACFnicbZC7SgNBFIZn4y3G26qlIEuCYKFh1yLaCAEbsUrEXCBZlrOT2WTI7IWZWSEsqXwEG1sfw8ZCEVux81HsnE2CxMQfBn6+cw5zzu9GjAppml9aZmFxaXklu5pbW9/Y3NK3d+oijDkmNRyykDddEITRgNQklYw0I07AdxlpuP2LtN64JVzQMLiRg4jYPnQD6lEMUiFHP277IHsYWFIdOsnVURtY1IPh+S++nsaOXjCL5kjGvLEmplDOP95973fCiqN/tjshjn0SSMxAiJZlRtJOgEuKGRnm2rEgEeA+dElL2QB8IuxkdNbQOFCkY3ghVy+QxohOTyTgCzHwXdWZbitmayn8r9aKpXdmJzSIYkkCPP7Ii5khQyPNyOhQTrBkA2UAc6p2NXAPOGCpksypEKzZk+dN/aRolYqlqlUol9FYWbSH8ugQWegUldElqqAawugePaEX9Ko9aM/am/Y+bs1ok5ld9Efaxw/e/6N9</latexit>

QJ,ω = RJ,ω
<latexit sha1_base64="PzXIwbkSLb/DRN06CJZdvcTa1ZA=">AAAB8HicbZDLSgMxFIYz9VbrrepKXBgsggsZZlxUlwU34qqCvUg7lDNppg1NJkOSEcrQtQ/gxoUibn2c7nwOX8C0daGtPwQ+/v8ccs4JE8608bxPJ7e0vLK6ll8vbGxube8Ud/fqWqaK0BqRXKpmCJpyFtOaYYbTZqIoiJDTRji4muSNB6o0k/GdGSY0ENCLWcQIGGvd35y1gSd9cDvFkud6U+FF8H+gVDl47Mjx0Ve1Uxy3u5KkgsaGcNC65XuJCTJQhhFOR4V2qmkCZAA92rIYg6A6yKYDj/CJdbo4ksq+2OCp+7sjA6H1UIS2UoDp6/lsYv6XtVITXQYZi5PU0JjMPopSjo3Ek+1xlylKDB9aAKKYnRWTPiggxt6oYI/gz6+8CPVz1y+75Vu/VKmgmfLoEB2jU+SjC1RB16iKaogggZ7QC3p1lPPsvDnvs9Kc89Ozj/7I+fgGxiiTcg==</latexit>

J,ω.
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Gives	two	probabiliPes <latexit sha1_base64="IFMsnUL8OoWqYmHCotgyocjI6K8="></latexit>

P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Equivalently	characterized	by	the	correlaPons

“Two	seRngs”	quantum	and	rotaPon	box	correlaPons:
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J,ω.
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
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p
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⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the



A	theory-independent	SDI	randomness	generator
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P (+1|x) =
{

P (+1|0) if x = 1
P (+1|ω) if x = 2.
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Equivalently	characterized	by	the	correlaPons

“Two	seRngs”	quantum	and	rotaPon	box	correlaPons:
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RJ,ω = {(E1, E2) | P → RJ}
(Recall																					for																	)
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J,ω.
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

If	input	is	x=1:	do	nothing	to	preparaPon	device;	
														if	x=2:	rotate	it	(relaPve	to	measurement	device)	by	angle	α.
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symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
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ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

If	input	is	x=1:	do	nothing	to	preparaPon	device;	
														if	x=2:	rotate	it	(relaPve	to	measurement	device)	by	angle	α.
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proach: analyse how probabilities of detector clicks and
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they impose on one another. Here, we propose to use
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the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
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tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

• “InteresPng”	determinisPc	correlaPons:	
outcome	b	is	a	funcPon	of	x

Suppose																			observed.	Looks	random.	
But:	
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

• “InteresPng”	determinisPc	correlaPons:	
outcome	b	is	a	funcPon	of	x
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

spin	≤	
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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fluctuate according to some shared random variable �.
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below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.
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photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2
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direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
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to the interpretation of these quantities.
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sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,

Angle	
no	cerPfiable	randomness.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Blue	curved	set	of	correlaPons.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

spin	≤	
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

spin	≤	
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM
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nje
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, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
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dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,
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cos(J↵) if |J↵| < ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e
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translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the

Blue	curved	set	of	correlaPons.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,

⇤ CarolineLouise.Jones@oeaw.ac.at
† Stefan.Ludescher@oeaw.ac.at
CLJ and SLL contributed equally to this work.

FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
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k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡
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The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of

2

H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
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k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality
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We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
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2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Which	correlaPons	are	possible?				Theorem:	exactly	those:
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H (say, as the generator of time translations) plays no
direct role in their analysis. Here, instead, we propose
semi-DI assumptions on quantities like spin or energy,
which anchor the security of the resulting protocols on
properties of spacetime physics that are directly related
to the interpretation of these quantities.

Quantum boxes. Let us start by describing the setup in
terms of quantum theory, which we will later generalise
to a theory-agnostic description. We consider two devices
(Fig. 1). The first device prepares some quantum state ⇢1
and takes an input x 2 {1, 2}. The experimenter either
does nothing to the device (i.e. applies R0 = 1 if x = 1),
or rotates it by an angle ↵ around a fixed axis relative to
the other device (i.e. applies the rotation R↵, if x = 2).
After the rotation, the physical system is prepared and
sent to the second device. The second device produces an
outcome b 2 {±1}, and is described by a POVM {Mb}.
Minimal assumptions are made about the devices [20],
such that ⇢1 and Mb are treated as unknown and may
fluctuate according to some shared random variable �.

While we allow such shared randomness (see Eq. (7)
below), we do not allow shared entanglement between
preparation and measurement devices, which is a stan-
dard assumption in the semi-DI context [21]. Disallowing
this, and demanding that the full preparation device is
rotated, prevents the rotation from being applied only to
a part of the emitted system, which in turn prevents the
appearance of detectable relative phases like (�1) for a
2⇡-rotation of spin-1/2 fermions.

Well-known arguments (e.g. in [22, Sec. 13.1]) imply
that fundamental symmetries, such as the rotations R↵,
must act as unitary transformations U↵ on Hilbert space,
furnishing a projective representation of the symmetry
group (here SO(2)). The finite-dimensional projective
unitary representations of SO(2) arise from unitary rep-
resentations of the translation group R and are of the
form U↵ = e

i�↵
L

k e
ik↵, where k runs over a subset of

Z and can appear with some multiplicity, and � 2 R.
To implement an assumption about the response of the
system to rotations, we upper bound the absolute value
of the labels j = k + � in U↵. Then, we can restrict to
representations of the form

U↵ =
JM

j=�J

nje
ij↵

, (1)

where j runs over either integers or half-integers, and
nj indicates how many copies of the j-th irrep of the
translation group are contained in U↵. For details see
Supplemental Material I, where we also show that it is
su�cient to consider representations on Hilbert spaces;
in principle, we could consider systems containing inco-
herent mixtures of both fermions and bosons, but such
cases can be reduced to correlations deriving from the
Hilbert space attached to the system of the highest J .

Fixing some J 2 {0, 1
2 , 1,

3
2 , . . .} introduces an assump-

tion on the physical system that is sent from the prepara-
tion to the measurement device, namely, on its possible

response to spatial rotations. This is what makes our
scenario semi-DI, and what replaces the more common
assumption on the Hilbert space dimension of the trans-
mitted system. It is important to note that we do not fix
the numbers nj , thus allowing for the number of copies
to vary, i.e. the Hilbert space dimension is not bounded
by this. Furthermore, the decomposition of U↵ into its
irreducible representations (irreps) leads to a decompo-

sition of the Hilbert space into H =
LJ

j=�J Hj , where
dim(Hj) = nj . If we have a particle with internal de-
grees of freedom given by H, then J bounds the spin of
the particle. This setup could e.g. be realized by a single
photon being sent through a polarizer, with a relative
rotation between the two devices, and “spin” (helicity)
J = 1 (or J = N for N photons [23]).
We are interested in the possible correlations between

outcome b and setting x that can be obtained under an
assumption on J via Eq. (1) in the quantum case. Let us
for the moment assume that the initial state ⇢1 is a pure
state ⇢1 = |�1ih�1|, then

QJ,↵ := {(E1, E2)|Ex = h�x|M |�xi, |�2i = U↵ |�1i},
(2)

where M = M1�M�1 is an observable constructed from
the POVM {Mb} such that Ex = P (+1|x) � P (�1|x)
characterises the bias of the outcome toward ±1 for a
given x. In [9] it was shown that when the states that
may be sent have overlap � � |h�1|�2i|, the set of possible
correlations is characterised by the inequality

1

2

⇣p
1 + E1

p
1 + E2 +

p
1� E1

p
1� E2

⌘
� �. (3)

We show in Supplemental Material II that for our sce-
nario,

� = min |h�1|�2i| =
⇢
cos(J↵) if |J↵| < ⇡

2
0 if |J↵| � ⇡

2
. (4)

The bound � describes the smallest possible overlap of
any initial state with its rotation by ↵, given that the
absolute value of its spin is at most J . From [9], it follows
that (3) and (4) define some set of correlations eQJ,↵ (see
Fig. 2), of which we know that our set of interest is a
subset: QJ,↵ ✓ eQJ,↵. In Supplemental Material III, we
show that the two sets are in fact identical: the extremal
boundary of eQJ,↵ can be realised via rotations of the

family of states (|ji+ e
i✓|� ji)/

p
2, hence QJ,↵ = eQJ,↵.

The set QJ,↵ grows with J↵ until J↵ = ⇡/2, at which
point a |�1i exists such that |�2i = U↵ |�1i is orthogo-
nal to it. If |�1i and |�2i are perfectly distinguishable,
there exist (even deterministic) strategies to generate all
conceivable correlations.
Anticipating the generation of private randomness as

discussed further below, we define classical correlations
as convex combinations of deterministic behaviours, i.e.
E := (E1, E2) 2 {±1} ⇥ {±1}, that again satisfy the
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Observing	some	correlaPon	
outside	the	red	line	thus	allows	us	to	cerPfy	
randomness	against	the	eavesdropper.
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This	fact,	and	the	amount	of	random	bits,	
is	independent	of	the	probabilis=c	theory.
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																					Correlations	exactly	determined	by	covariance.
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Q3/2 ⊋ R3/2.
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We introduce a class of semi-device-independent protocols based on the breaking of spacetime
symmetries. In particular, we characterise how the response of physical systems to spatial rotations
constrains the probabilities of events that may be observed: in our setup, the set of quantum
correlations arises from rotational symmetry without assuming quantum physics. On a practical
level, our results allow for the generation of secure random numbers without trusting the devices
or assuming quantum theory. On a fundamental level, we open a theory-agnostic framework for
probing the interplay between probabilities of events (as prevalent in quantum mechanics) and the
properties of spacetime (as prevalent in relativity).

Introduction. Quantum field theory and general rel-
ativity, as they currently stand, describe two distinct
classes of physical phenomena: probabilities of events
on the one hand, and spacetime geometry on the other.
Large e↵orts are currently underway to construct a the-
ory of quantum gravity that would describe both classes
of phenomena and their interaction in a unified way.
Given the di�culties in this endeavour, one may start
with a more modest, but nonetheless illuminating ap-
proach: analyse how probabilities of detector clicks and
properties of spacetime interact, and what constraints
they impose on one another. Here, we propose to use
semi-device-independent (semi-DI) quantum information
protocols to study this interrelation.

DI and semi-DI approaches [1–9] treat devices in an
experiment as “black boxes”: no assumptions (or only
very mild ones) are made about the inner workings of
the devices, and the analysis relies on the observed input-
output statistics alone. While Bell and other DI black-
box scenarios have previously been used to study the
foundations of quantum theory [10, 11], here we suggest
to “put the boxes into space and time”.

Specifically, we consider the prepare-and-measure sce-
nario sketched in Fig. 1, which can be used to generate
random numbers that are secure against eavesdroppers
with additional classical information [9, 12–16]. We de-
fine a class of semi-DI quantum random number genera-
tors based on an assumption about how the transmitted
system may respond to spatial rotations. Crucially, this
semi-DI assumption is representation-theoretic in nature,
thus recapturing the theory-independence characteristic
of the DI regime. We show that the exact shape of the set
of quantum correlations in this setup appears to emerge
as a direct consequence of the symmetries of spacetime,
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FIG. 1. Setup: A fixed but arbitrary state is generated in the
preparation device P , which is rotated by an angle ↵x 2 {0,↵}
relative to the measurement device M according to an input
setting x 2 {1, 2}. The state is then sent to M , where a
measurement yields one of two outcomes b 2 {±1}.

which also entails the security of our protocol against
post-quantum eavesdroppers.
The setup. We consider a semi-DI random number

generator similar to the one described in [9, 17], given
by the prepare-and-measure scenario depicted in Fig. 1.
The goal is to generate statistics P (b|x) that certify that
even external eavesdroppers with additional (classical)
knowledge cannot predict b. As in standard DI quantum
information, the security of semi-DI protocols does not
require any assumptions on the inner-workings of the de-
vices, but it requires some constraint on the physical sys-
tem that is communicated between the devices [5, 9, 18].
This has often been implemented with a bound on the
dimension of the Hilbert space of the transmitted sys-
tem, restricting the communication to qubits or qutrits,
as in [5, 12, 18, 19], although this is arguably not very
well-motivated for non-idealised physical scenarios. An
alternative scheme was provided in [9, 17], in which the
mean value of some observable H (such as the energy of
the transmitted system) was constrained. This formu-
lation, however, requires one to assume the validity of
quantum theory, which is a restriction we would like to
avoid for our purpose. In fact, the physical meaning of
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maximum spin J bound:

CJ,↵ := {E =
X

�

p(�)E� | E� 2 QJ,↵,E
� 2 {±1}⇥{±1}},

(5)
where {p(�)}� is a probability distribution. If J↵ < ⇡/2,
the states are not perfectly distinguishable, and so cor-
relations are limited to E� = (±1,±1); alternatively, if
J↵ � ⇡/2, the states can be perfectly distinguishable,
and so E� = (±1,⌥1) are also possible correlations.
Convex combinations of the former case gives the set
CJ,↵ = {(E1, E2)| � 1  E1 = E2  1}, whilst the latter
case gives all possible correlations.

So far only pure states have been considered. However,
it turns out that this is su�cient, as the set of mixed state
correlations, defined by

Q0

J,↵ := {(E1, E2) | Ex = tr(M⇢x), ⇢2 = U↵⇢1U
†

↵}, (6)

coincides precisely with QJ,↵. Clearly QJ,↵ ✓ Q0

J,↵,
and the converse Q0

J,↵ ✓ QJ,↵ can be proven by puri-
fying arbitrary states ⇢ using an ancilla system, without
adding any spin (for details, see Supplemental Material
IV). Thus, the set QJ,↵ is convex, which means that it
also describes scenarios where preparation ⇢1 and mea-
surementsMb fluctuate according to some shared random
variable � distributed ⇠ p(�), i.e.

P (b|↵) =
X

�

p(�)tr(Mb(�)U↵⇢1(�)U
†

↵) (7)

(where the input x 2 {0,↵} is chosen independently from
�). So far we have assumed that the constraint on the
maximum spin J holds exactly and in every run of the
experiment. However, in a more realistic scenario, one
may want to grant room for imperfections. This can be
taken into account by trusting only that the constraint
strictly holds with probability 1� �, with 0  � < 1, but
for probability � the system might carry arbitrarily high
spin. This leads to the relaxed quantum set

Q�
J,↵ = (1� �)QJ,↵ + � conv ({±1}⇥ {±1}) (8)

(+1,+1)(-1,+1)

(+1,-1)(-1,-1)

E2

E1

FIG. 2. The quantum and classical sets QJ,↵ (dark blue) and
CJ,↵ (dark red; line |E2 � E1| = 0), and the quantum and
classical relaxed sets Q�

J,↵ and C�
J,↵ for � 2 {0.15, 0.3}. We

set J = 1 and ↵ = 0.66 throughout.

depicted in Fig. 2, where conv denotes the convex
hull [24]. Similarly, replacing Q by C in this expression
defines the classical relaxed set C�

J,↵. For a full charac-
terisation of the relaxed quantum and classical sets, see
Supplemental Material V, where we also discuss types of
experimental uncertainties for which these sets are phys-
ically relevant. For example, we show that for coherent
states, where the photon number n follows a Poisson dis-
tribution on Fock space, the relaxed quantum set Q�

J,↵

with � = O(
p
⌘) characterises the relevant set of possible

correlations, with ⌘ := P (n > N) giving the probability
of a constraint on J(= N) failing (which tends to zero
exponentially in N).
Generating private randomness. Adapting the results

of [17], we can show that correlations in QJ,↵ outside
of the classical set admit the generation of private ran-
domness. Consider an eavesdropper Eve with classical
(but no quantum) side information who tries to guess
the value of b. Alice, who uses the setup of Fig. 1
to generate private random outcomes b, will in general
not have complete knowledge of all variables � 2 ⇤
of relevance for the experiment, which is expressed in
Eq. (7) by P (b|x) being the mixture

P
� p(�)P (b|x,�).

Eve, however, may have additional relevant informa-
tion � (in addition to knowing the inputs x), and Al-
ice would thus like to guarantee that the conditional
entropy H(B|X,⇤) = �

P
b,x,� p(b, x,�) log2 p(b|x,�)

is large, quantifying Eve’s di�culty to predict b.
Since H(B|X,⇤) =

P
� p(�)H(E�) where H(E) :=

� 1
2

P
b,x

1+bEx
2 log 1+bEx

2 , the amount of conditional en-
tropyH

? that Alice can guarantee if she observes correla-
tions E = (E1, E2), i.e. H(B|X,⇤) � H

?, is determined
by the optimisation problem

H
? = min

{p(�),E�}

X

�

p(�)H(E�)

subject to
X

�:E�2Q!
J,↵

p(�) � 1� "

and
X

�

p(�)E� = E. (9)

That is, H? tells us the number of certified bits of private
randomness against Eve, under the assumption that the
transmitted systems have spin at most J — or, rather,
when this assumption holds approximately (up to some
!), with high probability (1 � "). This quantity is non-
zero, H? ⌘ H

?
",!,↵ > 0, whenever the observed correla-

tions are outside of the relaxed classical set, E 62 C"
J,↵.

For " = ! = 0, this optimisation problem is equivalent
to the one in [17, Sec. 3.2] for the case that there is, in
the terminology of that paper, no max-average assump-
tion (see Supplemental Material VI). For determining
the numerical value of H?

0,0,↵, we thus refer the reader
to [17]. Furthermore, as we show in Supplemental Ma-
terial VII, we have a robustness bound for H?

",!,↵, which
reads

H
?
0,0,↵ � H

?
",!,↵ � H

?
0,0,↵+c("+!)+log(1� ")� " log(2/")

1� "
,
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