Selected Publications

Recent Preprints

  1. M. P. Müller, Algorithmic idealism: what should you believe to experience next?, arXiv:2412.02826.
  2. A. Aloy, M. Fadel, T. D. Galley, C. L. Jones, and M. P. Müller, Theory-independent monitoring of the decoherence of a superconducting qubit with generalized contextuality, arXiv:2411.13421.
  3. C. L. Jones and M. P. Müller, Thinking twice inside the box: is Wigner’s friend really quantum?, arXiv:2402.08727.
  4. K. J. McQueen, I. T. Durham, and M. P. Müller, Building a quantum superposition of conscious states with integrated information theory, arXiv:2309.13826.
  5. Ll. Masanes, T. D. Galley, and M. P. Müller, Response to “The measurement postulates of quantum mechanics are not redundant”, arXiv:2309.01650.
  6. C. L. Jones, S. L. Ludescher, A. Aloy, and M. P. Müller, Theory-independent randomness generation from spatial symmetries, arXiv:2210.14811.
  7. A. de la Hamette, T. D. Galley, P. A. Höhn, L. Loveridge, and M. P. Müller, Perspective-neutral approach to quantum frame covariance for general symmetry groups, arXiv:2110.13824.

Peer-Reviewed Papers

  1. A. Aloy, T. D. Galley, C. L. Jones, S. L. Ludescher, and M. P. Müller, Spin-bounded correlations: rotation boxes within and beyond quantum theory, Commun. Math. Phys. 405, 292 (2024). DOI:10.1007/s00220-024-05123-2; arXiv:2312.09278.
  2. M. P. Müller and A. J. P. Garner, Testing Quantum Theory by Generalizing Noncontextuality, Phys. Rev. X 13, 041001 (2023). DOI:10.1103/PhysRevX.13.041001; arXiv:2112.09719.
  3. M. Krumm and M. P. Müller, Free Agency and Determinism: Is There a Sensible Definition of Computational Sourcehood?, Entropy 25, 903 (2023). DOI:10.3390/e25060903; arXiv:2101.12033.
  4. A. de la Hamette, S. L. Ludescher, and M. P. Müller, Entanglement-Asymmetry Correspondence for Internal Quantum Reference Frames, Phys. Rev. Lett. 129, 260404 (2022). DOI:10.1103/PhysRevLett.129.260404; arXiv:2112.00046.
  5. P. A. Höhn, M. Krumm, and M. P. Müller, Internal quantum reference frames for finite Abelian groups, J. Math. Phys. 63, 112207 (2022). DOI:10.1063/5.0088485; arXiv:2107.07545.
  6. R. D. Baldijão, M. Krumm, A. J. P. Garner, and M. P. Müller, Quantum Darwinism and the spreading of classical information in non-classical theories, Quantum 6, 636 (2022). DOI:10.22331/q-2022-01-31-636arXiv:2012.06559.
  7. M. Krumm, P. A. Höhn, and M. P. Müller, Quantum reference frame transformations as symmetries and the paradox of the third particle, Quantum 5, 530 (2021). DOI:10.22331/q-2021-08-27-530arXiv:2011.01951.
  8. G. Chiribella, A. Cabello, M. Kleinmann, and M. P. Müller, General Bayesian theories and the emergence of the exclusivity principle, Phys. Rev. Research 2, 042001(R) (2020). DOI:10.1103/PhysRevResearch.2.042001; arXiv:1901.11412.
  9. M. P. Müller, Law without law: from observer states to physics via algorithmic information theory, Quantum 4, 301 (2020). DOI:10.22331/q-2020-07-20-301arXiv:1712.01826.
  10. A. J. P. Garner, M. Krumm, and M. P. Müller, Semi-device-independent information processing with spatiotemporal degrees of freedom, Phys. Rev. Research 2, 013112 (2020). DOI:10.1103/PhysRevResearch.2.013112arXiv:1907.09274.
  11. M. Lostaglio and M. P. Müller, Coherence and Asymmetry Cannot be Broadcast, Phys. Rev. Lett. 123, 020403 (2019). DOI:10.1103/PhysRevLett.123.020403arXiv:1812.08214.
  12. Ll. Masanes, T. D. Galley, and M. P. Müller, The measurement postulates of quantum mechanics are operationally redundant, Nat. Comm. 10, 1361 (2019). DOI:10.1038/s41467-019-09348-xarXiv:1811.11060.
  13. P. Boes, J. Eisert, R. Gallego, M. P. Müller, and H. Wilming, Von Neumann Entropy from Unitarity, Phys. Rev. Lett. 122, 210402 (2019). DOI:10.1103/PhysRevLett.122.210402arXiv:1807.08773.
  14. M. Krumm and M. P. Müller, Quantum computation is the unique reversible circuit model for which bits are balls, npj Quantum Inf. 5, 7 (2019). DOI:10.1038/s41534-018-0123-xarXiv:1804.05736
  15. J. Riddell and M. P. Müller, Generalized eigenstate typicality in translation-invariant quasifree fermionic models, Phys. Rev. B 97, 035129 (2018). DOI:10.1103/PhysRevB.97.035129arXiv:1709.05569.
  16. M. P. Müller, Correlating Thermal Machines and the Second Law at the Nanoscale, Phys. Rev. X 8, 041051 (2018). DOI:10.1103/PhysRevX.8.041051; arXiv:1707.03451.
  17. J. Scharlau and M. P. Müller, Quantum Horn’s lemma, finite heat baths, and the third law of thermodynamics, Quantum 2, 54 (2018). DOI:10.22331/q-2018-02-22-54arXiv:1605.06092.
  18. M. P. Müller, S. Carrozza, and P. A. Höhn, Is the local linearity of space-time inherited from the linearity of probabilities?, J. Phys. A: Math. Theor. 50, 054003 (2017). DOI:10.1088/1751-8121/aa523b; arXiv:1608.08684.
  19. M. Krumm, H. Barnum, J. Barrett, and M. P. Müller, Thermodynamics and the structure of quantum theory, New J. Phys. 19, 043025 (2017). DOI:10.1088/1367-2630/aa68efarXiv:1608.04461.
  20. C. M. Bender, D. C. Brody, and M. P. Müller, Hamiltonian for the Zeros of the Riemann Zeta Function, Phys. Rev. Lett. 118, 130201 (2017). DOI:10.1103/PhysRevLett.118.130201arXiv:1608.03679.
  21. A. J. P. Garner, M. P. Müller, and O. C. O. Dahlsten, The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer, Proc. R. Soc. A 473, 20170596 (2017), DOI:10.1098/rspa.2017.0596arXiv:1412.7112.
  22. M. P. Müller and M. Pastena, A generalization of majorization that characterizes Shannon entropy, IEEE Trans. Inf. Th. 62, 1711-1720 (2016). DOI:10.1109/TIT.2016.2528285arXiv:1507.06900.
  23. P. A. Höhn and M. P. Müller, An operational approach to spacetime symmetries: Lorentz transformations from quantum communication, New J. Phys. 18, 063026 (2016). DOI:10.1088/1367-2630/18/6/063026arXiv:1412.8462.
  24. M. Lostaglio, M. P. Müller, and M. Pastena, Stochastic Independence as a Resource in Small-Scale Thermodynamics, Phys. Rev. Lett. 115, 150402 (2015). DOI:10.1103/PhysRevLett.115.150402arXiv:1409.3258.
  25. M. P. Müller, E. Adlam, Ll. Masanes, and N. Wiebe, Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems, Commun. Math. Phys. 340, 499-561 (2015). DOI:10.1007/s00220-015-2473-y; arXiv:1312.7420.
  26. G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics, Phys. Rep. 583, 1-58 (2015). DOI:doi.org/10.1016/j.physrep.2015.04.003arXiv:1309.6586.
  27. H. Barnum, J. Barrett, M. Krumm, and M. P. Müller, Entropy, majorization and thermodynamics in general probabilistic theories, Electronic Proceedings in Theoretical Computer Science 195, 43-58 (2015). DOI:10.4204/EPTCS.195.4arXiv:1508.03107.
  28. H. Barnum, M. P. Müller, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New J. Phys. 16, 123029 (2014). DOI:10.1088/1367-2630/16/12/123029arXiv:1403.4147.
  29. Ll. Masanes, M. P. Müller, D. Pérez-García, and R. Augusiak, Entanglement and the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014). DOI:10.1063/1.4903510arXiv:1111.4060.
  30. Ll. Masanes, M. P. Müller, R. Augusiak, and D. Pérez-García, Existence of an information unit as a postulate of quantum theory, Proc. Natl. Acad. Sci. USA 110, 16373 (2013). DOI:10.1073/pnas.1304884110arXiv:1208.0493.
  31. M. P. Müller and Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013). DOI:10.1088/1367-2630/15/5/053040arXiv:1206.0630.
  32. M. P. Müller, J. Oppenheim, and O. C. O. Dahlsten, The black hole information problem beyond quantum theory, J. High Energy Phys. 09, 116 (2012). DOI:10.1007/s13130-012-4801-4arXiv:1206.5030.
  33. J. Eisert, M. P. Müller, and C. Gogolin, Quantum measurement occurrence is undecidable, Phys. Rev. Lett. 108, 260501 (2012). DOI:10.1103/PhysRevLett.108.260501arXiv:1111.3965.
  34. G. de la Torre, Ll. Masanes, A. J. Short, and M. P. Müller, Deriving Quantum Theory from Its Local Structure and Reversibility, Phys. Rev. Lett. 109, 090403 (2012). DOI:10.1103/PhysRevLett.109.090403arXiv:1110.5482.
  35. M. P. Müller and C. Ududec, Structure of Reversible Computation Determines the Self-Duality of Quantum Theory, Phys. Rev. Lett. 109, 090403 (2012). DOI:10.1103/PhysRevLett.108.130401; arXiv:1110.3516.
  36. M. P. Müller, O. C. O. Dahlsten, and V. Vedral, Unifying typical entanglement and coin tossing: on randomization in probabilistic theories, Commun. Math. Phys. 316, 441-487 (2012). DOI:10.1007/s00220-012-1605-xarXiv:1107.6029.
  37. C. Gogolin, M. P. Müller, and J. Eisert, Absence of Thermalization in Nonintegrable Systems, Phys. Rev. Lett. 106, 040401 (2011). DOI:10.1103/PhysRevLett.106.040401arXiv:1009.2493.
  38. Ll. Masanes and M. P. Müller, A derivation of quantum theory from physical requirements, New J. Phys. 13, 063001 (2011). DOI:10.1088/1367-2630/13/6/063001; arXiv:1004.1483.
  39. M. P. Müller, D. Gross, and J. Eisert, Concentration of Measure for Quantum States with a Fixed Expectation Value, Commun. Math. Phys. 303, 785-824 (2011). DOI:10.1007/s00220-011-1205-1; arXiv:1003.4982.
  40. M. Müller and D. Schleicher, How to Add a Noninteger Number of Terms: From Axioms to New Identities, Am. Math. Mon. 118(2), 136-152 (2011). DOI:10.4169/amer.math.monthly.118.02.136arXiv:1001.4695.
  41. N. Ay, M. Müller, and A. Szkola, Effective Complexity of Stationary Process Realizations, Entropy 13, 1200-1211 (2011). DOI:10.3390/e13061200arXiv:1001.2686.
  42. D. Gross, M. Müller, R. Colbeck, and O. C. O. Dahlsten, All Reversible Dynamics in Maximally Nonlocal Theories are Trivial, Phys. Rev. Lett. 104, 080402 (2010). DOI:10.1103/PhysRevLett.104.080402arXiv:0910.1840.
  43. N. Ay, M. Müller, and A. Szkola, Effective Complexity and Its Relation to Logical Depth, IEEE Trans. Inf. Th. 56, 4593-4607 (2010). DOI:10.1109/TIT.2010.2053892arXiv:0810.5663.
  44. M. Müller, Stationary algorithmic probability, Theor. Comput. Sci. 411, 113-130 (2010). DOI:10.1016/j.tcs.2009.09.017arXiv:cs.IT/0608095. Correction: In Example 3.14, we have to demand in addition that U emulates every other computer with a string d that does not end with a proper prefix of u (in addition to not containing u as a substring).
  45. M. Müller and D. Schleicher, Fractional sums and Euler-like identities, Ramanujan J. 21, 123-143 (2010). DOI:10.1007/s11139-009-9214-9arXiv:math/0502109.
  46. M. Müller, Convex trace functions on quantum channels and the additivity conjecture, Phys. Rev. A 79, 052332 (2009). DOI:10.1103/PhysRevA.79.052332arXiv:0809.4060.
  47. M. Müller, C. Rogers, and R. Nagarajan, Lossless quantum prefix compression for communication channels that are always open, Phys. Rev. A 79, 012302 (2009). DOI:10.1103/PhysRevA.79.012302arXiv:0808.2003.
  48. M. Müller, Does probability become fuzzy in small regions of spacetime?, Phys. Lett. B 673, 166-167 (2009). DOI:10.1016/j.physletb.2009.02.017arXiv:0712.4090.
  49. M. Müller, On the quantum Kolmogorov complexity of classical strings, Int. J. Quant. Inf. 7, 701-711 (2009). DOI:10.1142/S0219749909005456arXiv:0707.2924.
  50. M. Müller, Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity, IEEE Trans. Inf. Th. 54, 763-780 (2008). DOI:10.1109/TIT.2007.913263arXiv:quant-ph/0605030.
  51. F. Benatti, T. Krüger, M. Müller, Ra. Siegmund-Schultze, and A. Szkola, Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem, Commun. Math. Phys. 265, 437-461 (2006). DOI:10.1007/s00220-006-0027-zarXiv:quant-ph/0506080.
  52. M. Müller and D. Schleicher, How to add a non-integer number of terms, and how to produce unusual infinite summations, J. Comp. Appl. Math. 178, 347-360 (2005). DOI:10.1016/j.cam.2004.08.009.

All Further Publications

  1. T. D. Galley, Ll. Masanes, and M. P. Müller, Reply to “Masanes-Galley-Müller and the State-Update Postulate”arXiv:2212.03629.
  2. M. P. Müller, Undecidability and Unpredictability: Not Limitations, but Triumphs of Science, in A. Aguirre, Z. Merali, and D. Sloan (eds.), Undecidability, Uncomputability, and Unpredictability, Springer Nature, 2021. DOI:10.1007/978-3-030-70354-7_2arXiv:2008.09821. First Prize at the 2021 FQXI Essay Contest.
  3. M. P. Müller, Probabilistic Theories and Reconstructions of Quantum Theory (Les Houches 2019 lecture notes), SciPost Phys. Lect. Notes 28 (2021). DOI:10.21468/SciPostPhysLectNotes.28arXiv:2011.01286.
  4. A. J. P. Garner and M. P. Müller, Characterization of the probabilistic models that can be embedded in quantum theoryarXiv:2004.06136. Contains a condensed version of Theorem 2 of (and is superseded by) arXiv:2112.09719.
  5. M. P. Müller, Mind Before Matter: Reversing the Arrow of Fundamentality, in A. Aguirre, B. Foster, and Z. Merali (eds.), What is Fundamental?, Springer Verlag, 2019. DOI:10.1007/978-3-030-11301-8_7arXiv:1812.08594.
  6. P. A. Höhn, M. P. Müller, C. Pfeifer, and D. Rätzel, A local quantum Mach principle and the metricity of spacetimearXiv:1811.02555.
  7. A. Koberinski and M. P. Müller, Quantum Theory as a Principle Theory: Insights from an Information-Theoretic Reconstruction, in M. E. Cuffaro and S. C. Fletcher (eds.), Physical Perspectives on Computation, Computational Perspectives on Physics, Cambridge University Press, Cambridge, 2018. DOI:10.1017/9781316759745.013arXiv:1707.05602.
  8. C. M. Bender, D. C. Brody, and M. P. Müller, Comment on ‘Comment on “Hamiltonian for the zeros of the Riemann zeta function’ “arXiv:1705.06767.
  9. M. P. Müller, A note on “Hamiltonian for the zeros of the Riemann zeta function”arXiv:1704.04705.
  10. M. P. Müller, J. Oppenheim, and O. C. O. Dahlsten, Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem, Horizons of Quantum Physics Conference Proceedings, Foundations of Physics, Springer, 2014. DOI:10.1007/s10701-014-9809-x.
  11. M. P. Müller and Ll. Masanes, Information-Theoretic Postulates for Quantum Theory, in G. Chiribella and R. W. Spekkens (eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016. DOI:10.1007/978-94-017-7303-4_5arXiv:1203.4516.
  12. M. Müller and C. Rogers, Quantum bit strings and prefix-free Hilbert spaces, ITSL 2008 Conference Proceedings, arXiv:0804.0022.

Theses

  • M. P. Müller, Reconstructions of Quantum Theory, Habilitation thesis, University of Vienna, 2021.
  • M. P. Müller, Quantum Kolmogorov Complexity and the Quantum Turing Machine, PhD thesis, Technical University of Berlin, 2007. arXiv:0712.4377.
  • M. P. Müller, Das Quanten-Shannon-Mc-Millan-Breiman-Theorem am Beispiel der Heisenbergschen Spinkette, Master thesis, Technical University of Berlin, 2004.

Science Writing

Scroll to Top